神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100495630
このアイテムのアクセス数:
27
件
(
2025-06-06
07:26 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100495630 (fulltext)
pdf
1.20 MB
21
メタデータ
ファイル出力
メタデータID
0100495630
アクセス権
open access
出版タイプ
Accepted Manuscript
タイトル
Re-tear after arthroscopic rotator cuff tear surgery: risk analysis using machine learning
著者
Shinohara, Issei ; Mifune, Yutaka ; Inui, Atsuyuki ; Nishimoto, Hanako ; Yoshikawa, Tomoya ; Kato, Tatsuo ; Furukawa, Takahiro ; Tanaka, Shuya ; Kusunose, Masaya ; Hoshino, Yuuichi ; Matsushita, Takehiko ; Mitani, Makoto ; Kuroda, Ryosuke
著者名
Shinohara, Issei
著者ID
A0826
研究者ID
1000080608464
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=a355369a8c047f2e520e17560c007669
著者名
Mifune, Yutaka
美舩, 泰
ミフネ, ユタカ
所属機関名
医学部附属病院
著者ID
A2076
研究者ID
1000070457092
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=cf677d34bcd544b8520e17560c007669
著者名
Inui, Atsuyuki
乾, 淳幸
イヌイ, アツユキ
所属機関名
医学部附属病院
著者ID
A2834
研究者ID
1000030707154
著者名
Nishimoto, Hanako
西本, 華子
ニシモト, ハナコ
所属機関名
医学部附属病院
著者名
Yoshikawa, Tomoya
著者名
Kato, Tatsuo
著者名
Furukawa, Takahiro
著者名
Tanaka, Shuya
著者名
Kusunose, Masaya
著者ID
A2110
研究者ID
1000040718384
ORCID
0000-0001-6142-8973
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=0aa4f19f742eecd3520e17560c007669
著者名
Hoshino, Yuuichi
星野, 祐一
ホシノ, ユウイチ
所属機関名
医学部附属病院
著者ID
A1438
研究者ID
1000040467650
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=a27ac0c8ee953122520e17560c007669
著者名
Matsushita, Takehiko
松下, 雄彦
マツシタ, タケヒコ
所属機関名
医学研究科
著者名
Mitani, Makoto
著者ID
A0783
研究者ID
1000080379362
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=f51cbfc82378ae63520e17560c007669
著者名
Kuroda, Ryosuke
黒田, 良祐
クロダ, リョウスケ
所属機関名
医学部附属病院
言語
English (英語)
収録物名
Journal of Shoulder and Elbow Surgery
巻(号)
33(4)
ページ
815-822
出版者
Journal of Shoulder and Elbow Surgery Board of Trustees
刊行日
2024-03-12
公開日
2025-04-22
抄録
【Background】Postoperative rotator cuff retear after arthroscopic rotator cuff repair (ARCR) is still a major problem. Various risk factors such as age, gender, and tear size have been reported. Recently, magnetic resonance imaging-based stump classification was reported as an index of rotator cuff fragility. Although stump type 3 is reported to have a high retear rate, there are few reports on the risk of postoperative retear based on this classification. Machine learning (ML), an artificial intelligence technique, allows for more flexible predictive models than conventional statistical methods and has been applied to predict clinical outcomes. In this study, we used ML to predict postoperative retear risk after ARCR. 【Methods】The retrospective case-control study included 353 patients who underwent surgical treatment for complete rotator cuff tear using the suture-bridge technique. Patients who initially presented with retears and traumatic tears were excluded. In study participants, after the initial tear repair, rotator cuff retears were diagnosed by magnetic resonance imaging; Sugaya classification types IV and V were defined as re-tears. Age, gender, stump classification, tear size, Goutallier classification, presence of diabetes, and hyperlipidemia were used for ML parameters to predict the risk of retear. Using Python's Scikit-learn as an ML library, five different AI models (logistic regression, random forest, AdaBoost, CatBoost, LightGBM) were trained on the existing data, and the prediction models were applied to the test dataset. The performance of these ML models was measured by the area under the receiver operating characteristic curve. Additionally, key features affecting retear were evaluated. 【Results】The area under the receiver operating characteristic curve for logistic regression was 0.78, random forest 0.82, AdaBoost 0.78, CatBoost 0.83, and LightGBM 0.87, respectively for each model. LightGBM showed the highest score. The important factors for model prediction were age, stump classification, and tear size. 【Conclusions】The ML classifier model predicted retears after ARCR with high accuracy, and the AI model showed that the most important characteristics affecting retears were age and imaging findings, including stump classification. This model may be able to predict postoperative rotator cuff retears based on clinical features.
キーワード
Arthroscopic rotator cuff repair
artificial intelligence
feature importance
LightGBM
machine learning
retear
SHAP
stump classification
カテゴリ
医学研究科
医学部附属病院
学術雑誌論文
権利
© 2023 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
関連情報
DOI
https://doi.org/10.1016/j.jse.2023.07.017
詳細を表示
資源タイプ
journal article
ISSN
1058-2746
OPACで所蔵を検索
CiNiiで学外所蔵を検索
eISSN
1532-6500
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る