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Abstract
Background Systemic insulin resistance plays an important role in the pathogenesis of type 2 diabetes and its 
complications. Although impaired branched-chain amino acid (BCAA) metabolism has been reported to be involved 
in the development of diabetes, the relationship between cardiac BCAA metabolism and the pathogenesis of diabetic 
cardiomyopathy (DbCM) remains unclear.

Objectives The aim of this study was to investigate BCAA metabolism in insulin-resistant hearts by using a novel 
mouse model of DbCM.

Methods The cardiac phenotypes of adipocyte-specific 3′-phosphoinositide–dependent kinase 1 (PDK1)-deficient 
(A-PDK1KO) mice were assessed by histological analysis and echocardiography. The metabolic characteristics and 
cardiac gene expression were determined by mass spectrometry or RNA sequencing, respectively. Cardiac protein 
expression was evaluated by Western blot analysis.

Results A-PDK1KO mouse hearts exhibited hypertrophy with prominent insulin resistance, consistent with cardiac 
phenotypes and metabolic disturbances previously reported as DbCM characteristics. RNA sequencing revealed 
the activation of BCAA uptake in diabetic hearts. In addition, the key enzymes involved in cardiac BCAA catabolism 
were downregulated at the protein level in A-PDK1KO mice, leading to the accumulation of BCAAs in the heart. 
Mechanistically, the accumulation of the BCAA leucine caused cardiac hypertrophy via the activation of mammalian 
target of rapamycin complex 1 (mTORC1).

Conclusions A-PDK1KO mice closely mimic the cardiac phenotypes and metabolic alterations observed in human 
DbCM and exhibit impaired BCAA metabolism in the heart. This model may contribute to a better understanding of 
DbCM pathophysiology and to the development of novel therapies for this disease.
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Background
Type 2 diabetes mellitus (T2DM) is a metabolic disease 
characterized by persistent hyperglycemia and systemic 
insulin resistance [1]. There are more than 500  million 
individuals with diabetes mellitus (DM) worldwide, and 
its prevalence is expected to increase, particularly that of 
T2DM [2, 3]. Individuals with T2DM are highly suscep-
tible to cardiovascular disease, which is a major cause of 
death and disability [4]. Notably, T2DM is an indepen-
dent risk factor for developing heart failure (HF), and 
HF patients with DM have a worse prognosis and quality 
of life [5, 6]. Especially, while a healthy heart maintains 
metabolic flexibility by efficiently utilizing various energy 
substrates, including fatty acids and carbohydrates, a fail-
ing heart undergoes a significant shift in substrate depen-
dence, with its utilization patterns changing drastically 
depending on the pathophysiology, stage, and severity of 
HF [7, 8]. The pathophysiological association between HF 
and DM has been documented over the past few decades. 
A specific type of cardiomyopathy termed diabetic car-
diomyopathy (DbCM) was first described in diabetic 
patients in 1972 by Rubler et al. [9]. DbCM is character-
ized by clinical HF despite the absence of coronary artery 
disease, hypertension, and valvular heart disease [1]. 
DbCM represents one of the major public health prob-
lems, but its mechanisms and effective therapies remain 
to be elucidated [10]. Although analyses of various ani-
mal models of T2DM have led to active studies explor-
ing the molecular mechanisms that contribute to a better 
understanding of the pathogenesis of DbCM [11, 12], 
each model has inherent limitations or disadvantages, 
such as pharmacological or long-term dietary interven-
tions [13].

Previously, we generated adipocyte-specific 3′-phos-
phoinositide–dependent kinase 1 (PDK1)-deficient 
(A-PDK1KO) mice [14, 15]. PDK1 is a key kinase involved 
in the insulin signaling pathway; it activates downstream 
kinases, including Akt and ribosomal protein S6 kinase, 
by phosphorylation [16]. We previously proposed that 
insulin signaling in adipocytes plays critical roles in the 
regulation of leukotriene B4 (LTB4) production via the 
PDK1-FOxO1 pathway. The genetic deletion of PDK1 
in adipocytes led to the development of hyperglycemia, 
an increase in body weight, and systemic insulin resis-
tance, including in skeletal muscle and the liver, in mice 
fed a normal diet [14]. However, it is unclear whether 
A-PDK1KO mice exhibit cardiac insulin resistance fol-
lowed by the development of DbCM-like phenotypes, 
including cardiac hypertrophy and fibrosis.

Numerous studies have reported that metabolic altera-
tions occur in diabetic hearts and are strongly related to 
the pathophysiology of DbCM [17–20]. In particular, the 
relationships between impaired branched-chain amino 
acid (BCAA) metabolism and HF pathophysiology have 

been intensively investigated in recent studies [21–26], 
whereas relevant findings on the metabolic regulation of 
BCAA metabolism in diabetic hearts are limited. Herein, 
using A-PDK1KO mice, we investigated BCAA metabo-
lism in insulin-resistant hearts by using a novel mouse 
model of DbCM. This model may increase our under-
standing of the molecular mechanisms of DbCM and 
related metabolic remodeling, which may also provide 
new insight into the treatment of DbCM.

Methods
Animal experiments
The details of the A-PDK1KO mice were described previ-
ously [14, 15]. To generate A-PDK1KO mice, PDK1 flox/
flox mice [27] were crossed with Adipoq-Cre mice [28]. 
PDK1flox/flox mice were used as controls. The mice were 
sacrificed in a randomly fed state at the age of 10–11 
weeks unless indicated otherwise. Tissues were collected, 
snap frozen in liquid nitrogen and subsequently stored at 
− 80 °C until further analysis.

BT2 treatment
BT2, a branched chain ketoacid dehydrogenase kinase 
(BCKDK) inhibitor (3,6-dichlorobenzo(b)thiophene-
2-carboxylic acid, BT2; Santacruz, #sc-276559B), was 
administered orally to A-PDK1KO mice at 4 to 5 weeks 
of age after weaning for a duration of 4 weeks. Based on 
a previous study [29], BT2 was dissolved in a 10 mg/mL 
solution containing 5% DMSO, 10% Kolliphor EL (Sigma, 
#C5135), and 85% of 0.1 M Na-bicarbonate, pH 9.0 (Bio 
BASIC INC, #AS88-60066), and administered at a dose 
of 40 mg/kg/day. Mice were fasted for 5 h prior to tissue 
collection.

Metabolite quantification with liquid chromatography‒
mass spectrometry (LC‒MS/MS)
Amino acids and branched-chain α-keto acids (BCKAs) 
were measured by LC‒MS/MS as previously described 
[30, 31]. A mixture of 10 µL of plasma, 10 µL of an inter-
nal standard mixture of amino acids (FujiFilm-Wako, 
#293-73701), 10 µL of KIV-13C5 (Cambridge Isotope Lab-
oratories, #CLM-4418-PK) and 470 µL of cold methanol 
(total volume of 500 µL) was vortexed and incubated on 
ice for 1 h. The mixture was centrifuged at 15,000 rpm for 
10  min. After filtration through 0.22-µm pore centrifu-
gal filters (Millipore, # UFC30GV0S), the supernatant 
was subjected to LC‒MS/MS. The system consisted of 
a QTRAP 6500 (Sciex) instrument equipped with a Shi-
madzu LC-30AD HPLC system. For amino acid analy-
sis, an Intrada Amino Acid column (100 mm × 3.0 mm, 
3.0 μm, Imtakt Co.) was used with an acetonitrile/formic 
acid/100 mM ammonium formate gradient of 100:0.1:0 
to 0:0:100 (v/v/v) at a flow rate of 0.6 mL/min. For BCKA 
analysis, an Intrada Organic Acid column (150  mm × 
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3.2 mm, 3.0 μm, Imtakt Co.) was used with an acetoni-
trile/water/formic acid/100 mM ammonium formate 
gradient of 10:90:0.1:0 to 10:0:0:90 (v/v/v/v) at a flow rate 
of 0.2 mL/min. To measure amino acid and BCKA lev-
els, the multiple reaction monitoring (MRM) method 
was used with the signature ion pairs Q1 (parent ion)/
Q3 (characteristic fragment ion) for each molecule. For 
the measurement of tissue containing amino acids, 10 mg 
of tissue, 10 µL of an internal standard mixture of amino 
acids (FujiFilm-Wako, #293-73701), and 490 µL of cold 
methanol were mixed and homogenized by shaking with 
zirconia beads (AS ONE, #1-5987-05) at 1500  rpm for 
15  min. The same procedure was used for the plasma 
samples.

RNA sequencing data analysis
The quality of the raw paired-end sequence reads was 
assessed with FastQC (version 0.11.7). Low-quality 
(< 20) bases and adapter sequences were trimmed by 
Trimmomatic software (version 0.38). Clean reads were 
mapped to the reference genome using the RNA-seq 
aligner HISAT2 (version 2.1.0). Gene expression levels 
were quantified by using featureCounts (version 1.6.3) to 
count reads mapped to each gene. The raw read counts 
were normalized to fragments per kilobase of transcript 
per million (FPKM) values. A heatmap of the expression 
of genes involved in each metabolic pathway was created 
from the FPKM values and is illustrated as the log2-fold 
change. Principal component analysis (PCA) was per-
formed on the normalized counts, and then, each sample 
was projected onto the 2D plane defined by the first and 
second PCA axes using the R packages stats (Version 
3.6.1) and gplots (Version 3.0.1.1). RNA sequencing data 
are available from the NCBI Gene Expression Omnibus 
(GEO) database under accession number GSE268260.

Western blot analysis
Western blot analysis was conducted as previously 
reported [32]. Antibodies against the following proteins 
were used: phospho-Akt (Ser473) (Cell Signaling, #4060), 
Akt (Cell Signaling, #9272), phospho-BCKDE1A (Ser293) 
(BETHYL, #A304-672  A), BCKDHA (BETHYL, #A303-
790 A), BCKDK (Sigma‒Aldrich, #HPA017995), p70-S6K 
(Cell Signaling, #49D7), phospho-p70-S6K (Cell Signal-
ing, #9234), and GAPDH (Sigma‒Aldrich, #G8795).

Quantitative real-time polymerase chain reaction (qPCR)
Total RNA was isolated with a RNeasy Mini kit (Qiagen, 
#74106), and cDNA was synthesized by using a Rever-
Tra Ace qPCR RT Master Mix kit (TOYOBO, #FSQ-201) 
following the manufacturer’s protocol. qPCR analysis 
was performed as previously described [30] using Taq-
Man Primer-Probe Mix. Gene transcript levels were 
measured with a Thermal Cycler Dice Real Time System 

II (Takara). Relative expression was normalized to the 
expression level of GAPDH. The following TaqMan 
probes used for qPCR were purchased from Thermo 
Fisher Scientific: mouse Nppa (Mm01255747_g1), mouse 
Nppb (Mm01255770_g1), mouse Myh7 (Mm00600555_
m1), mouse Col1a1 (Mm00801666_g1), mouse Col3a1 
(Mm00802300_m1), mouse Postn (Mm01284919_m1), 
and mouse Gapdh (Mm99999915_g1).

Echocardiography
Transthoracic two-dimensional echocardiography (Affin-
iti 70, Philips) was performed as previously reported [30]. 
Mice were anesthetized with low-dose isoflurane during 
echocardiography. The parasternal short-axis view was 
scanned to obtain M-mode images to analyze the left ven-
tricular end-diastolic dimension (LVDd), left ventricular 
end-systolic dimension (LVDs), interventricular septum 
thickness at diastole (IVSd), and posterior wall thickness 
at diastole (PWd), followed by the calculation of the rela-
tive wall thickness (RWT) [RWT = (IVSd + PWd)/LVDd] 
and percent fractional shortening (%FS).

Body composition analysis
The mice were anesthetized, and a whole-body scan was 
conducted using an X-ray computed tomography (CT) 
scanner designed for experimental animals (LaTheta 
LCT-200, Hitachi Aloka Medical, Tokyo, Japan). The 
software accompanying the LCT-200 was used to mea-
sure fat mass.

Histological staining
For histological analysis, heart tissues were embedded in 
optimal cutting temperature compound (Sakura Finetek, 
#45833). The tissue blocks were sliced into 10-µm thick 
sections, and cardiac hypertrophy and lipid accumulation 
were assessed with hematoxylin and eosin (HE), Masson’s 
trichrome staining, and Oil Red O staining, respectively 
[30, 33]. Microscopy images of the sections were cap-
tured using an OLYMPUS DP70 camera (OLYMPUS, 
Japan). The myocyte cross-sectional area and Oil Red O 
staining area were quantified by using ImageJ software.

Measurement of blood glucose and free fatty acids
The plasma glucose and free fatty acid levels were mea-
sured with a LabAssay Glucose kit (FujiFilm-Wako, 
#298-65701) and a LabAssay NEFA kit (FujiFilm-Wako, 
#294-63601) according to the manufacturers’ protocols.

Measurement of triglycerides in cardiac tissue
The triglyceride (TG) levels in the cardiac tissue of mice 
were measured using the Adipogenesis Assay Kit (Sigma, 
#MAK040) according to the manufacturer’s protocol. 
The obtained values were normalized to tissue weight.
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Malondialdehyde assay
Malondialdehyde (MDA) levels in 10 mg of heart tissue 
were measured using the MDA Assay Kit (Dojindo, #341-
09961) according to the manufacturer’s protocol.

Statistical analyses
All the statistical analyses were conducted using Graph-
Pad Prism software version 10.1.0 (GraphPad Software). 
The normality of the data was assessed using the Sha-
piro–Wilk test. Differences between two groups were 
determined using an unpaired Student’s t test (2-tailed) 
for parametric variables or the Mann–Whitney test for 
nonparametric variables. Correlations were evaluated by 
using Pearson’s correlation test. All the data are expressed 
as means ± standard errors (SEs). The threshold for signif-
icance was P < 0.05.

Results
A-PDK1KO mice developed cardiac insulin resistance
A-PDK1KO mice exhibited an increasing trend in blood 
glucose levels, body weight, and lean mass compared to 
control mice, while fat mass was decreased (Fig. 1A–D). 

To evaluate cardiac insulin resistance, we examined the 
cardiac levels of phosphorylated Akt, a key component of 
the insulin signaling pathway. Phospho-AKT levels were 
significantly decreased in A-PDK1 KO mice, suggest-
ing the suppression of insulin signal transduction in the 
heart (Fig. 1E).

A-PDK1KO mice exhibited cardiac hypertrophy
We investigated the cardiac phenotypes of A-PDK1KO 
mice. Compared with control mice, A-PDK1KO mice 
had greater heart weights (HWs), heart weight-to-body 
weight (HW/BW) ratios, and heart weight-to-tibial 
length (HW/TL) ratios (Fig.  2A). Consistent with the 
increased heart size of the A-PDK1KO mice (Fig.  2B), 
histological analysis revealed that the cross-sectional area 
of the left ventricular myocardium was markedly larger 
in the PDK1-KO mice than in the control mice (Fig. 2C).

In addition, we assessed the left ventricular wall thick-
ness and cardiac function of the mice by using echocar-
diography. Compared with control mice, A-PDK1KO 
mice showed significant increases in IVSd, PWd, and 

Fig. 1 A-PDK1KO mice exhibited impaired glucose utilization in the heart. A Plasma glucose concentrations of control mice and A-PDK1KO mice (n = 10, 
each group). B–D Body weights B, lean mass C, and fat mass D of 14-week-old mice were measured (n = 7, each group). E Representative images of 
Western blots of heart tissue and quantification of the band intensity in mice intraperitoneally injected with 0.9% saline or 5 U/kg insulin after a 4-hour 
fast (n = 8, each group). The data are shown as means ± SEs. Significance was calculated by the unpaired Student’s t test. *p value < 0.05, **p value < 0.01, 
***p value < 0.001, and ****p value < 0.0001. BW, body weight; Ctrl, control mice; KO, A-PDK1KO mice
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Fig. 2 A-PDK1KO mice exhibited cardiac hypertrophy. A Mouse heart weight (HW), heart weight-to-body weight ratio (HW/BW), and heart weight-to-
tibia length ratio (HW/TL) (n = 8, each group). B Representative images of the whole heart. Scale bar: 10 mm. C Representative images of HE-stained heart 
sections (scale bar: 50 μm) and the cross-sectional area (CSA) of the myocardium quantified by ImageJ software and normalized to the average of the con-
trol group (n = 7 per group). D Representative images of M-mode echocardiography. E Interventricular septum thickness at diastole (IVSd), posterior wall 
thickness at diastole (PWd), relative wall thickness (RWT), and fractional shortening (%FS) were determined by echocardiography (n = 10 in each group). 
F Gene expression of Nppa, Nppb, and Myh7 quantified by qPCR and normalized to that of GAPDH (n = 6 per group). The data are shown as means ± SEs. 
Significance was calculated by the unpaired Student’s t test. *p value < 0.05, **p value < 0.01, ***p value < 0.001, and ****p value < 0.0001
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RWT, while the %FS did not differ significantly between 
the two groups (Fig. 2D, E).

Furthermore, we assessed the gene expression of car-
diac hypertrophy markers. Myosin heavy chain 7 (Myh7) 
expression was increased in the A-PDK1KO mice, 
whereas there was no significant difference in the expres-
sion levels of natriuretic peptide A (Nppa) and natriuretic 
peptide B (Nppb) between the two groups (Fig. 2F). Eval-
uation of cardiac fibrosis revealed a significant increase 
in Collagen 1a1 (Col1a1) expression in A-PDK1KO mice 
(Figure S1A). However, Masson’s trichrome staining 
showed no significant difference in fibrotic areas com-
pared to control mice, suggesting a pro-fibrotic state (Fig-
ure S1B).

Expression of metabolic pathway genes in the hearts of 
A-PDK1KO mice
RNA sequencing was conducted to analyze the tran-
scriptional differences between the hearts of control and 
A-PDK1KO mice. Principal component analysis (PCA) 
revealed a clear separation between the two groups. The 
two components of the PCA (PC1 and PC2) indicated 
that the gene expression patterns of the cardiac tis-
sues of the A-PDK1KO mice were different from those 
of the control mice (Fig.  3A). A heatmap was gener-
ated to depict the transcript levels of the genes relevant 
to BCAA, fatty acid, and glucose metabolism (Fig.  3B). 
The expression of genes involved in fatty acid metabo-
lism, such as Acadm, Decr1, Ech1, Acaa2, and Slc25A20, 

was significantly increased in the hearts of A-PDK1KO 
mice. Intriguingly, the expression of BCAA transporters, 
including solute carrier family 7 member 5 (SLC7a5), was 
significantly upregulated in A-PDK1KO mice, suggesting 
increased uptake of BCAAs in the diabetic heart; how-
ever, there was no significant difference in the expression 
of BCAA catabolic genes, such as branched-chain amino-
transferase (BCAT), BCKDK, and the protein phospha-
tase Mg (2+)/Mn (2+)-dependent 1 K (Ppm1k) (Fig. 3B).

Cardiac BCAA metabolism is impaired in A-PDK1KO mice
To better understand BCAA metabolism in A-PDK1KO 
mice, we measured blood amino acid levels by LC‒MS/
MS (Fig. 4A). The levels of all three BCAAs were greater 
in A-PDK1KO mice than in control mice (Fig. 4B). Con-
sistent with the increase, the levels of α-keto-isocaproate 
(KIC) and α-keto-β-methylvalerate (KMV), BCKAs of 
leucine and isoleucine, respectively, were significantly 
increased in the KO mice (Fig.  4C). Next, we assessed 
cardiac amino acid levels in these model mice (Fig. 5A). 
Leucine and isoleucine levels were significantly increased 
in the A-PDK1KO mice (Fig.  5B). Additionally, all 
BCAAs were significantly elevated in the skeletal mus-
cle of A-PDK1KO mice (Figure S2A). To elucidate the 
mechanism underlying the increase in blood and heart 
BCAA levels in A-PDK1KO mice, we assessed the pro-
tein expression of key enzymes involved in BCAA oxida-
tion. The BCAA catabolic pathway is shown in Fig.  5C. 
Phospho-branched-chain α-keto acid dehydrogenase 

Fig. 3 RNA sequencing of heart tissue. A Principal component analysis (PCA) of RNA sequencing data for heart tissue from mice (n = 5 per group). B A 
heatmap of gene expression related to the indicated metabolic pathways in heart tissue was created from fragments per kilobase of transcript per million 
(FPKM) values and is illustrated as the log2-fold change (n = 5, each group)
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Fig. 5 Cardiac BCAA metabolism was impaired in A-PDK1KO mice. A Heatmap of amino acid content in mouse heart tissue, shown as the log2-fold 
change. The values are normalized to the median content of each amino acid (n = 5, each group). B BCAA levels in mouse heart tissue were analyzed by 
LC‒MS (n = 8–9 per group). C Schematic diagram of the BCAA oxidation pathway. D Western blot analysis of BCKDK and phospho-BCKDH in the heart tis-
sue of mice; the expression levels of BCKDK and phospho-BCKDH were normalized to those for GAPDH and BCKDH, respectively. (n = 5, each group). The 
data are shown as means ± SEs. Significance was calculated by the unpaired Student’s t test. *p value < 0.05, ***p value < 0.001, and ****p value < 0.0001. 
Leu, leucine; Ile, isoleucine; Val, valine; KIC, α-keto-isocaproate; KMV, α-keto-β-methylvalerate; and KIV, α-keto-isovalerate

 

Fig. 4 Blood BCAA levels were increased in A-PDK1KO mice. A Heatmap of amino acid concentrations in mouse blood, shown as log2-fold changes. The 
values are normalized to the median of each amino acid concentration (n = 5, each group). B Blood concentrations of BCAAs (leucine (Leu), isoleucine 
(Ile), and valine (Val)) and BCKAs (α-keto-isocaproate (KIC), α-keto-β-methylvalerate (KMV), and α-keto-isovalerate (KIV)) were determined by LC‒MS (n = 6 
per group). The data are shown as means ± SEs. Significance was calculated by the unpaired Student’s t test or the Mann–Whitney U test, as appropriate. 
*p value < 0.05, and **p value < 0.01
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(BCKDH) and BCKDK expression was clearly greater in 
the KO mice than in the control mice, suggesting that car-
diac BCAA oxidation was suppressed in the A-PDK1KO 
mice (Fig. 5D). Furthermore, we evaluated fatty acid (FA) 
catabolism in the mice and found that plasma free fatty 
acid (FFA) levels were increased in the A-PDK1KO mice 
(Figure S3A). In this context, cardiac lipid accumulation, 
as estimated by triglyceride (TG) content and Oil Red 
O staining, tended to increase in the A-PDK1KO mice 
(Figure S3B-D). Moreover, MDA, a marker of oxidative 
stress, was significantly elevated in the hearts of the KO 
group (Figure S4A).

Activation of mTORC1 signaling was associated with 
cardiac hypertrophy in A-PDK1KO mice
To reveal the mechanisms that cause cardiac hypertro-
phy in diabetic cardiomyopathy, we focused on mamma-
lian target of rapamycin complex 1 (mTORC1) signaling. 
Leucine is known to be a key signaling molecule that 
activates the mTORC1 pathway [34]. The blood leucine 
concentration was positively correlated with heart weight 
normalized to body weight (Fig.  6A). We assessed the 
phosphorylation of p70-S6 kinase (S6K), a downstream 
substrate of mTORC1. Phospho-S6K was significantly 
increased in the hearts of the A-PDK1KO mice (Fig. 6B).

To test the hypothesis that leucine accumulation in the 
heart due to impaired BCAA metabolism activates the 
mTOR signaling pathway and induces cardiac hypertro-
phy in A-PDK1KO mice, we administered BT2 to the KO 
mice for 4 weeks after weaning (Fig.  7A). Interestingly, 
BT2 treatment suppressed body weight gain, reduced 
heart weight in mice, and improved left ventricular wall 
thickening, as assessed by echocardiography (Figure S5A, 
Fig.  7B–D). Measurement of BCAAs in cardiac tissue 
and plasma showed a significant reduction in all BCAAs 
in the BT2-treated group (Fig.  7E). Consistent with 

these findings, BT2 suppressed the phosphorylation of 
BCKDH and S6K in cardiac tissue (Fig. 7F, G), suggesting 
that the leucine-mTORC1 axis is associated with cardiac 
hypertrophy in this mouse model.

Discussion
Previously, we demonstrated that A-PDK1KO mice 
exhibit adipose tissue dysfunction due to impaired insu-
lin signaling in adipose tissue. This dysfunction leads 
to systemic metabolic abnormalities, including insulin 
resistance in skeletal muscle, hyperinsulinemia, hypergly-
cemia, elevated circulating FFAs, and reduced adiponec-
tin levels [14]. In the present study, we investigated the 
cardiac phenotype of A-PDK1KO mice and found that 
these mice exhibit prominent cardiac insulin resistance 
and cardiac hypertrophy, both of which are character-
istic features of DbCM [9, 35, 36]. Elevated circulating 
FFA levels may have increased fatty acid influx into the 
heart, potentially leading to lipid accumulation and sub-
sequent lipotoxicity, while also promoting excessive fatty 
acid oxidation that may have enhanced the production 
of reactive oxygen species (ROS). These components are 
considered to contribute to cardiac insulin resistance 
and myocardial injury, ultimately resulting in the devel-
opment of the DbCM phenotype. Moreover, we inves-
tigated a novel mechanism in this study and proposed a 
potential link between BCAA metabolic disturbance and 
the pathogenesis of DbCM. We observed the downregu-
lated expression of the key enzymes involved in BCAA 
catabolism and subsequent BCAA accumulation in the 
hearts of A-PDK1KO mice, indicating that BCAA oxi-
dation is impaired in DbCM as well as HF. Furthermore, 
the improvement in BCAA catabolism induced by drug 
treatment reduced leucine content in the heart, leading 
to the attenuation of cardiac hypertrophy, presumably 

Fig. 6 Association between leucine-mTOR signaling and cardiac hypertrophy in A-PDK1KO mice. A Correlation between blood leucine levels and the 
heart weight-to-body weight ratio (HW/BW) in mice (Ctrl; n = 8, KO; n = 8). B Western blot analysis of phospho-S6K (p-p70-S6K) and S6K (p70-S6K) in the 
heart tissue of mice (n = 10, each group). The data are shown as means ± SEs. Significance was calculated by the unpaired Student’s t test. *p value < 0.05
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Fig. 7 BT2 treatment mitigated cardiac hypertrophy in A-PDK1KO mice. A Scheme of the experimental approach. 4–5-week-old A-PDK1KO mice were 
orally administered 40 mg/kg/day of BT2 or vehicle for 4 weeks. B Mouse heart weight (HW), heart weight-to-body weight ratio (HW/BW), and heart 
weight-to-tibia length ratio (HW/TL) (n = 8, each group). C Representative images of M-mode echocardiography. D Interventricular septum thickness at 
diastole (IVSd), posterior wall thickness at diastole (PWd), relative wall thickness (RWT), and fractional shortening (%FS) were measured by echocardiogra-
phy (n = 8, each group). E BCAA content in the cardiac tissue or plasma of A-PDK1KO mice treated with BT2 or vehicle (n = 10, each group). F Western blot 
analysis of BCKDH and phospho-BCKDH in the heart tissue of the mice; the expression levels of phospho-BCKDH were normalized to those for BCKDH. 
(n = 6, each group). G Western blot analysis of phospho-S6K (p-p70-S6K) and S6K (p70-S6K) in the heart tissue of mice (n = 6, each group). The data are 
shown as means ± SEs. Significance was calculated by the unpaired Student’s t test or the Mann–Whitney U test, as appropriate. *p value < 0.05, **p 
value < 0.01, ***p value < 0.001, and ****p value < 0.0001
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through the suppression of the mTOR signaling pathway 
(Fig. 8).

The relationship between BCAA oxidation and insulin 
resistance was first reported in 1969, and plasma BCAA 
levels were shown to be increased in obese individuals. 
Since then, various studies have confirmed that elevated 
blood BCAA levels are associated with insulin resis-
tance in humans and several rodent models of obesity or 
T2DM [37–41]. This increase in BCAAs is thought to be 
partly due to the activation of tissue proteolysis induced 
by insufficient insulin levels [42, 43]. Regarding cardiac 
BCAA metabolism, cardiac BCAA oxidation is impaired 
in the heart of patients with cardiovascular diseases 
and in the heart of rodent models of insulin resistance 
[20, 25, 26, 44, 45]. The suppression of BCAA catabolic 
enzymes, followed by the increased accumulation of 
BCAAs, occurs in the heart tissue of patients with dilated 
cardiomyopathy or HF with preserved ejection fraction 
(HFpEF) [25, 26]. Although RNA sequencing indicated 
no significant difference in the expression of BCAA 
metabolic enzyme genes, A-PDK1KO mice exhibited 
increased BCKDK protein levels and enhanced BCKDH 
phosphorylation as a post-translational modification in 
the heart. In general, gene expression levels do not nec-
essarily correlate with protein expression or post-trans-
lational modifications. In this study, we consider that the 
observed impairment in BCAA metabolism is caused by 
the upregulation of BCKDK and the consequent phos-
phorylation of BCKDH. Importantly, BCKDK has been 
investigated as a therapeutic target for HF. The BCKDK 
inhibitor BT2 has been shown to improve cardiac 

function and attenuate detrimental remodeling in murine 
models of pressure overload-induced HF by enhancing 
BCAA oxidation [21, 22]. Interestingly, Murashige et al. 
demonstrated that, contrary to previous findings, the 
enhancement of whole-body BCAA oxidation, includ-
ing that in skeletal muscle, contributes to cardiac protec-
tion. However, in their model mice with cardiac-specific 
enhancement of BCAA oxidation, no cardioprotective 
effects were observed [46]. Since their mouse model is 
not a DbCM model, it is meaningful to use A-PDK1KO 
mice to study the regulation of BCAA metabolism in 
DbCM.

BCAAs are known to function as signaling molecules. 
Leucine promotes protein synthesis by regulating pro-
tein translation, ribosome biogenesis, and autophagy 
through the mTORC1 pathway [34, 47–50]. Neishabouri 
et al. reported that mTORC1 activation induced by 
BCAA accumulation is responsible for cardiac hyper-
trophy. Similarly, our data showed that plasma levels of 
BCAAs, particularly that of leucine, were correlated with 
cardiac hypertrophy and that mTORC1 pathway activa-
tion occurred in the hearts of A-PDK1KO mice. In our 
experiment administering BT2 to A-PDK1KO mice, a 
reduction in leucine content within cardiac tissue was 
observed, accompanied by the suppression of mTOR sig-
naling and a subsequent attenuation of cardiac hypertro-
phy. Furthermore, we found that the expression of genes 
involved in BCAA transport was elevated in the hearts of 
A-PDK1KO mice, suggesting that BCAA uptake from the 
blood stream into cardiomyocytes is increased in DbCM. 
Regarding the uptake and release of amino acids in HF, 

Fig. 8 A schematic model of the underlying mechanism of cardiac hypertrophy in A-PDK1KO mice as a model of diabetic cardiomyopathy. BCAA, 
branched-chain amino acid; FFAs, free fatty acids; BCKDK, branched chain ketoacid dehydrogenase kinase; and mTORC1, mammalian target of rapamycin 
complex 1
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a previous study assessed arteriovenous gradients of cir-
culating metabolites by simultaneously collecting blood 
from the radial artery and coronary sinus of patients with 
atrial fibrillation and demonstrated that the uptake of 
all three BCAAs (Val, Leu, and Ile) from the circulation 
into the heart is greater than the uptake of other amino 
acids [51]. These findings suggest that the BCAA-mTOR 
axis and BCAA transporters could be new therapeutic 
targets for HF treatment and that A-PDK1KO mice can 
be utilized to evaluate the impact of new drugs related 
to the BCAA metabolic pathway on cardiac phenotypes 
induced by DbCM.

Over the past few decades, various T2DM or obesity 
models induced by dietary manipulation, pharmacologi-
cal intervention, or genetic modification have been used 
as DbCM models. Among them, ob/ob mice and db/db 
mice, which are congenitally deficient in either leptin 
or leptin receptor, respectively, have been frequently 
employed as genetic models of insulin resistance and 
T2DM [52, 53]. Consistent with these genetic models, 
A-PDK1KO mice manifested hyperglycemia, hyper-
insulinemia, and increased blood FFAs without being 
fed a special diet, such as a high-fat diet [14]. Notably, 
A-PDK1KO mice naturally developed cardiac hypertro-
phy in the absence of genetic modifications in the heart, 
which seems to more closely mimic the pathophysiology 
of DbCM. However, cardiac BCAA metabolism in ob/
ob and db/db mice has not been fully elucidated. A study 
using db/db mice fed a high-fat diet did not show a sig-
nificant change in cardiac BCAA levels or BCAA-related 
enzyme expression between control mice and db/db mice 
[54]. In A-PDK1KO mice, impaired cardiac BCAA catab-
olism may reflect the same metabolic alterations as those 
in other organs in patients with T2DM [55]. Further 
studies are needed to clarify the relationship between 
the metabolic reprogramming of cardiac BCAA and the 
pathophysiology of DbCM.

We need to acknowledge that our study has several 
limitations. First, all experiments were conducted with 
male mice. Notably, a diurnal rhythm, which is con-
trolled by estrogen and BCKDK activity, occurs in BCAA 
oxidation in female murine models [56]. Second, we 
could not estimate the cardiac diastolic function of the 
A-PDK1KO mice because of performance issues with 
our ultrasound device. Third, we attempted to measure 
the cardiac BCKA levels; however, due to high back-
ground noise from myocardial tissue, the peaks were 
detected in LC-MS analysis but did not meet the crite-
ria for reliable quantification and reproducibility. Conse-
quently, we were unable to report the quantitative values. 
Lastly, since A-PDK1KO mice exhibited a significant 
increase in BCAA content in skeletal muscle, we can-
not exclude the possibility that the elevated BCAA levels 
in the heart and plasma originate from skeletal muscle. 

However, identifying the specific tissue source of BCAAs 
in vivo remains technically challenging. Therefore, fur-
ther research is required to address these issues so that 
the utility of these DbCM model mice can be evaluated 
appropriately.

Conclusion
A-PDK1KO mice closely mimicked the phenotypes and 
metabolic alterations in human DbCM and exhibited 
impaired BCAA catabolism in the heart. This model 
could contribute to a deeper understanding of the pathol-
ogy of DbCM and to the development of novel therapies 
for this disease.
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