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Re-tear after arthroscopic rotator cuff tear surgery: risk analysis using 1 
machine learning  2 
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Abstract 3 

Background: Postoperative rotator cuff re-tear after arthroscopic rotator cuff repair (ARCR) 4 

is still a major problem. Various risk factors such as age, gender, and tear size have been 5 

reported. Recently, magnetic resonance imaging (MRI)-based stump classification was 6 

reported as an index of rotator cuff fragility. Although stump type 3 is reported to have a high 7 

re-tear rate, there are few reports on the risk of postoperative re-tear based on this 8 

classification. Machine learning (ML), an artificial intelligence technique, allows for more 9 

flexible predictive models than conventional statistical methods and has been applied to 10 

predict clinical outcomes. In this study, we used ML to predict postoperative re-tear risk after 11 

ARCR. 12 

Methods: The retrospective case-control study included 353 patients who underwent surgical 13 

treatment for complete rotator cuff tear using the suture-bridge technique. Patients who 14 

initially presented with re-tears and traumatic tears were excluded. In study participants, after 15 

the initial tear repair, rotator cuff re-tears were diagnosed by MRI; Sugaya classification types 16 

IV and V were defined as re-tears. Age, gender, stump classification, tear size, Goutallier 17 

classification, presence of diabetes, and hyperlipidemia were used for ML parameters to 18 

predict the risk of re-tear. Using Python's Scikit-learn as an ML library, five different AI 19 

models (logistic regression, random forest, AdaBoost, CatBoost, LightGBM) were trained on 20 

the existing data, and the prediction models were applied to the test dataset. The performance 21 

of these ML models was measured by the area under the receiver operating characteristic 22 

curve (AUC). Additionally, key features affecting re-tear were evaluated. 23 

Results: The AUC for logistic regression was 0.78, random forest 0.82, AdaBoost 0.78, 24 

CatBoost 0.83, and LightGBM 0.87, respectively for each model. LightGBM showed the 25 

highest score. The important factors for model prediction were age, stump classification, and 26 

tear size. 27 
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Conclusions: The ML classifier model predicted re-tears after ARCR with high accuracy, and 28 

the AI model showed that the most important characteristics affecting re-tears were age and 29 

imaging findings, including stump classification. This model may be able to predict 30 

postoperative rotator cuff re-tears based on clinical features. 31 

Study design: Prognosis Study (Case-control study). 32 

Level of evidence: Ⅲ 33 

Keywords: arthroscopic rotator cuff repair; artificial intelligence; feature importance; 34 

LightGBM; machine learning; re-tear; SHAP; stump classification  35 



4 
 

Introduction 36 

Postoperative re-tear is still a problem in arthroscopic rotator cuff repair (ARCR) for 37 

degenerative rotator cuff tears (RCTs). The reported re-tear rate after ARCR varies depending 38 

on the suture method, ranging from 5-92%.6,5,9,13,14,29,39 Assessment of risk factors is 39 

important since re-tears significantly reduce postoperative function and require reoperation.39 40 

Risk factors for postoperative re-tears include age,2,3,11 tear size,3,4,7,11 fatty 41 

degeneration,15,16,24 and suturing technique.5 Recently, stump classification using the coronal 42 

view of T2 fat suppression on magnetic resonance imaging (MRI) was proposed as an 43 

indicator of rotator cuff fragility.23 Comparing the signal intensity of the deltoid (D) and the 44 

rotator cuff tear (C), C<D is classified as type 1, C=D as type 2, and C>D as type 3.23 Stump 45 

type 3 was reported to have a significantly higher postoperative re-tear rate after ARCR, 46 

suggesting that stump classification may be an indicator of rotator cuff fragility.39 It has also 47 

been suggested that advanced glycation end-products (AGEs), which rise with aging and 48 

diabetes mellitus (DM), are associated with tendon fragility.37 Inflammation and degeneration 49 

caused by oxidative stress and abnormal collagen cross-linking due to the accumulation of 50 

AGEs affect stump classification by MRI images. There are few reports taking stump 51 

classification into account that may be useful for predicting re-tears after ARCR. In this 52 

study, we focused on the analysis of clinical data by machine learning (ML), which has 53 

recently attracted attention in the field of orthopaedics.21 ML, an artificial intelligence (AI) 54 

technique, is a method capable of incorporating patient-related variables into predictive 55 

models and providing individualized risk assessments.32 It allows for more flexible predictive 56 

models than conventional statistical methods and has been applied to predict clinical 57 

outcomes.32 ML has been applied to a variety of fields: sports medicine,25,26 joint surgery,21,32 58 

and spine surgery,33 and has been reported as an algorithm for predicting factors affecting 59 

clinical outcomes and improvements. There are also reports on using ML to predict RCTs in 60 
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terms of assessing important clinical features27 and predicting costs.18 On the other hand, 61 

there are no reports on the inclusion of stump classification in ML models to predict re-tears 62 

after ARCR. 63 

The purposes of this study are twofold; first, to evaluate the predictive accuracy for re-tears 64 

after ARCR by applying ML to clinical data, and second, to evaluate the features that the AI 65 

determines to be important in predicting re-tears, including stump classification. This study 66 

was based on the hypothesis that a classifier generated by ML would predict postoperative re-67 

tears after ARCR with high accuracy and stump classification may be an important feature in 68 

predicting re-tear.  69 



6 
 

Materials and Methods 70 

Ethical approval 71 

This study was approved by the appropriate review board, and informed consent was 72 

obtained from all patients involved.  73 

Data collection 74 

Patients who underwent ARCR for degenerative complete rotator cuff tears from April 2017 75 

to June 2021 at our institution or affiliated institutions were included. ARCR was performed 76 

by two surgeons, Y.M. and M.M., using the suture bridge technique. Reoperations, trauma, 77 

and patients who required patch augmentation for rotator cuff repair were excluded from this 78 

study. Traumatic tears were defined to include trauma to the symptomatic shoulder, such as 79 

falls, impacts, and sudden extensions.34 MRI was used to identify study participants who 80 

suffered rotator cuff re-tears, with Sugaya classification types IV and V defined as re-tears.38 81 

The parameters for ML were age, gender, medical history (DM, hyperlipidemia), stump 82 

classification (Fig. 1),23 tear size,10 and fatty degeneration (Goutallier classification).17 83 

Statistical analysis 84 

Each patient parameter is expressed as mean ± standard deviation. To compare patient 85 

backgrounds with and without re-tears, the Mann–Whitney U test was used to compare two 86 

variables (e.g., gender) and Fisher's exact test to compare multiple variables (e.g., tear size). 87 

Statistical significance was set at p < 0.05. 88 

Machine learning 89 

The data collection and ML workflow are shown in Fig. 2. Five supervised algorithms were 90 

applied to validate clinical data20,22 (logistic regression, random forest,1 adaptive boost 91 

(AdaBoost),35 CatBoost,20 and light gradient-boosting machine (LightGBM), which is a 92 

modified gradient boosting decision tree,42) were used as ML algorithms to predict rotator 93 

cuff re-tears after ARCR, and the predictions were compared. The logistic regression model is 94 
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a widely used multivariate analysis approach in medical research. The remaining models are 95 

general ensemble methods that combine multiple simple tree models and have been proven to 96 

make reliable predictions.30 Random forest is a method that uses ensemble decision trees to 97 

extract random subsets from the data with replacement, allowing all data to be used for 98 

training and validation while avoiding the tendency of decision trees to overfit models.1 In 99 

brief, it is a method that attempts to obtain better predictions by using multiple training 100 

models and performing majority voting on the results.1 On the other hand, Adaboost, 101 

Catboost, and LightGBM are gradient boosting methods, which take over the errors from the 102 

previous decision tree calculation and correct them. AdaBoost is a learning algorithm that 103 

feeds back errors made in training and iteratively learns to improve accuracy.35 Feedback 104 

reduces the error of the ML and allows a better accuracy rate to be reached. The approach has 105 

been applied to the data analysis of COVID-19.35  CatBoost is a ML algorithm that can 106 

highly process categorical variables and is widely used for big data analysis.20 LightGBM is a 107 

model that greatly improves the computation time due to scanning all the sample points of 108 

each feature when finding the optimal split point in the boosting process.42 LightGBM 109 

increases computational speed by growing the decision trees used, reducing memory 110 

footprint, improving classification accuracy, and efficiently preventing overfitting.42 Scikit-111 

learn, a free ML library for Python,31 was used to implement these supervised algorithms. 112 

Patient data were randomly divided into training samples (70%) used for hyperparameter 113 

tuning to generate ML models, and validation samples (30%) to verify the performance of 114 

each model. After the optimal hyperparameters for each ML algorithm were determined in 115 

the training sample data, the prediction accuracy (percentage of correct answers for all data) 116 

of re-tear in each model for the test data was evaluated. For each ML model, the accuracy and 117 

the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) 118 

were calculated. AUC in ML indicates accuracy of the classifier. For each endpoint, 95% 119 
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confidence intervals (CI) were calculated using the bootstrap method.30 The bootstrap method 120 

is an iterative resampling method used to estimate key statistics, such as the mean and 121 

standard deviation, by resampling and resubstituting the data set.30 In addition, key values of 122 

each prediction parameter were computed using two different algorithms to visualize the 123 

basis for the ML model’s decisions: permutation feature importance is defined as the amount 124 

by which the model score decreases when one feature value is randomly shuffled;12 the 125 

Shapley additive explanation (SHAP) value is defined as the contribution of each feature to 126 

the model prediction based on game theory.40 Briefly, it is a method for determining the 127 

contribution of each variable (feature) to the predicted results of the ML model.40128 
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Results 129 

Study participants and statistical analysis 130 

Of the 582 cases who underwent ARCR at our institution or affiliated institutions, 353 were 131 

finally included after excluding re-tears (12 cases), traumatic tears (182 cases), and patients 132 

who required patch augmentation. In the study participants, re-tears were observed in 45 133 

cases (12.7%); the mean time to postoperative re-tear was 9.4 ± 3.7 months. A statistical 134 

analysis of patient background based on the presence or absence of rotator cuff re-tears is 135 

shown in Table 1. 136 

Prediction of rotator cuff re-tear in each ML model 137 

Fig. 3 shows a heat map representing the correlation between each parameter and rotator cuff 138 

re-tear. Warm colors indicate a positive correlation, while cold colors indicate a negative 139 

correlation. The heat map showed that DM, stump type, tear size, and fatty degeneration of 140 

the rotator cuff were positively correlated with re-tear. The accuracy and AUC for each model 141 

are summarized in Table 2, and the ROC curves are plotted in Fig. 4. Among the five ML 142 

models, random forest showed the highest score in accuracy, and LightGBM showed the 143 

highest score in AUC. 144 

Important features of the predictor variables  145 

To detect the importance of each parameter for predicting postoperative rotator cuff re-tear, 146 

feature importance was calculated for the LightGBM model, which showed the highest AUC. 147 

Age, stump classification, and tear size were ranked as the three most important parameters 148 

associated with postoperative rotator cuff re-tear in the LightGBM model (Fig. 5a). The 149 

SHAP score showed stump classification, tear size, and age as important characteristics. As 150 

shown in Fig. 5b, stump classification and tear size showed a strong positive correlation for 151 

postoperative rotator cuff re-tears.  152 
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Discussion 153 

The ML classification models predicted re-tears after ARCR with high accuracy. Among the 154 

five used models, LightGBM showed the highest AUC. In the LightGBM model, age, stump 155 

classification, and tear size were the most important factors affecting rotator cuff re-tear after 156 

ARCR. 157 

In the last decades, AI techniques based on mathematical modeling have been developed; ML 158 

is one of the AI-based approaches, and ML models are increasingly integrated into clinical 159 

diagnosis and the prediction of clinical outcomes. Recently, ML has also been applied to the 160 

diagnosis of RCTs, and it has been reported that XGBoost predicts RCTs from clinical 161 

findings with high accuracy (accuracy: 0.85, AUC: 0.92).27 Postoperative re-tear is one of the 162 

most important clinical issues associated with RCTs. A variety of risk factors have been 163 

reported, including imaging findings such as tear size5 and fatty degeneration15 using MRI, as 164 

well as patient factors such as age,2 gender,8 and preoperative corticosteroid injections.28 In 165 

addition to these risk factors, this study focused on stump classification, which is associated 166 

with aging and DM and reflects rotator cuff fragility.37 The odds ratio (OR) for re-tear risk 167 

assessment based on stump classification was 4.71, which was higher than that for tear size 168 

(OR: 1.07) and fatty degeneration (OR: 3.87).39 Therefore, this study added stump 169 

classification to the previously described risk factors and presented a comparison of the 170 

predictive accuracy of five different learning algorithms. The results showed that all models 171 

had high accuracy as classifiers, with LightGBM having the highest AUC. LightGBM is a 172 

gradient-boosting framework that uses a decision-tree-based learning algorithm, adopting a 173 

histogram algorithm and a depth-limited leaf-wise leaf growth strategy.41 This strategy 174 

increases computational efficiency, reduces memory footprint, improves class classification 175 

accuracy, and effectively prevents overfitting.41 LightGBM has been applied clinically to 176 
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predict neurological prognosis after cervical cord injury36 and to predict osteoporosis from 177 

blood test data.22 178 

In medical AI research, interpretation of model performance is important because clinicians 179 

are responsible for making rational decisions based on AI predictions.27 This concept, called 180 

explainable AI (XAI), is intended to enable humans to understand, properly trust, and 181 

effectively manage models.22 In this study, two methods of XAI were used. In the 182 

permutation feature method, it is defined as the amount by which the model score decreases 183 

when one feature is randomly shuffled. Since the relationship between features and targets is 184 

broken in this method, the decrease in model score indicates how dependent the model is on 185 

the features.12 Results indicate that age, stump classification, and tear size are three important 186 

parameters. Age is considered to be a strong confounding factor, as it also influences stump 187 

classification37 and tear size.19 SHAP is another XAI and explains the predictive value of 188 

aML model by calculating the contribution of each feature to the prediction. In this model, 189 

stump classification, tear size, and age showed higher SHAP scores, all of which were 190 

positively correlated with the presence of rotator cuff re-tear. The stump classification reflects 191 

the fragility of the tendon,37 and its recent association with rotator cuff re-tears has attracted 192 

much attention, so the AI's decision in this study is reasonable. According to the results of 193 

this study, it may be important to include stump classification as a risk factor for rotator cuff 194 

re-tear after ARCR. ML-based prediction models are capable of predicting rotator cuff re-195 

tears with high accuracy, and we hope that the addition of stump classification will enable 196 

more accurate and convenient prediction of clinical outcomes.  197 

This study has some limitations. First, although the model performed well on the present data 198 

set, the number of cases in the original data is not large. Second, we did not consider factors 199 

by procedure or surgeon for ARCR to unify the perioperative background. Third, no 200 

validation against data from other facilities has been conducted in this study, and a validation 201 
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study will be needed in the future. Finally, factors predicting rotator cuff re-tear after ARCR 202 

surgery in this study did not include evaluation of patient laboratory data or past medical 203 

history. The creation of a model based on further data would be the next step to achieving 204 

higher prediction accuracy and detecting additional risk factors for rotator cuff re-tear.  205 
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Conclusion 206 

The ML classifier model predicted re-tears after ARCR with high accuracy, and the AI model 207 

showed that the most important characteristics affecting re-tears were age and imaging 208 

findings, including stump classification. Stump classification has been suggested to be related 209 

to aging and DM, and a combined evaluation of these factors is necessary to prevent re-tears 210 

after ARCR. This model may be able to predict postoperative rotator cuff re-tears based on 211 

clinical features. 212 

 213 
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Table Legends 334 

Table.1 Statistical analysis of patient background in the presence or absence of rotator cuff 335 

re-tears. Mean ± standard deviation of each parameter. N.S.: not significant 336 

Table 2. Accuracy and the area under the curve of each ML model in predicting rotator cuff 337 

re-tear.  338 
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Figure Legends 339 

Fig. 1. Representative magnetic resonance imaging of stump classification. (a) Comparison 340 

of signal intensity between deltoid (D; red-circled area) and rotator cuff tears (C; orange-341 

circled area). (b) C<D is classified as type 1, C=D as type 2, and C>D as type 3. 342 

Fig. 2. Workflow of data collection and machine learning. 343 

Fig. 3. Heat map of the correlation. Stump type, diabetes mellitus (DM), tear size, and fatty 344 

degeneration positively correlated with rotator cuff re-tear. 345 

Fig. 4. ROC curve of each trained model  346 

Fig. 5. (a) Permutation features the importance of light Gradient Boosting Machine 347 

(LightGBM) model. Important features have larger scores. Top three important features were 348 

age, stump type, and tear size. (b) SHAP values of LightGBM model. Top three important 349 

features were stump type, tear size, and age. The warm color shows positive impact on model 350 

performance while the cool color shows negative impact.  351 
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