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ON THE GROSS-PRASAD CONJECTURE WITH ITS REFINEMENT
FOR (SO (5),SO (2)) AND THE GENERALIZED BOCHERER
CONJECTURE

MASAAKI FURUSAWA AND KAZUKI MORIMOTO

ABsTRACT. We investigate the Gross-Prasad conjecture and its refinement for
the Bessel periods in the case of (SO(5),SO(2)). In particular, by combining
several theta correspondences, we prove the Ichino-lkeda type formula for any
tempered irreducible cuspidal automorphic representation. As a corollary of
our formula, we prove an explicit formula relating certain weighted averages
of Fourier coefficients of holomorphic Siegel cusp forms of degree two which
are Hecke eigenforms to central special values of L-functions. The formula is
regarded as a natural generalization of the Bocherer conjecture to the non-trivial
toroidal character case.

1. INTRODUCTION

To investigate relations between periods of automorphic forms and special val-
ues of L-functions is one of the focal research subjects in number theory. The
central special values are of keen interest in light of the Birch and Swinnerton-Dyer
conjecture and its generalizations.

Gross and Prasad [44, 45] proclaimed a global conjecture relating non-vanishing
of certain period integrals on special orthogonal groups to non-vanishing of cen-
tral special values of certain tensor product L-functions, together with the local
counterpart conjecture in the early 1990s. Later with Gan [32], they extended the
conjecture to classical groups and metaplectic groups. Meanwhile a refinement
of the Gross-Prasad conjecture, which is a precise formula for the central special
values of the tensor product L-functions for tempered cuspidal automorphic rep-
resentations, was formulated by Ichino and Ikeda [57] in the co-dimension one
special orthogonal case. Subsequently Harris [48] formulated a refinement of the
Gan-Gross-Prasad conjecture in the co-dimension one unitary case. Later an ex-
tension of the work of Ichino-lkeda and Harris to the general Bessel period case
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was formulated by Liu [76] and the one to the general Fourier-Jacobi period case
for symplectic-metaplectic groups was formulated by Xue [117].

In [27] we investigated the Gross-Prasad conjecture for Bessel periods for
SO (2n+ 1) x SO (2) when the character on SO (2) is trivial, i.e. the special
Bessel periods case and then, in the sequel [28], we proved its refinement, i.e the
Ichino-Ikeda type precise L-value formula under the condition that the base field is
totally real and all components at archimedean places are discrete series represen-
tations. As a corollary of our special value formula in [28], we obtained a proof of
the long-standing conjecture by Bocherer in [13], concerning central critical values
of imaginary quadratic twists of spinor L-functions for holomorphic Siegel cusp
forms of degree two which are Hecke eigenforms, thanks to the explicit calculations
of the local integrals by Dickson, Pitale, Saha and Schmidt [21].

In this paper, for (SO(5),SO(2)), we vastly generalize the main results in [27]
and [28]. Namely we prove the Gross-Prasad conjecture and its refinement for
any Bessel period in the case of (SO(5),SO(2)). As a corollary, we prove the
generalized Bocherer conjecture in the square-free case formulated in [21].

Let us introduce some notation and then state our main results precisely.

1.1. Notation. Let F' be a number field. We denote its ring of adeles by A r, which
is mostly abbreviated as A for simplicity. Let ¢ be a non-trivial character of A /F.
For a € F*, we write by /¢ the character of A /F defined by y“(x) = ¢ (ax). Fora
place v of F', we denote by F, the completion of F at v. When v is non-archimedean,
we write by @, and ¢, an uniformizer of F), and the cardinality of the residue field
of F,, respectively.

Let E be a quadratic extension of F and A g be its ring of adeles. We denote
by x — x the unique non-trivial automorphism of £ over F. Let us denote by
Ng/r the norm map from E to F. We choose 7 € E* such that 77 = —n and fix.
Let d = n>. We denote by yg the quadratic character of A* corresponding to the
quadratic extension E/F. We fix a character A of A ;;/E> whose restriction to A >
is trivial once and for all.

1.2. Measures. Throughout the paper, for an algebraic group G defined over F, we
write G, for G (F)), the group of rational points of G over F,,, and we always take
the measure dg on G (A ) to be the Tamagawa measure unless specified otherwise.
For each v, we take the self-dual measure with respect to ¢, on F,. Then recall
that the product measure on A is the self-dual measure with respect to ¢ and is also
the Tamagawa measure since Vol (A /F) = 1. For a unipotent algebraic group U
defined over F, we also specify the local measure du, on U(F,) to be the measure
corresponding to the gauge form defined over F, together with our choice of the
measure on F),, at each place v of F. Thus in particular we have

duzl_[duv and Vol (U(F)\U(A),du) = 1.

1.3. Similitudes. Various similitude groups appear in this article. Unless there
exists a fear of confusion, we denote by A (g) the similitude of an element g of a
similitude group for simplicity.
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1.4. Bessel periods. First we recall that when V is a five dimensional vector space
over F equipped with a non-degenerate symmetric bilinear form whose Witt index
is at least one, there exists a quaternion algebra D over F such that

(14.1) SO (V) =Gp
where Gp = Gp/Zp, Gp is a similitude quaternionic unitary group over F defined
by
— (0 1 01 %
(1.42)  Gp(F):=18€CGla(D) g || ] g=@) || () &) eF
and Zp is the center of Gp. Here
tu

§:=(; _) for g:(:‘} z)EGLQ(D)

w v

where denoted by x — X for x € D is the canonical involution of D. Also, we
define a quaternionic unitary group GlD over F by

G ={geGp:A(g)=1}.
Let

D™ :={xeD:trp(x)=0}
where trp denotes the reduced trace of D over F. We recall that when D =~
Matyy (F), Gp is isomorphic to the similitude symplectic group GSp, which we

denote by G, i.e.
(1.4.3)
0 1, 1>

G (F) := {géGth(F):’g(_12 O)g=ﬂ(g)(_?2 O),ﬂ(g)eFX}-

Also, we define the symplectic group Sp,, which we denote by G', as
G':={geG:aA(g) =1}.

We denote PGSp, = G/Zg by G, where Zg denotes the center of G. Thus when
D is split, Gp ~ G = GSp,, G}, ~ G' = Sp, and Gp ~ G = PGSp,.

The Siegel parabolic subgroup Pp of Gp has the Levi decomposition Pp =
MpNp where

Mp(F) ::{(g #(?x):xeDX,ueFX}, Np(F) ::{((1) th):ueD_}.

For £ € D™ (F), let us define a character ¢ on Np (A ) by

u

(1.4.4) l//é: ((1) 1) =y (tI'D (fu)) .

X

0

0 \/(1 0\ !
(1.4.5) Ve [()(; ,u-)C) (O lit) (g #-x) ]Z'wbu—l.x—lfx(o lit)

We note that for ( y(-)x) € Mp (F), we have
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Suppose that F (¢) ~ E. Let us define a subgroup T¢ of D* by
(1.4.6) T := {x € D* cxéx! =&}
Then since F (£) is a maximal commutative subfield of D, we have
1.4.7) Te(F)=F (&) ~E*.
We identify T with the subgroup of Mp given by

(1.4.8) {(’6 2) :xeTg}.

We note that by (1.4.5), we have

Ve (mt—‘) =g (n) forteTe(A)andn e Np (A).
We define the Bessel subgroup Rz of Gp by
(1.4.9) Re :=T¢Np.

Then the Bessel periods defined below are indeed the periods in question in the
Gross-Prasad conjecture for (SO (5), SO (2)).

Definition 1.1. Let m be an irreducible cuspidal automorphic representation of
Gp (A) whose central character is trivial and V, its space of automorphic forms.
Let A be a character of A ;| E* whose restriction to A> is trivial. Let ¢ € D~ (F)
such that F (¢) = E. Fix an F-isomorphism T¢ ~ E* and regard A as a character
of T¢ (A) [Tg (F). We define a character x&™on Rs (A) by
(1.4.10) x5 (tn) = At e (n) fort €Te (A)andn e Np (A).

Then for f € V, we define Bg p,y (f), the (€, A, yr)-Bessel period of f, by
(1.4.11) Beny (f) ::/ Fr) &N ()7 ar.

AXRg (F)\Rg(A)
We say that i has the (¢, A, yr)-Bessel period when the linear form B¢  y is not

identically zero on V.

Remark 1.1. Here we record the dependency of B¢ .y on the choices of € and .
First we note that for &’ € D™ (F), we have F (¢’) = E if and only if

(1.4.12) & =pu-a'éa for some a € D* (F)and u € F*

by the Skolem-Noether theorem. Suppose that &’ € D~ (F) satisfies (1.4.12) and
W' =y where a € F*. Let mg = (g a_l,?J . a) € Mp (F). Then by (1.4.5), we
have

(1413)  Beny (x(mo) f) = / /
AXTgr (F)\Tgr (A) J Np(F)\Np(A)

FERYA) " W () dt dn’
=Bepy (f)
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where we identify T¢/(F) with EX via the F-isomorphism F (') 3 x = axa™ €

F(§) ~E.

Definition 1.2. Let (7, V) be an irreducible cuspidal automorphic representation
of Gp (A) whose central character is trivial. Let A be a character of A [\ | E* whose
restriction to A is trivial. Then we say that & has the (E, A)-Bessel period if there
exist £ € D™ (F) such that F (¢£) =~ E and a non-trivial character y of A | F so that
7 has the (&, A, )-Bessel period. This terminology is well-defined because of the
relation (1.4.13).

1.5. Gross-Prasad conjecture. First we introduce the following definition which
is inspired by the notion of locally G-equivalence in Hiraga and Saito [51, p.23].

Definition 1.3. Let (7, V) be an irreducible cuspidal automorphic representation
of Gp(A) whose central character is trivial. Let D’ be a quaternion algebra over
F and (n’,Vy) an irreducible cuspidal automorphic representation of Gp/(A).
Then we say that 7 is locally G*-equivalent to n’ if at almost all places v of F
where D (F,) = D’ (F,), there exists a character x,, of Gp (F,) |Gp (F,)* such
that , ® x, = m,. Here

(1.5.1) Gp (F)':={ge€Gp (F):1(g) € Ng/r (EX)}.

Remark 1.2. When n and n’ have weak functorial lifts to GL4 (A), say I1 and
IT', respectively, the notion of locally G*-equivalence is described simply as the
following. Suppose that & and n’ are locally G*-equivalent. Then there exists a
character w of Gp (A) such that # ® w is nearly equivalent to n’, where w may
not be automorphic. Since w, is either g, or trivial at almost all places v of F,
we have BCgr (I1) ~ BCg,p (I1") where BCg denotes the base change lift to
GL4 (AEg). Then by Arthur-Clozel [2, Theorem 3.1], we have I1 ~ I1’ or I’ @ yg.
Hence 7 is nearly equivalent to either ' or ' ® yg. The converse is clear.

Then our first main result is on the Gross-Prasad conjecture for (SO(5), SO(2)).

Theorem 1.1. Let E be a quadratic extension of F. Let (, V) be an irreducible
cuspidal automorphic representation of Gp (A) with a trivial central character
and A a character of A [ | E* whose restriction to A is trivial.

(1) Suppose that © has the (E, A)-Bessel period. Moreover assume that:

(1.5.2) there exists a finite place w of F such that
7y and its local theta lift to GSOu 5 (F,) are generic.

Here GSOy 3 denote the identity component of GOy 2, the similitude orthog-
onal group associated to the six dimensional orthogonal space (E,Ng/r) ®
H? over F where H denotes the hyperbolic plane over F.

Then there exists a finite set Sy of places of F containing all archimedean
places of F such that the partial L-function

(1.5.3) LS (%,nxﬂ[ (A)) #0
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for any finite set S of places of F with S > Sy. Here, AL (\) denotes the
automorphic induction of A from GL{(AEg) to GLy(A). Moreover there
exists a globally generic irreducible cuspidal automorphic representation
7° of G(A) which is locally G*-equivalent to .

(2) Assume that:

(1.5.4) the endoscopic classification of Arthur,
i.e. [3, Conjecture 9.4.2, Conjecture 9.5.4] holds for Gp, .

Here D, denotes an arbitrary quaternion algebra over F.

Suppose that m has a generic Arthur parameter, namely the parameter
is of the form Iy or I} 8 I, where 11; is an irreducible cuspidal auto-
morphic representation of GL4 (A) for i = 0 and of GL, (A) fori = 1,2,
respectively, such that L(s,T1;, A?) has a pole at s = 1.

Then we have

(15.5) L(%,nxﬂ[ (A)) £0

if and only if there exists a pair (D’,n’) where D’ is a quaternion al-
gebra over F containing E and n’ an irreducible cuspidal automorphic
representation of G p- which is nearly equivalent to & such that n’ has the
(E, A)-Bessel period.

Moreover, when 1 is tempered, the pair (D', ) is uniquely determined.

Remark 1.3. In (1.5.5), L (s, 7 X AL (A)) denotes the complete L-function defined
as the following.
When AI (A) is not cuspidal, i.e. A = AgoNg/F for a character Ag of A™ [F*,
we define
L(s,n x AL (A)):=L(s,mtxNo)L(s,mXAoxE)

where each factor on the right hand side is defined by the doubling method as in
Lapid-Rallis [ 73] or Yamana [120].

When AI (A) is cuspidal, the partial L-function LS (s, X AI (A)) may be
defined by Theorem C.1 in Appendix C for a finite set S of places of F such that m,,
and I1 (A),, are unramified at v ¢ S. Further, we define the local L-factor at each
place v € S by the local Langlands parameters for m,, and I1 (A),,, where the local
Langlands parameters are given by Gan-Takeda [35] for G(F,,) (also Arthur [3]),
Gan-Tantono [38] for Gp (F,) and Kutzko [69] for GL,(F,) at finite places, and,
by Langlands [70] at archimedean places.

We note that the condition (1.5.3) and the condition (1.5.5) are equivalent from
the definition of local L-factors when 1 is tempered.

Remark 1.4. Suppose that at a finite place w of F, the group Gp (F,) is split
and the representation m,, is generic and tempered. Then by Gan and Ichino [40,
Proposition C.4], the big theta lift of m,, and the local theta lift of n,, coincide.
Thus the genericity of the local theta lift of n,, follows from Gan and Takeda [36,
Corollary 4.4] for the dual pair (G,GSO33) and from a local analogue of the
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computations in [83, Section 3.1] for the dual pair (G+,GSO4,2), respectively.
Here

(1.5.6) G(F)" :={geG:1(g) € Ngsr (EX)}.

When a local representation m,, is unramified and tempered, n,, is generic as
remarked in [27, Remark 2]. Hence the assumption (1.5.2) is fulfilled when m is
tempered.

In our previous paper [27], Theorem 1.1 for the pair (SO (2n + 1),SO (2)) was
proved when A is trivial. Meanwhile Jiang and Zhang [63] studied the Gross-
Prasad conjecture in a very general setting assuming the endoscopic classification
of Arthur in general by using the twisted automorphic descent. Though Theorem 1.1
is subsumed in [63] as a special case, we believe that our method, which is different
from theirs, has its own merits because of its concreteness. We also note that because
of the temperedness of m, the uniqueness of the pair (D’, 7”) in Theorem 1.1 (2)
follows from the local Gan-Gross-Prasad conjecture for (SO(5), SO(2)) by Prasad-
Takloo—Bighash [92, Theorem 2] (see also Waldspurger [112] in general case) at
finite places and by Luo [77] at archimedean places. We shall give another proof
of this uniqueness by reducing it to a similar assertion in the unitary group case.

1.6. Refined Gross-Prasad conjecture. Let (7,V,) be an irreducible cuspidal
tempered automorphic representation of Gp (A ) with trivial central character. For
&1, 92 € Vo, we define the Petersson inner product (@i, ¢2),, on V. by

(91, 02)x = / #1(8)p2(g) dg
Zp(A)Gp(F)\Gp(A)

where dg denotes the Tamagawa measure. Then at each place v of F, we take a
G p (F,)-invariant hermitian inner product on V. so that we have a decomposition
(s )z =1II,(, )z, In the definition of the Bessel period (1.4.11), we take
dr = dt du where dt and du are the Tamagawa measures on T¢ (A) and Np (Z ),
respectively. We take and fix the local measures du, and dt, so that du =[], du,
and

(1.6.1) di = C; ]_[ dt,

where C¢ is a constant called the Haar measure constant in [57]. Then the local

Bessel period af A Vi, X Vg, — C and the local hermitian inner product ( , ),
are defined as in Section 2.4.

Suppose that D is not split. Then by Li [74], there exists a pair (¢’, A”) such
that 7 has the (&, A/, ¥)-Bessel period. Here ¢’ € D™ (F) such that E’ := F (¢')
is a quadratic extension of F and A’ is a character on A, /AXE’*. Then by
Proposition 4.1, which is a consequence of the proof of Theorem 1.1 (1), there exists
an irreducible cuspidal automorphic representation 7° of G (A ) which is generic
and locally G*-equivalent to 7. We take the functorial lift of 7° to GL4 (A) by
Cogdell, Kim, Piatetski-Shapiro and Shahidi [19], whichis of the form IT; 8- - -BIIy,
with I1; an irreducible cuspidal automorphic representation of GL,,, (A ) for each .
Then we define an integer € (1) by £ () = £y. We note that 7° may not be unique,



8 MASAAKI FURUSAWA AND KAZUKI MORIMOTO

but € (1) does not depend on the choice of the pair (¢’, A”) by Proposition 4.1 and
Lemma 4.2, 4.3, and thus it depends only on (7, V). When D is split, then 7 has
the functorial lift to GL4 (A ) by Arthur [3] (see also Cai-Friedberg-Kaplan [14])
and we define ¢ () in a similar way.

Our second main result is the refined Gross-Prasad conjecture formulated by
Liu [76], i.e. the Ichino-Ikeda type explicit central value formula, in the case of
(SO (5),S0(2)).

Theorem 1.2. Let (7r,V,) be an irreducible cuspidal tempered automorphic rep-
resentation of G p (A ) with a trivial central character.
Then for any non-zero decomposable cusp form ¢ = ®,, ¢, € V., we have

Benw (9)

1.6.2
e P

L{bmx Az ) e
L(LmA)L(Lye) L1 (g 00)r

2
=27 e ] ] er @)
j=1

Here {F(s) denotes the complete zeta function of F and aa (@) is defined by
L(1,m,,Ad)L (1, x£,v)
L(1/2, 7y xTL(A),) [T52, Lr, (2))

@l (¢)
(Bvs $v)m

Remark 1.5. Under the assumption (1.5.4), we have |S(¢ )| = 2605, where ¢
denotes the Arthur parameter of © and S (¢ ) the centralizer of ¢  in the complex
dual group G. Hence (1.6.2) coincides with the conjectural formula in Liu [76,
Conjecture 2.5 (3)]. Thus when D is split, i.e. Gp ~ G, our theorem proves Liu’s
conjecture since the assumption (1.5.4) is indeed fulfilled. After submitting this
paper, Ishimoto posted a preprint [59] on arXiv, in which he gives the endoscopic
classification of representations of non-quasi split orthogonal groups for generic
Arthur parameters. Hence, our theorem proves [76, Conjecture 2.5 (3)] completely
in the case of (SO(5),S0(2)).

al () = @A, e (Bvs ) -

We note that = 1 for almost all places v of F by [76].

Remark 1.6. Let mrye,, denote the irreducible cuspidal globally generic automorphic
representation of G (A) which has the same L-parameter as n. When m, is
unramified at any finite place v of F, Chen and Ichino [17] proved an explicit
formula of the ratio L (1, 7t, Ad) /(®gen, Peen) for a suitably normalized cusp form
Dy in the space of meen.

Remark 1.7. In the unitary case, a remarkable progress has been made in the
Gan-Gross-Prasad conjecture and its refinement for Bessel periods, by studying
the Jacquet-Rallis relative trace formula. In the striking paper [10] by Beuzart-
Plessis, Liu, Zhang and Zhu, a proof in the co-dimension one case for irreducible
cuspidal tempered automorphic representations of unitary groups such that their
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base change lifts are cuspidal was given by establishing an ingenious method
to isolate the cuspidal spectrum. In yet another striking paper by Beuzart-Plessis,
Chaudouard and Zydor [9], a proof for all endoscopic cases in the co-dimension one
setting was given by a precise study of the relative trace formula. Very recently, in a
remarkable preprint by Beuzart-Plessis and Chaudouard [8), the above results are
extended to arbitrary co-dimension cases. Thus the Gan-Gross-Prasad conjecture
and its refinement for Bessel periods on unitary groups are now proved in general.

On the contrary, the orthogonal case in general is still open. We note that, in
the (SO (5),S0 (2)) case, the first author has formulated relative trace formulas
to approach the formula (1.6.2) and proved the fundamental lemmas in his joint
work with Shalika [30], Martin [24] and Matrin-Shalika [25]. In order to deduce
the L-value formula from these relative trace formulas, several issues such as
smooth transfer of test functions must be overcome. In the above mentioned co-
dimension one unitary group case, reductions to Lie algebras played crucial roles
to solve similar issues. However Bessel periods in our case involves integration
over unipotent subgroups and it is not clear, at least to the first author, how to make
the reduction to Lie algebras work.

Remark 1.8. In the co-dimension one orthogonal group case, the refined Gross-
Prasad conjecture has been deduced from the Waldspurger formula [112] in the
(SO (3),S0O (2)) case and from the Ichino formula [56] in the (SO (4), SO (3))
case, respectively. Gan and Ichino [39] studied the (SO (5), SO (4))-case when
the representation of SO (5) is a theta lift from GSO(4) by reduction to the
(SO (4),SO0O (3)) case.

Liu [76] proved Theorem 1.2 when D is split and r is an endoscopic lift, i.e. a
Yoshida lift, by reducing it to the Waldspurger formula [112]). The case when t is a
non-endoscopic Yoshida lift was proved later by Corbett [20] in a similar manner.

As a corollary of Theorem 1.2, we prove the (SO(5), SO(2)) case of the Gan-
Gross-Prasad conjecture in the form as stated in [32, Conjecture 24.1].

Corollary 1.1. Let (7r,V,) be an irreducible cuspidal tempered automorphic rep-
resentation of Gp (A) with a trivial central character. Then the following three
conditions are equivalent.

(1) The (¢, A, ¥)-Bessel period does not vanish on .

2) L (%, X AL (A)) # 0 and the local Bessel period ay, .y, ,, # 0 on , at
any place v of F.

3) L (%, X AT (A)) # 0 and Homg, (nv,)(f’/\) # {0} at any place v of
F

Remark 1.9. The equivalence between the conditions (1) and (2) is immediate from
Theorem 1.2. The equivalence

(1.6.3) an,,ye, #0 & Homg, , (”V’XV&A) # {0}

is proved by Waldspurger [115] at any non-archimedean place v and by Luo [77]
recently at any archimedean place v, respectively.
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1.7. Method. In [27] and [28] we used the theta correspondence for the dual pair
(SO (2n+1),Mp,,).

The main tool in [27] was the pull-back formula by the first author [23] for
the Whittaker period on Mp,,, which is expressed by a certain integral involving
the Special Bessel period on SO (2n + 1). This forced us the restriction that the
character A on SO (2) is trivial.

In [28], to prove the refined Gross-Prasad conjecture for (SO (2n +1),SO (2))
when A is trivial, the following additional restrictions were necessary:

(1) The base field F is totally real and at every archimedean place v of F, the
representation 7, is a discrete series representation.
(2) The assumption (1.5.4).

Additional main tool needed in [28] was the Ichino-lkeda type formula for the
Whittaker periods on Mp, by Lapid and Mao [72], which imposed on us the
condition (1). In fact, their proof was to reduce the global identity to certain local
identities. They proved the local identities in general at non-archimedean places.
On the other hand, at archimedean places, their proof was to note the equivalence
between their local identities and the formal degree conjecture by Hiraga-Ichino-
Ikeda [49, 50] and then to prove the latter when r is a discrete series representation.
Our proof in [28] was to reduce to the case when  has the special Bessel period by
the assumption (1.5.4) and to combine these two main tools with the Siegel-Weil
formula.

It does not seem plausible that a straightforward generalization of the method of
[27] and [28] would allow us to remove these restrictions. Thus we need to adopt a
new strategy in this paper.

Our main method here is again theta correspondence but we use it differently and
in a more intricate way. First we consider the quaternionic dual pair (GB, GSU3 p)
where GSU3 p denotes the identity component of the similitude quaternion unitary
group GU3 p defined by (2.1.9) and GB defined by (1.5.1). Then we recall the
accidental isomorphism

1.7.1) PGSU; p = PGUy

when D = D given by (2.1.1) and GU4 . is the similitude unitary group defined
by (2.1.14). Hence we have

GU,,, when D is split,i.e. £ € Ng/p (EX);

(1.7.2) GUy o = . ..
GUs,;, when D is non-split, i.e. £ ¢ Ng/p (E™) .

Thus our theta correspondence for (GB, GSUs, D) induces a correspondence for the
pair (Gp,PGUj, ). Then we note that the pull-back of a certain Bessel period on
PGUy, . is an integral involving the (£, A, )-Bessel period on G p.

Theorem 1.1 is reduced essentially to the Gan-Gross-Prasad conjecture for the
Bessel periods on GUy4, ., which we proved in [29] using the theta correspondence
for the pair (GUa, z, GUz ).

Similarly Theorem 1.2 is reduced to the refined Gan-Gross-Prasad conjecture for
the Bessel periods on GUy4, .. For the reader’s sake, here we present an outline of the
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proof when the (&, A, y)-Bessel period does not vanish. Note that in the following
paragraph the notation used is provisionally and the argument is not rigorous since
our intention here is to present a rough sketch of the main idea.

Let (7, V) be an irreducible cuspidal tempered automorphic representation of
Gp(A) with a trivial central character. Suppose that the (&, A, yr)-Bessel period,
which we denote by B, does not vanish on 7. Let 6 () be the theta lift of 7 to
GSUs p. When Gp = G and the theta lift of 7 to GSO3_; is non-zero, 6 () is not
cuspidal but the explicit formula (1.6.2) has been already proved by Corbett [20].
Thus suppose otherwise. Then @ () is a non-zero irreducible cuspidal tempered
automorphic representation. The pull-back of a certain Bessel period, which we
denote by 8 on GSUj3 p is written as an integral involving B. As in our previous
paper [28], the explicit formula for B is reduced to the one for 8, which we obtain
in the following steps.

(1) Viathe isomorphism (1.7.1), regard 8 () as an automorphic representation
of GUy, . and then consider its theta lift 65 (6 (7)), which depends on A,
to GU,,. The temperedness of  implies that 4 (6 (7)) is an irreducible
cuspidal automorphic representation of GU;». Then the pull-back of a
certain Whittaker period W on GU,; is written as an integral involving
the Bessel period 8. Then in [29], it is shown that the explicit formula for
B follows from the one for ‘W. Thus we are reduced to show the explicit
formula for “W.

(2) Via the isomorphism PGU;, ~ PGSOy, regard 65 (6 (7)) as an auto-
morphic representation of GSOy4 5. Let 7’ be the theta lift of 65 (6 (7)) to
G = GSp,. Then it is shown that 7" is a globally generic cuspidal automor-
phic representation of G and indeed the pull-back of the Whittaker period
W on G is expressed as an integral involving ‘W. Hence we are reduced to
the explicit formula for W.

(3) Since the theta lift of the globally generic cuspidal automorphic represen-
tation 7’ of G to either GSO;» or GSO3 3 is non-zero and cuspidal, we
are further reduced to the explicit formulas for the Whittaker periods on
PGSO, ; and PGSOs3 3 by the pull-back computation.

(4) Recall the accidental isomorphisms PGSO, » =~ PGL; X PGL,, PGSO3 3 ~
PGL4. Since the explicit formula for the Whittaker period on PGL,, is
already proved by Lapid and Mao [71], we are done.

Remark 1.10. Though we only consider the case when SO (2) is non-split in this
paper, the split case is proved by a similar argument as follows. First we note that
D is necessarily split when SO (2) is split and hence Gp =~ G. If the theta lift to
GSO,,, is non-zero, it is a Yoshida lift and Liu [76] proved the explicit formula.
Suppose otherwise. Then the theta lift to GSO3 3 is non-zero and cuspidal. The
pull-back of a certain Bessel period on GSOs 3 is an integral involving the split
Bessel period on G (see Section 3.1.2). We recall the accidental isomorphism
PGSO3 3 ~ PGL4. We consider the theta correspondence for the pair (GL4, GL4)
instead of (GUa, g, GUy ) in the non-split case. Then the pull-back computation
may be interpreted as expressing the pull-back of the Whittaker period on GL4 as
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an integral involving the Bessel period on GSO3 3, which is given in [29]. Thus as
in the non-split case, we are reduced to the Ichino-lkeda type explicit formula for
the Whittaker period on GL4.

Here is the statement of the theorem in the split case.

Theorem 1.3. Let (1, V) be an irreducible cuspidal automorphic representation
of G(A) with trivial central character. Suppose that D is split and the Arthur
parameter of 7 is generic.

Let¢ € D™ (F) suchthat F (€) =~ F®F andfix an F-isomorphism Tz ~ F*XF*.
For a character A of A™ |F*, we also denote by A the character of T¢ (A) defined
by A (a,b) := A (ab™1).

The following assertions hold.

(1) The (&, A, ¥)-Bessel period does not vanish on V. if and only if rt is generic

and L ( T X A) # 0. Here we note that L ( X A” ) is the complex

conjugate of L (5, T X A) since 7 is self-dual.
(2) Further assume that ©t is tempered. Then for any non-zero decomposable
cusp form ¢ = ®, ¢, € V, we have

Benw B, 2 .
e o =27t e [ gr2))
(6, D)= ‘ H
xL(z’nXA) (l’ﬂXA_]) l—[ of (¢)
L (1, Ad) Zr(1) (v ),

where (r (1) stands for Ress— {F(s).

1.8. Generalized Bocherer conjecture. Thanks to the meticulous local computa-
tion by Dickson, Pitale, Saha and Schmidt [21], Theorem 1.2 implies the generalized
Bocherer conjecture. For brevity we only state the scalar valued full modular case
here in the introduction. Indeed a more general version shall be proved in 8.3 as
Theorem 8.1.

Theorem 1.4. Let @ be a holomorphic Siegel cusp form of degree two and weight
k with respect to Sp, (Z) which is a Hecke eigenform and m (®) the associated
automorphic representation of G (AQ). Let

(1.8.1) ®(Z)= Y a(®.T)exp [271\/—_1tr T2)|, Z € %,

T>0
be the Fourier expansion of @ where T runs over semi-integral positive definite two
by two symmetric matrices and £, denotes the Siegel upper half space of degree
two.

Let E be an imaginary quadratic extension of Q. We denote by —D its discrim-
inant, Clg its ideal class group and w (E) the number of distinct roots of unity in E.
In (1.8.1), when T’ = 'yTy for some y € SL, (Z), we have a (®,T’) = a (®,T).
By the Gauss composition law, we may naturally identify the SL, (Z )-equivalence
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classes of binary quadratic forms of discriminant —D g with the elements of Clg.
Thus the notation a(®, c¢) for ¢ € Clg makes sense. For a character A of Clg, we
define Bp (D, E) by

B (D,E) :=w(E)""- Z a(®,c) A (c).

ceClg
Suppose that @ is not a Saito-Kurokawa lift. Then we have
L (%, 7 (®) x AT (A))
L(1,7(®),Ad)

1B (P, E)?
(D, D)

(1.8.2) =22k~ pk-t.

Here

(D, D) = / |® (Z)|>det (Y)*3 dX dY where Z=X+V-1Y.
SP2(Z)\$2

Remark 1.11. In Theorem 8.1, we prove (1.8.2) allowing ® to have a square-free
level and to be vector-valued. Moreover, assuming the temperedness of n (D), the
weight 2 case, which is of significant interest because of the modularity conjecture
for abelian surfaces, is also included.

The formula (1.8.2) and its generalization (8.3.1) are expected to have a broad
spectrum of interesting applications both arithmetic and analytic. Some of the
examples are [12], [21, Section 3], [22],[55], [97] and [111].

1.9. Organization of the paper. This paper is organized as follows. In Section 2,
we introduce some more notation and define local and global Bessel periods. In
Section 3, we carry out the pull-back computation of Bessel periods. In Section 4,
we shall prove Theorem 1.1 using the results in Section 3. We also note some
consequences of our proof of Theorem 1.1 (1), which will be used in the proof
of Theorem 1.2 later. In Section 5, we recall the Rallis inner product formula
for similitude groups. In Section 6, we will give an explicit formula for Bessel
periods on GUy . in certain cases as explained in our strategy for the proof of
Theorem 1.2. In Section 7, we complete our proof of Theorem 1.2. In Section 8,
we prove the generalized Bocherer conjecture, including the vector valued case. In
Appendix A, we will give an explicit formula of Whittaker periods for irreducible
cuspidal tempered automorphic representations of G. In Appendix B, we compute
the local Bessel periods explicitly for representation of G (R) corresponding to
vector valued holomorphic Siegel modular forms. This result is used in Section 8.
In Appendix C, we consider the meromorphic continuation of the L-function for
SO (5) x SO (2).

Acknowledgement. This paper was partly written while the second author stayed
at National University of Singapore. He would like to thank the people at NUS for
their warm hospitality. The authors would like to thank the anonymous referee for
his/her careful reading of the earlier version of the manuscript and providing many
helpful comments and suggestions.
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2. PRELIMINARIES

2.1. Groups.

2.1.1. Quaternion algebras. Let X(E : F) denote the set of F-isomorphism classes
of central simple algebras over F’ containing E. Then we recall thatthe mape — D .
gives a bijection between F*/Ng/r(E*) and X(E : F) (see [30, Lemma 1.3])
where

2.1.1) D, ::{(b“(, 25) :a,beE} for & € FX.

Here we regard E as a subalgebra of D . by

E5a|—>(g a(zr)eDg.

We also note that D . ~ Matoy, (F) whene € Ng g (E™). The canonical involution
Dg>x+— X € D, isgiven by

- _[a? -—&b f _[a &b
I=|_po orx=\,0 ol
We denote the reduced trace of D by trp.

2.1.2. Orthogonal groups. For a non-negative integer n, a symmetric matrix S, €
Mat (2,42)x (2n+2) (F) is defined inductively by

0 0 1

(2.1.2) So = ((2) —(2)d) and S, =0 S,-1 0] forn>1.
1 0 O

We recall that E = F () where n° = d. Then we write the corresponding or-
thogonal group, the special orthogonal group and the similitude orthogonal group
by

(213)  O(S2) =Opzns  SO(Sy) =SOuzn and GO (Sy) = GOpsz,ns
respectively. Let GSO,.2_, denote the identity component of GO,,; ;. Thus
(2.1.4) GSOps2.n (F) = {g € GOpyzn (F) : det(g) = ()™}

where

2.15)  GOuizn(F) = {g € GLons2(F) : 'g Su g = A(8)Sn, Ag) € F*}.

For a positive integer n, we denote by Jo, the 2n X 2n symmetric matrix with
ones on the non-principal diagonal and zeros elsewhere, i.e.

0 1 0 0 1
(2.1.6) Jr = (1 O) and  Jr(pe1) =|0 J2, Of fornm>1.
1 0 0

Then the similitude orthogonal group GO, ; is defined by
Q2.L7)  GOupu (F) = {g € GLon (F) : "g J2n g = A(8)J2n, A(g) € F*}
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and we denote by GSO,, , its identity component, which is given by

(2.1.8) GSOp,n (F) = {g € GOy, (F) : det(g) = A(g)"}.

2.1.3. Quaternionic unitary groups. Let D be a quaternion algebra over F contain-
ing E. Recall that G p denotes the similitude quaternionic unitary group of degree
2 defined by (1.4.2).

We define a similitude quaternionic unitary group GU3 p of degree 3 by

(2.1.9) GUs,p(F) :={g € GLs(D) : "gJ;; g = A(8)Jy, A (g) € F*}
where we define a skew-hermitian matrix J,, by

0 0 n
(2.1.10) J, =10 n Of.

n 00

Here A = (d;;) for A = (a;;) € Matyx, (D). Letus denote by GSU3_p the identity
component of GU3z p. Then unlike the orthogonal case, as noted in [81, p.21-22],
we have

GSU; p(F) = GU;3 p(F)
and
GSU; p(Fy) = GUs p(F,) when D ®f F, is not split.

Moreover when D ®p F), is split at a place v of F', we have

(2.1.11) GU3 p(F,) = {ggji?; Ef; z ? ;S j:q l:(ifj_ e enemion o
We also define GU; p by
(2.1.12) GUyp(F) :={aeD”:ana=2(a)n, 1(a) € F*}
and denote its identity component by GSU; p. Then we note that
(2.1.13) GSU; p (F) = {@ € D* : ana =np (@) n}
={xeD*|xn=mx} =T,
where T, is defined by (1.4.6) with & = 7 and np denotes the reduced norm of D.

2.1.4. Unitary groups. Suppose that D = D . defined by (2.1.1). Then we define
GUy, . a similitude unitary group of degree 4 by

(2.1.14)  GUy, (F) = {g € GL4(E) : g7 Tog = A() Tor A (g) € F*}

where we define a hermitian matrix J by

0 0 01

0 -1 00
Je = 0 0 & Of

1 0 0O
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Here AY = (ag) for A = (a,-j) € Mat,,,«, (E). Then we have

GU,,, when D issplit,i.e. € € Ng/p (EX);

(2.1.15) GUy o = ) o
GUs,1, when D is non-split, i.e. € ¢ Ng/p (EX).

We also define GU; . a similitude unitary group of degree 2 by
(2.1.16) GUy o(F) := {g € GLy(E) : '§7Jog = A(g)J e, A(g) € F*}

-1 0
where Jg—(o s)'

2.2. Accidental isomorphisms. We need to explicate the accidental isomorphisms
of our concern, since we use them in a crucial way to transfer an automorphic period
on one group to the one on the other group. The reader may consult, for example,
Satake [102] and Tsukamoto [108] about the details of the material here.

2.2.1. PGSU3 p =~ PGUy4 .. Suppose that D = D .. Then we may naturally realize
GSUs p(F) as a subgroup of GL¢(E). We note that

-1

1 0 0 0 0 O 1 00 0 0 O
0 - 0 0 0 O 0 - 0 0 0 0
001 000, _foco1 000 ,,
0 0 0 - 0 0 0 0 0 -0 0o ~8
0000 1 0 00 0 0 1 0
0 0 0 0 0 —& 0 0 0 0 0 —&
and
01 0 0 0 0 01 0 0 0 O\
10 0 0 0 0 10 0 0 0 0
00010 0f,.]0 0 o0 1 0 0o _,
0 0-10 0 o0o[l8lo 0 -10 0 of =¢
00 0 0 0 1 0 0 0 0 0 1
0 0 0 0 -1 0 0 0 0 0 =1 0

Thus in this realization, we have

(22.1) GSUsp(F) = {g € GSO35(E) : g7 I g = () TS, A (g) € F*}

0 000 1O
0 00 0 0 ¢
o 0 01 00O
where J. = - 00040 0l
1 000 0O
0 £ 00 0O

Here we recall that

(2.2.2) GSO33(E) ~ GL4(E) X GL{(E)/{(z,27%) : z € EX}.

In fact the isomorphism (2.2.2) is realized as follows. Let us take the standard basis
by ="(1,0,0,0), b, ="(0,1,0,0), b3=7(0,0,1,0), bs=7(0,0,0,1),
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of E*. Then we may consider V := A2E* as an orthogonal space over E with a
quadratic form ( , ), defined by
Vi Avy = (VI,VZ)V by Aby ANb3 A by
for vi,v, € V. As abasis of V over E, we take {g; : 1 <i < 6} given by
e1=bi Aby,ep=by ANb3,e3=b1 ANby,g4 = by ANb3, 5 =bg Aby,e6 = b3 A by.

Let the group GL4(E) X GL|(E) acton V by (g,a)(w1 Awjy) =a - (gw) A gws)
where wi, wy € E*. This action defines a homomorphism

2.2.3) GL4(E) x GL (E) - GSO3’3 (E)

where we take {g; : 1 <i < 6} as a basis of V and the homomorphism (2.2.3)
induces the isomorphism (2.2.2). By a direct computation we observe that (— 7, 1)
is mapped to J; under (2.2.3) and the restriction of the homomorphism (2.2.3)
gives a homomorphism

(2.2.4) GUy ¢ (F) > GSUs p (F) .
Then it is easily seen that the isomorphism

(2.2.5) ®p : PGU, .(F) — PGSU; p(F)
is induced.

2.2.2. PGU, =~ PGSO4,. When & € N p(E™), the quaternion algebra D = D
is split and the isomorphism (2.2.5) gives an isomorphism PGU; » =~ PGSO4,. We
recall the concrete realization of this isomorphism. First we define GU, ; by

GUy, = {g €GL4(E) : "g7 Jag =A(g) Js, A(g) € F*}

00 01
0010
where J4 = 010 0
1 0 00
as (2.1.6). Let
0 nx|y  X3+nx4 X2
- 0 - :
vV = {B ((xi)1§i§6) = (—X371):71x4 s )2)5 ;3_'1—;]:4) x;eF(1<i< 6)} .
-x2  x3-nx4 —n"'xg 0

We define ¥ : V — F by
. 0 12),, (0 1,
¥ (B) :=Tr (B (12 0) B (12 0))

¥ (B ((xi)1<i<e)) = —4 {X1X6 + XpXs5 — (x% - dxi)} .
Let GSU,; denote the identity component of GU> », i.e.
GSUs, = {g € GU,, : det(g) = A(g)*}.

Then we have
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We let GSU5 , act on V by

1 0 0O
GSUz, XV 3 (g,B) = (wgw) B (w'gw) € V  where w = 8 (1) 8 (1)
0 010

Then this action induces a homomorphism ¢ : GSU, » — GO(V). We note that
A(p(g)) =det(g) forge GSUz,

and this implies that the image of ¢ is contained in GSO (V). As a basis of V', we

may take
0 n 00 0 00 1 0 01 0
|- 000 10 00 0 0 0 0 -1
h=lo o0 0 of P=lo o000l H7|-1 00 of
0 000 -1 0 00 0 10 0
0 0 n O 0 0 00 00 0 0
10 0 0 7 100 10 oo o0 o0
f4‘—n000’ 5=lo -1 0ol =00 o n!
0 -n 00 0 0 00 00 -t 0

With respect to this basis, we may regard ¢ as a homomorphism from GSU> »
to GO4 2, where the group GOy is given by (2.1.5) for n = 2. Let us consider
GSU,; < E* where the action of @ € E* on g € GSU, 5 is given by

-1

a 00 0 @« 00 0
010 0 010 0
810 0 1 o |%lo 0 1 0
000 (a9)! 000 (a”)!

Then as in [83, p.32-34], ¢ may be extended to GSU;, = E* and we have a
homomorphism GSU, ; < E* — PGSO, » which induces the isomorphism

(2.2.6) @ : PGU, 5, — PGSOy,.
2.3. Bessel periods. Let us introduce Bessel periods on various groups.

2.3.1. Bessel periods on G = GSp,. Though we already introduced Bessel periods
on G p in general as (1.4.11), we would like to describe them concretely in the case
of G here for our explicit pull-back computations in the next section.

Let P be the Siegel parabolic subgroup of G with the Levi decomposition
P = MN where

€ GL,(F),
M<F>={(§ ﬁ.9g_1):ieFf },N<F>={(}) )f):XeSyme)}.
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Here Sym,, (F) denotes the set of n by n symmetric matrices with entries in F for
a positive integer n. For S € Sym, (F), let us define a character /g of N(A ) by

s ((1) )f) =y [ir(SX)] .

For S € Sym, (F) such that detS # 0, let
Ts := {g € GL, : "gSg = det(g)S} .
We identify Ts with the subgroup of G given by

g 0 .
{(0 det(g)‘,g_l).geTs}.

Definition 2.1. Let us take S € Sym, (F) such that Ts (F) is isomorphic to E*. Let
7 be an irreducible cuspidal automorphic representation of G (A) whose central
character is trivial and V, its space of automorphic forms. Fix an F-isomorphism
Ts (F) ~ E*. Let A be a character of A [/ E™ such that A |5 x is trivial. We regard
A as a character of Ts (A) |A* Ts (F).

Then for ¢ € Vg, we define Bs a,y (@), the (S, A, y)-Bessel period of ¢ by

(2.3.1) Bsay(p) = / / e(uh) A~ (R)yg" (u) du dh.
AXTs(F)\Ts(A) JN(F)\N(A)

We say that m has the (S, A, y)-Bessel period when Bs p y # 0 on V. Then we
also say that  has the (E, A)-Bessel period as in Definition 1.2.

2.3.2. Bessel periods on GSU3 p. Let us introduce Bessel periods on the group
GSUs; p defined in 2.1.3. Let P3,p be a maximal parabolic subgroup of GSU3 p
with the Levi decomposition P3 p = M3 pN3 p where

g 0 0y 8§€D% 1 A’ B

Msp=15(0 h O|:heTy,, , N3p=4]0 1 A|eGSUsp
00 ¢/ np(g)=np(h) 0 0 1

As for T,), we recall (2.1.13) and T, ~ E*. For X € D*, we define a character

Yx.p of N3 p(A) by

1 A B
Yx,p(0 1 Al=y[up(XA)].
0 0 1
Then the identity component of the stabilizer of ¥ x p in M3 p is
X 0 0
Mxp=13|0 h O|:heT,; where h*=XhXx""
0 0 h¥
We identify Mx with T, by
0 0
(2.3.2) Mxp>|l0 h O0|—heT,

0 0 KX
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and we fix an F-isomorphism T, ~ E*.

Definition 2.2. Let op be an irreducible cuspidal automorphic representation of
GSUs p (A) and Vs, its space of automorphic forms. Let x be a character of
AX/E* and we regard x as a character of Mx p (A) [Mx p (F). Suppose that
X|ax = Wy, the central character of op.

Then for ¢ € V,,, we define B)I?’X’w(go), the (X, x,¥)-Bessel period of ¢ by

2.3.3) B8R, .,(9) = / @(uh)

AXMx p(F)\Mx,p(A) '/N3,D(F)\N3,D(A)
X x (W) Yx.p )™ dudh.

2.3.3. Bessel periods on GUy4 .. In light of the accidental isomorphism (2.2.5),
Bessel periods on the group GU, . is defined as follows.

Let P4, - be a maximal parabolic subgroup of GUy4_. with the Levi decomposition
My, N4 o where

a 0 0
My (F)=4(0 g 0 cac€EX,geGUy . (F)¢,
0 0 A(g)(a”)™!
1 A B
Ny e(F)=1(0 1o A"|€GUy,. (F)
0 0 1

Let us take an anisotropic vector e € E* of the form ?(0, *, ,0). Then we define a
character y. of N4 o(A) by
Xe (u) =y ((ue,br)s) where (x,y), ="x7Jpy.

Here we recall that J, is as given in (2.1.16) and b; =’ (1,0,0,0). Let D, denote
the subgroup of My . given by

1 00
D,:=4(0 h O|:heUyg he=¢
0 0 1

Then the group D, (A ) stabilizes the character y. by conjugation. We note that
D.(F)~U{(F):={a € E*:aa=1}.

Hence for a character A of A} which is trivial on A, we may regard A as a
character of D.(A) by d — A(detd). Then we define a character y, o of R.(A)
where R, := DNy . by

(2.3.4) XeA(ts) = A(t)ye(s) for te€D.(A), s e Ny (A).

Definition 2.3. For a cusp form ¢ on GUy_o(AF) with a trivial central character,
we define B, p y (@), the (e, A, yr)-Bessel period of ¢, by

235 Beaw(o)= [ J Xe(ts)™! plts) ds dr.
De(F)\De(AF) N4,£(F)\N4,£(AF)
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2.3.4. Bessel periods on GSOy4 2 and GSO3 3. By combining the accidental iso-
morphisms (2.2.5) and (2.2.6) in the split case, we shall define Bessel periods on
GSO4 and GSO3 3 as the following.

Let P4, denote a maximal parabolic subgroup of GSO4 > with the Levi decom-
position P47 = M4 2Na 2 where

M 0 2 0 8 € Gla, N 102 ?, i GSO

42 = : , INg2 = 2 € 4,2
0 0 g -deth) "€GSO20 0 0 1,

Here

« (0 1); -1{0 1
g—(l O)g (1 0) for g e GL,.

Then for X € Matyy, (F), we define a character ¢ x of N4> (A) by

1, A B
Ux| 0 1L, A=y [u(XA)].
0 0 1,
Suppose that det X # 0 and let
(deth) - (K)* 0 0
My = 0 h O |:he GSOZ’O
0 0 n¥

where #X = XhX~! . Then Mx (A) stabilizes the character x and My is iso-
morphic to GSO; 9. We fix an isomorphism GSO, o(F) ~ E* and we regard a
character of A £ as a character of Mx (A).

Definition 2.4. Let o be an irreducible cuspidal automorphic representation of
GSO42(A) with its space of automorphic forms V, and the central character
wq. For a character x of Af such that x|px = wg, we define Bx y y (), the
(X, x,¥)-Bessel period of ¢ € Vo by

(2.3.6)

Bx x,u(p) = /

i () () ()" dudh.
Nyp(F)\Ngp(A) JMx(F)A*\Mx (A)

When d € (F*)?, we know that GSO(S,) ~ GSO3 3. Hence, as above, for a
cusp form ¢ on GSO; 3 with central character w and characters Ay, A of AX/F*
such that AjAy = w, we define (X, A1, Ay, ¢)-Bessel period by

Bx.A,u (@) = / /
Ny2(F)\Nyp(A) J Mx(F)A*\Mx (A)

Here, since M4, ~ GL; x GSO;; and GSOy ;(F) = {(“,) :a,b € F*}, we
define a character ya, A, of GSO; (A ) by

o(uh) xa,.a, (W) Wwx(u) ™ dudh.

s (") =M@,

When w is trivial, we have A, = Al‘l. In this case, we simply call (X, Aj, Al_l JY)-
Bessel period as (X, Ay, ¥)-Bessel period and simply write XAzt = Aj.
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2.4. Local Bessel periods. Let us introduce local counterparts to the global Bessel
periods. Let k be a local field of characteristic zero and D a quaternion algebra
over k.

Since the local Bessel periods are deduced from the global ones in a uniform
way, by abuse of notation, let a quintuple (H, T, N, y, ¥ ) stand for one of

(Gp,Te, Np, A, g) in (1.4.11),
(Gsp27 TS9 N$ A’ '705) in (231), or,
(GSU3,p, Mx, Nap, x,¥x) in (2.3.3).

Let (7, V,) be an irreducible tempered representation of H = H (k) with trivial
central character and [, | a H-invariant hermitian pairing on V, the space of 7. Let
us denote by V° the space of smooth vectors in V;. When k is non-archimedean,
clearly V® = V. Let y be acharacter of T = T (k) whichis trivialon Zy = Zy (k),
where Zy denotes the center of H.

Suppose that k is non-archimedean. Then for ¢, ¢’ € V., we define the local

Bessel period Q)I(i,t/w (0,90") =y yp (0, 0") =a (¢, ¢') by

Q4D a(hd) = /T 5 /N [ (ur) 661 xc (1) v ()™ du i,

Here the inner integral of (2.4.1) is the stable integral in the sense of Lapid and
Mao [71, Definition 2.1, Remark 2.2]. Indeed it is shown that for any ¢ € T the inner
integral stabilizes at a certain compact open subgroup of N = N (k) and the outer
integral converges by Liu [76, Proposition 3.1, Theorem 2.1]. We note that it is
also shown in Waldspurger [114, Section 5.1, Lemme] that (2.4.1) is well-defined.
We often simply write a (@) = a(¢, ¢).

Now suppose that & is archimedean. Then the local Bessel period is defined as
aregularized integral whose regularization is achieved by the Fourier transform as
in Liu [76, 3.4]. Let us briefly recall the definition. We define a subgroup N_., of
N = N (k) by:

N w:= {((1) th) € Np : trp (éu) = 0} in the G p-case;
1 Y .

N_w:= {(0 1) eN:tr(SY) = 0} in the GSp,-case;
1 A B

N_w:=4[0 1 AleN3p:trp(XA)=0 in the GSU3 p-case,
0 0 1

respectively. Then it is shown in Liu [76, Corollary 3.13] that for u € N,

g (1) = /T . / [x (ust) ¢, ¢'] x ()" ds dt

converges absolutely for ¢, ¢’ € VX and it gives a tempered distribution on N /N_,.
For an abelian Lie group N, we denote by D(N) (resp. S(N)) the space of
tempered distributions (resp. Schwartz functions) on N. Then we recall that the
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Fourier transform™: D(N) — D(N) is defined by the formula
(a,9) = (a,gﬁ) fora e D (N)and ¢ € S(N),

where (,) denotes the natural pairing D(N) x S(N) — C and ¢ is the Fourier
transform of ¢ € S (N).
Then by Liu [76, Proposition 3.14], the Fourier transform @ g is smooth on the

regular locus (IW]EQ)reg of the Pontryagin dual N/N_ and we define the local
Bessel period a (¢, ¢) by

(2.4.2) @y (8:8)) =y yy (6.6 = a (¢, ¢') = @55 (UN) .

As in the non-archimedean case, we often simply write a(¢) = a (¢, ¢).

3. PuLL-BACK OF BESSEL PERIODS

In this section, we establish the pull-back formulas of the global Bessel periods
with respect to the dual pairs, (GSp,, GSOa 1), (GSp,, GSO3 3) and (G p, GSU3 p).
We recall that the first two cases may be regarded as the special case when D is
split of the last one, by the accidental isomorphisms explained in 2.2.

3.1. (GSp,,GSO4,) and (GSp,, GSO3 3) case.

3.1.1. Symplectic-orthogonal theta correspondence with similitudes. Let X (resp.
Y) be a finite dimensional vector space over F equipped with a non-degenerate
alternating (resp. symmetric) bilinear form. Assume that dimg Y is even. We
denote their similitude groups by GSp(X) and GO(Y), and, their isometry groups
by Sp(X) and O(Y), respectively. We denote the identity component of GO(Y)
and O(Y) by GSO(Y) and SO(Y), respectively. We let GSp(X) (resp. GO(Y)) act
on X from right (resp. left). The space Z = X ® Y has a natural non-degenerate
alternating form (, ), and we have an embedding Sp(X) X O(Y) — Sp(Z) defined
by

(3.1.1) (x®y)(g.h)=xg®h™'y, forxeX,yeY,heO(),geSpX).

Fix a polarization Z = Z, ® Z_. Let us denote by (wy, S(Z,(A))) the Schrodinger

model of the Weil representation of §1;(Z ) corresponding to this polarization with
the Schwartz-Bruhat space S(Z,) on Z,. We write a typical element of Sp(Z) by

A B A € Hom(Z,,Z,), B€ Hom(Z,,Z_),
where
¢ D C e Hom(Z_,Z,), D € Hom(Z_,Z_).

Then the action of wy, on ¢ € S(Z,) is given by the following formulas:
(3.1.2)

A B (1 1 (1
wy ((0 t A_l) ,s) #(z.) = %Z(wTet)m'det(A)'”” (§<Z+A, Z+B>) B(z:A)

3.1.3)
Wy ((_01 (1))8) ¢(z4) =8(7¢(1))_dimz*‘/z lﬁ((z’,z(_ol (I)))) ¢(z')dz,
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where 7y (1) is a certain eighth root of unity called the Weil factor. Moreover, since
the embedding given by (3.1.1) splits in the metaplectic group Mp(Z), we obtain
the Weil representation of Sp(X, A) x O(Y, A) by restriction. We also denote this
representation by w, .

We have a natural homomorphism

i: GSp(X) xGO(Y) — GSp(Z)
given by the action (3.1.1). Then we note that A(i(g, h)) = A(g)A(h)~". Let
R :={(g, h) € GSp(X) x GO(Y) | A(g) = A(h)} > Sp(X) x O(Y).

We may define an extension of the Weil representation of Sp(X, A) x O(Y,A) to
R(A) as follows. Let X = X, & X_ be a polarization of X and use the polarization
Z. = X: ®Y of Z to realize the Weil representation w,. Then we note that

wy(1,h)$(2) = ¢ (i (h)~! z) forhe O(A)and ¢ € S(Z,(A)).
Thus we define an action L of GO (Y, A) on S(Z,(A)) by

L () ¢ (2) = ()| X0 Y (3 ()~' 2)
Then we may extend the Weil representation wy, of Sp(X,A) x O(Y,A) to R(A)
by
wy (8 M) ¢ =wy (g1, 1)L (h) ¢ for ¢ € S(Z.(A)) and (g, h) € R (A),

where

-1
g1=8 (M%) (1)) € Sp(X, A).

In general, for any polarization Z = Z@®Z’ , there exists an Sp(X, A )xO(Y) (A )-
isomorphism p : S(Z,(A)) — S(Z;(A)) given by an integral transform (see
Ichino-Prasanna [58, Lemma 3.3]). Let us denote the realization of the Weil
representation of Sp(X, A) X O(Y)(A) on S(Z;(A)) by a)://. Then we may extend
a):p to R (A) by

a):/, (g.h)=powy (g, h)o p_] for (g, h) € R(A).
For ¢ € S(Z,(A)), we define the theta kernel % by
05 (e, h) = 0%(2g,h) = D wy (g, h)e(zy) for (g,h) € R(A).
z24€Z,(F)
Let
(3.1.4) GSp(X,A)* ={g € GSp(X,A) | A(g) = A(h) for some h € GO(Y,A)}

and GSp(X, F)* = GSp(X, A)* N GSp(X, F).
As in [46, Section 5.1], for a cusp form f on GSp(X, A )*, we define its theta lift
to GO(Y, A) by

OF (£.0)() = O(.9)(h) = | 6% (318, 1) f(312) dg)

Sp(X,F)\Sp(X,A)
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for h € GO(Y, A), where g € GSp(X, A )" is chosen so that A(g) = A(h). Tt defines
an automorphic form on GO(Y,A). For a cuspidal automorphic representation
(4, Vg,) of GSp(X, A)*, we denote by ©, () the theta lift of 7, to GO(Y,A).
Namely

0, (1) = Oy (ms) = {O(f,¢) : f € Vr,, ¢ € S(Z:(A))} .

Furthermore, for an irreducible cuspidal automorphic representation (x,V,) of
GSp(X, A), we define

Oy (1) = Oy (lGsp(x,a)*)
where 7|Gsp(x,4 )+ denotes the automorphic representation of GSp(X, A )* with its
space of automorphic forms {golep(x, A)FIQE V,,}.

As for the opposite direction, for a cusp form f’ on GO(Y, A), we define its
theta lift ©(f”, ¢) to GSp(X, A)* by

O(f',¢)(g) = / 0%(g, hih) f(hih) dh; for g € GSp (X,A)*,
O(Y,F)\O(Y,A)

where h € GO(Y, A) is chosen so that A(g) = A(h). For an irreducible cuspidal

automorphic representation (o, V) of GO(Y, A ), we define the theta lift © (o)

of o to GSp(X, A )* by

Oy (0) ={0(f".¢) : [ € Vo, ¢ € S(Z(A))}.

Moreover we extend 0( f”, ¢) to an automorphic form on GSp(X, A ) by the natural
embedding

GSp(X, F)"'\GSp(X, A)* — GSp(X, F)\GSp(X, A)

and extension by zero. Then we define the theta lift ®, (o) of o to GSp(X, A)
as the GSp (X, A) representation generated by such 0 (f’,¢) for f* € V, and
¢ €S (Zy (A)).

For some X and Y, theta correspondence for the dual pair (GSp(X)*, GO(Y))
gives theta correspondence between GSp(X)* and GSO(Y) by the restriction of
representations of GO(Y) to GSO(Y). Indeed, when dimX = 4 and dimY = 6,
we may consider theta correspondence for the pair (GSp(X)*, GSO(Y)). In Gan-
Takeda [34, 36], they study the case when GSO(Y) ~ GSO3 3 or GSOs 1, and, in
[83], the case when GSO(Y) =~ GSOy 5 is studied. In these cases, for a cusp form
f on GSp(X, A)*, we denote by 6( f, @) the restriction of O(f, ¢) to GSO(Y, A).
Moreover, for a cuspidal automorphic representation (774, V) of GSp(X, A)*, we
define the theta lift 6, (7,) of 7, to GSO(Y, A) by

05 (1) = 04(1.) = {0(f.0) : f € Vi, b € S(Zo(A))}.
Similarly, for a cusp form f’ on GSO(Y, A), we define its theta lift 6( f’, @) to
GSp(X,A)* by

0(f". 9)(g) = / 0% (g, nh) f (k) iy for g € GSp (X, A )",
SO(Y,F)\SO(Y,A)
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where h € GSO(Y, A) is chosen so that A(g) = A(h). We extend it to an auto-
morphic from on GSp(X, A ) as above. For a cuspidal automorphic representation
(0,Vs) of GSO(Y, A ), we define the theta lift 6, (o) of o to GSp(X, A )* by

O0y(0) ={0(f".¢): f" € Vo, ¢ € S(Z:(A))}.

Remark 3.1. Suppose that ©y (n,) (resp. 6y (0)) is non-zero and cuspidal where
(74, Vg,) (resp. (0,Vy)) is an irreducible cuspidal automorphic representation
of GSp(X, A)* (resp. GO(Y,A)). Then Gan [31, Proposition 2.12] has shown
that the Howe duality, which was proved by Howe [52] at archimedean places,
by Waldspurger [113] at odd finite places and finally by Gan and Takeda [37] at
all finite places, implies that ©,(r,) (resp. 0y(0)) is irreducible and cuspidal.
Moreover in the case of our concern, namely when dimp X = 4 and dimg Y = 6,
the irreducibility of © y (ny) implies that of 6 (7,) by the conservation relation due
to Sun and Zhu [105].

3.1.2. Pull-back of the global Bessel periods for the dual pairs (GSp,, GSO4)
and (GSp,, GSO3 3). Our goal here is to prove the pull-back formula (3.1.6).

First we introduce the set-up. Let X be the space of 4 dimensional row vectors
over F equipped with the symplectic form

0 1
(Wi, wa) =wy (_12 02) "wa.

Let us take the standard basis of X and name the basis vectors as
(3.1.5)
x; =(1,0,0,0), x,=1(0,1,0,0), x-1=1(0,0,1,0), x_o=(0,0,0,1).

Then the matrix representation of GSp (X) with respect to the standard basis is
G = GSp, defined by (1.4.3). We let G act on X from the right.

Let Y be the space of 6 dimensional column vectors over F equipped with the
non-degenerate symmetric bilinear form

(vi,v2) = "viSav2
where the symmetric matrix S, is given by (2.1.2). Let us take the standard basis
of Y and name the basis vectors as
y-2="(1,0,0,0,0,0), y-;="(0,1,0,0,0,0),

e1 ='(0,0,1,0,0,0), e>="(0,0,0,1,0,0),

y1="(0,0,0,0,1,0), y="(0,0,0,0,0,1).
We note that (y;,y;) = 6;j, (e1,e1) =2 and (e2, e2) = —2d. Since d € F*\ (F*)?,
with respect to the standard basis, the matrix representations of GO (Y) and GSO (Y)
are GOy defined by (2.1.5) and GSOy4 > defined by (2.1.4), respectively. In this
section, we also study the theta correspondence for the dual pair (GSp(X), GSO3 3),
for which, we may use the above matrix representation with d € (F*)?. Hence, in

the remaining of this section, we study theta correspondence for (GSp(X), GSO(Y))
for an arbitrary d € F*.
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We shall denote GSp(X, A)* as G(A)* and also GSp(X, F)* as G(F)*. We
note that when d € (F*)?, GSp(X)* = GSp(X).

Let Z = X ® Y and we take a polarization Z = Z, & Z_ as follows. First we take
X = X; ® X_ where

X, =F-x1;+F-x» and X_=F -x_1+F-x_»
as the polarization of X. Then we decompose Y asY =Y, & Yy @ Y_ where
Y.=F-y1+F-y,, Yoy=F-ei+F-ep andY_=F-y_1+F y_,.
Then let
Z,=(X®Y.) ®(X: ®Y))

where the double sign corresponds. To simplify the notation, we sometimes write
7+ € Zy as z4 = (ay,az; by, by) when

2+ =a1®y1+ar2 @y, +b1 Qe +by®er € Z,, wherea; € X, b; € X, (i=1,2).

Let us compute the pull-back of (X, y, ¥)-Bessel periods on GSO(Y) defined by
(2.3.6) with respect to the theta lift from G.

Proposition 3.1. Let (, V) be anirreducible cuspidal automorphic representation
of G (A) whose central character is w, and y a character ong such that y |ax=
w,‘,l. Let X € Matyy; (F) such that det X # 0.
Then for f € Vy and ¢ € S(Z.(A)), we have
(3.1.6)
Bx xuw(0(f : ¢) = / By 1,0 (7(8) ) (wy (g, Do) (vx) dg

N(AN\G'(A)

where Bg, -1, is the (Sx, x ™', ¢)-Bessel period on G defined by (2.3.1).

Here, for X = A , we define a vector vx € Z, by
X21  X22
X21 X11 X232 X12
3.1.7 vy = (x_ LX) —X]+ —Xy, ———X] — —X )
(3.1.7) X 215 X1+ Xy, T XL T X

and a 2 by 2 symmetric matrix Sx by

1
(3.1.8) SX = Qt(.lz tXJz)S()(Jz tXJz).
We regard y as a character of GSO(Sx)(A) by

(3.1.9) GSO(Sx) 3 k — x (L' XI)k(J'XJ»)™") e C*.

In particular, the (Sx, x ', ¥)-Bessel period does not vanish on Vy if and only
if the (X, x,y)-Bessel period does not vanish on 6, ().
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Proof. We compute the (X, y,)-Bessel period defined by (2.3.6) in stages. We
consider subgroups of N4 ; given by:

(3.1.10)
1 —'XpS; O ’(;
No(F) =quo(x) =0 1o Xof[Xo=|yfrs
0 0 1
0
(3.1.11)
1 -'XiS1 -3 X181X SO
Nl(F): M](S],f])ﬁ: 0 14 Xl |X]: [1 ;
0 0 1 !
0
(3.1.12)
10 0 0 0
0 1 —'X28) —-1XS0X> 0 i
No(F) =uax(sz, 1) =0 O 1, X5 0f] 2:(t2)
00 0 1 0 2
00 0 0 1

where Sg and S| are given by (2.1.2). Then we have
No < NgN1 < NgN{Np = Ny .

Thus we may write

(3.1.13) BX,X,Lp(@(f 1)) =/ / / /
AXMx(F)\Mx(A) J (F\AF)? J (F\AF)?> JF\AF
O(f, ) (uo(x)ui(s1, t1)uz(s2,12)h)

X I,b(XmS] + X0t +X11852 +X12l2)_1/\/(h)_1 dx ds dt; ds, dty dh.

For h € GSO(Y, A), let us define
Wo(0(f : 6))(h) = / 0(f.6) (o(x)) d.
F\Ap

From the definition of the theta lift, we have

(3.1.14)  Wo(6(f,¢))(h)

= / / DT (wu(1a:(v (), up(x)h)@) (ar, az: by, by)
F\Ap JG'(F)\G'(AF) a;eX,b;eX,
X f(g1ds(A(h))) dg dx.

Here, for a € A%, we write

/ls(a)z(loz 0 )

a-12
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Since Z_ (1,ug(x)) = Z_ and we have
2 (Lug(x)) =z4+(x-a1®y 2 —x-a,®y_1),

we observe that

(3.1.15)  (wy(1,up(x))9) (z4) =¥ (%<z+,x a1 ®y_2—x-ar®y_1)| ¢(z4)
=y (—x(a1, a2)) $(z+).

Thus in the summation of the right-hand side of (3.1.14), only a; such that (a, as) =
0 contributes to the integral Wo(8(f, ¢)), and we obtain

Wo(6(f. 6))(h) = /

G'(F)\G'(AF)

D (@u(a1d (M) W) (araz; b, bo) f(g145(A())) dgi.
aIEX,<u1,az>:0,
bi€X+

Since the space spanned by a; and a; is isotropic, there exists y € G!(F) such that
a1y~!,a;y~! € X_. Let us define an equivalence relation ~ on (X_)? by

(a1,az) ~ (a}, a}) ? there exists y € G! (F) such that a; =ajyfori=1,2.

Let us denote by X_ the set of equivalence classes (X_)? /~ and by (a1, a») the
equivalence class containing (a;, a2) € (X_)?. Then we may write Wy (6(f, ¢))(h)
as

-/G'(F)\G'(AF)

2 D 3 (o814, (A1) @) (@17, azy: bi. b2)

(ay,ap)eX_ yeV(ai,ax)\G' (F) bieX
X f(g14s(A(h))) dgi.
Here
V(ai,a2) = {g € G'(F) | ajg = a; fori = 1,2}.
Lemma 3.1. Forany g € G(A)" and h € GSO(Y, A) such that 1(g) = A(h),

Z (wy (g, h)o) (ary,ary, b1, bs) = Z (wy(vg, M)¢) (a1, a2, by, by).

bieXy bieXy

Proof. This is proved by an argument similar to the one for [23, Lemma 2]. O

Further, by an argument similar to the one for Wy (6(f, ¢))(h), we shall prove
the following lemma.
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Lemma 3.2. Forany g € G(A)" and h € GSO(Y, A) such that A(g) = A(h),

/ Y (a1t +x01) (wy (g, ui(s1,11)h)¢) (a1, az, by, by) dsy dty
(F\AF)?
(wy (g, M)@) (a1,a2,b1,b2) if {as,b1) = =3 and (as, by) = 35
0 otherwise
and
/ Y (1152 + x1212) (wy (g, ua (52, 12) 1) @) (a1, az, b, ba) dsy dta
(F\AF)?
(wy (g, 1)) (ar,az,b1,b2) if{ar,br) = =3t and (a1, b) = 35;
0 otherwise.

Proof. Since Z_ (1,u1(s1,t1)) = Z_ and we have

e (Lui(s1,t1)) = 24 +251(b1 ® y_2) = 2dt1 (b ® y_»2)

+ (—s% + 2dt12)a2 ®y_2—Ssiay®e| —tiar ® ey,

we obtain
(wy (L ui(s1,11))9) (z4) =¥ (% (2s1{az, by) - 2d11<az,b2>))

X w (% ((—S% + 2d[12)<a2, a2> — 251<b1, a2> + Zdﬁ(bz, a2>)) ¢(Z+)
=y (251(az, b1) — 2dt1{az, by)) ¢(z4).

Then the first assertion readily follows.
Similarly, since Z_ (1, u3(s2,12)) = Z_ and we have

2+ (Lua(s2,12)) = 2o +a1®((55—d13)y_1—S2e1—12€2) +252b1®y_1 ~2dtrbr ®y _1,
we obtain

w(l,ux(s2,12))(24) = ¢ (% (=2s2(b1,a1) + 2dl2(b2,al)))

Xy (% (2s2(ay, by) — 2dtr{ay, b2>)) #(z4)
=y (2s2(a, b1) —2dtr{ay, b)) ¢(z4)

and the second assertion follows. O
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Lemma 3.2 implies that

By .y (0f : 8)) = / / POR
AXMx(F)\Mx(A) J GHF)\G!'(AF)

D) 2, 2.

(ar,ar)eX_ veV(ar,a)\G'(F) bjeX, (a;,b1)="4L,

.
(aibr)=—3%

(wy (8145 (A(h)), 1) @) (a1, a2, b1, b2) f(g145(A(h))) dg1 dh.

We note that a; and a, are linearly independent from the conditions on a; and
det(X) # 0. Since a; € X_ and dim X_ = 2, we may take (a,a) = (x_3,x_1) as
a representative. Then we should have

X21 X11
bi="2xi+ 2y, by = -2 - 22k,
L=y M E T g

Hence we get

(3.1.16) Bx,.4(0(f : ¢)) = / / x ()~
AXMx (F)\Mx(A) JGL(F)\G!(AF)

x> (@ (g1, (A(h). 1)) (vx) F(812,(A(h))) dgy dh

YEN(F)\G!(F)
‘/N(A)\GI(AF) '/AXMx(F)\Mx(A) /N(F)\N(A)

x ()~ w(vgi1ds(A(h)), h)p(vx) f (vgi1ds(A(h))) dv dgi dh

where we put vx = (x_2,x_1; 3 x1 + SLxp, =351 — 37x2).
1, A a b
Foru=| 2 where A = € Sym?, we have
0 1, b ¢

X21 X11
=X 2@V +X_ ®yy+ (7(x1 +ax_1+bx_y)+ 7()62 +bx_1+ cx_z)) ® e
X
+ (—2%?()(1 +ax_1+bx_p) - %(xz +bx_1 + cx_z)) ® e).
Hence, when we put

1
Sx = @t(ftiJz)So(JtiJz)

2 2
1 ( x22 — dx21 X22X12 — del)C]]

=5 2
B 2d \x2x12 — dx21x11 x%z — dx%l ) € Sym (F),

foru € N (A), we have

(wy (ugAs(A(R)), N)B) (vx) = Wsy ()~ wy (gA5(A(h)), h)(vx).
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Therefore, we get

h —1
‘/N(A)\GI(AF> AXMx(F)\Mx(A) /N(F>\N(A> x(h)
X (wy (g145(A(h)), 1)) (vx) f(ugids(A(R)Wrsy (u)™" du dhdg,

- / / / POR
N(ANGH(Af) JAXMx(F)\Mx(A) J N(F)\N(A)

X @y (As(A(h))g1, M (vx) AR £ (uds (A(h))g)Wrsy (w)™" dudhdg,.
By a direct computation, we see that
(@y (A5 (AR g1, 1)B) (vx) = 12| 7 (wy (hods (A(h))g1, 1)) (vx)

when we write
(deth)(K)* 0 0

("XJ2) M h(" X J2) 0 )
h= 0 ho 0|, hy= _ -
0 0 hX 0 0 (JZX)h 1(*]2X) !
For g € GSO(Sy), we have g = wgw and we may write
L (X)X T 0
’ 0 (X)) (R X))

Since we have
GSO(Sx) = (J2'XJ2) "' GSO(S0) (12" X ),
we get

(3.1.17) / / / x (h)
NANG! (Ap) JAXTsy (F)\Tsy (A) JN(F)\N(A)

X (wy (g1, D) (vx) f(uhg)Wsy (u)™" dudhdg
:/ Bg, 1 (m(g1)f) (wy (g1, 1)) (vx)dg
N(A\G!'(AF)

where we regard y as a character of GSO(Sx)(A) by (3.1.9).

Finally the last statement concerning the equivalence of the non-vanishing condi-
tions on the (S, x y)-Bessel period and the (X, y)-Bessel period follows from
the pull-back formula (3.1.6) by an argument similar to the one in the proof of
Proposition 2 in [27]. O

3.2. (Gp,GSU; p) case.

3.2.1. Theta correspondence for quaternionic dual pair with similitudes. Let D be
a quaternion division algebra over F. Let Xp (resp. Yp) be a right (resp. left)
D-vector space of finite rank equipped with a non-degenerate hermitian bilinear
form (, )x,, (resp. non-degenerate skew-hermitian bilinear form (, )y,,). Hence
(» )xp and (, )y, are D-valued F-bilinear form on Xp and Yp satisfying:

(X,X,)XD = (x/,X)XD, (xa’x/b)XD = d(x’x/)XDb,

3 == e {ay, Y by, = aly, ¥ v, b,
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for x,x" € Xp, y,y' € Yp and a,b € D. We denote the isometry group of Xp
and Yp by U(Xp) and U(Yp), respectively. Then the space Zp = Xp ®p Yp is
regarded as a symplectic space over F with the non-degenerate alternating form
(, ) defined by

(3.2.1) (X1 ® y1,x2 ® y2) = trp ((x1, X2)xp (Y1, ¥2)vp) € F
and we have a homomorphism U(Xp) X U(Yp) — Sp(Zp) defined by
(3.22) (x®y)(g,h) =xg®h~'y forxe X,yeY,heU(Yp)andg € U(Xp).

As in the case when D =~ Maty,, this mapping splits in the metaplectic group
Mp(Zp). Hence we have the Weil representation wy, of U(Xp, A) x U(Yp,A) by
restriction.

From now on, we suppose that the rank of X, is 2k and X is maximally split,
in the sense that its maximal isotropic subspace has rank k.

Let us denote by GU(Xp) (resp. GU(Yp)) the similitude unitary group of
Xp (resp. Yp) with the similitude character Ap (resp. vp). Also we write the
identity component of GU(Yp) by GSU(Yp). Then the action (3.2.2) extends to a
homomorphism

ip: GU(XD) X GU(YD) - GSp(ZD)
with the property A(ip(g, h)) = Ap(g)vp(h)~'. Let
Rp :={(g,h) € GU(Xp) X GU(Yp) [Ap(g) = vp(h)} > U(Xp) x U(Yp).

Since Xp is maximally split, we have a Witt decomposition Xp = XIB ® X, with
maximal isotropic subspaces X7,. Then as in Section 3.1.1, we may realize the Weil
representation wy of U(Xp) X U(Yp) on S((X}, ® Yp)(A)). In this realization,
for h € U(Yp) and ¢ € S((X}, ® Yp)(A)), we have

wy (1, h)$(2) = $(ip ()" 2).

Hence, as in Section 3.1.1, we may extend wy, to Rp (A ) by

Wy (g ) (2) = [A(0) |2 X0k g5, (g1 1) (i (1) 2)
for (g, h) € Rp (A), where

-1
g1=¢ (AD(S') (1)) € U(Xp).

Then as in Section 3.1.1, we may extend the Weil representation wy, of U(Xp) x
U(Yp) on S (Z, (AF)), where Zp = Z], ® Z}, is an arbitrary polarization, to
Rp (A), by using the U(Xp) x U(Yp)-isomorphism p : S((X}, ® Yp)(A)) —
S (Z. (AF)). Thus for ¢ € S (Z; (AF)), the theta kernel 03 = 0% on Rp(A) is
defined by

05(,h) =0%(g. ) = > wy(g h)d(z) for(g.h) € Rp(A).
Z+€ZZ)(F)
Let us define

GU(XD,A)+ = {h € GU(XD,A) : ﬂD(h) €Vp (GU(YD,A))} .
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and
GU(Xp,F)" =GU(Xp,A)" NnGU(Xp, F).

We note that vp (GU(Yp, F))) contains Np(D(F,)*) for any place v. Thus, if v
is non-archimedean or complex, we have GU(Xp, F,)" = GU(Xp, F,), and if v is
real, |GU(Xp, F,)/GU(Xp, F,)*| < 2.

For a cusp form f on GU(Xp, A)*, as in 3.1.1, we define the theta lift of f to
GU(Yp,A) by

o(.0) = [ 0% (g18.1) f(g18) de)
U(Xp,F)\U(Xp.A)

where g € GU(Xp, A)* is chosen so that 1 (g) = vp(h). It defines an automor-

phic form on GU(Yp, A ). When we regard ©( f, ¢) (k) as an automorphic form on

GSU(Yp, A) by the restriction, we denote it as 8( f, ¢)(h). For an irreducible cus-

pidal automorphic representation (714, V,) of GU(Xp, A )*, we denote by O, (7,)

(resp. 0y (m4)) the theta lift of 7, to GU(Yp, A) (resp. GSU(Yp, A)), namely

Ou(m) :={O(f,8) : f € Vr,. b€ S(ZH(A))},
0y (m) :={0(f,9): f € Vr,. ¢ € S(ZH(A))},

respectively. Moreover, for an irreducible cuspidal automorphic representation
(m,Vz) of GU(Xp,A), we define the theta lift ®,(7) (resp. 6, (7)) of 7 to
GU(Yp,A) (resp. GSU(Yp,A)) by Oy (7) := Oy (7|gu(xp.a)+) (Tesp. Oy (m) =
Oy (mlou(xp.a)+))-

As for the opposite direction, as in 3.1.1, for a cusp form f’ on GSU(Yp, A ), we
define the theta lift of f’ to GU(Xp, A)* by

oo = [ 6% (. huh) f (hi ) dn,
SU(Yp,F)\SU(Yp,A)

where h € GSU(Yp,A) is chosen so that Ap(g) = vp(h). For an irreducible

cuspidal automorphic representation (o, V) of GSU(Yp, A ), we denote by 6, (o)

the theta lift of o to GU(Xp, A )*. Moreover, we extend 8( f”, ¢) to an automorphic

form on GU(Xp, A) by the natural embedding

GU(Xp, F)"\GU(Xp,A)" — GU(Xp, F)\GU(Xp,A)

and extension by zero. Then we define the theta lift ® (o) of o to GU(Xp, A)
as the GU(Xp, A ) representation generated by such 6 (f’, ¢) for f' € V, and
¢ €S(Zi (A)).

Remark 3.2. Suppose that (r,,Vy,) (resp. (07, V)) is an irreducible cuspidal au-
tomorphic representation of GU(Xp, A)* (resp. GSU(Yp, A)). Suppose moreover
that the theta lift © y () (resp. 6y (o)) is non-zero and cuspidal. Then by Gan [31,
Proposition 2.12], ® (7;) (resp. 6,(0)) is an irreducible cuspidal automorphic
representation because of the Howe duality for quaternionic dual pairs proved by
Gan and Sun [33] and Gan and Takeda [37). We shall study the case dimp Xp =2
and dimp Yp = 3. In this case, by the conservation relation proved by Sun and
Zhu [105], the irreducibility of ©, (n.) implies that of 6 (7).
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3.2.2. Pull-back of the global Bessel periods for the dual pair (GD, GSUg,D). The
set-up is as follows.

Let Xp be the space of 2 dimensional row vectors over D equipped with the
hermitian form

/ (0 1}, ,
(x’x)XD:x(l 0) Y.
Let us take the standard basis of Xp and name the basis vectors as
x:=(1,0), x-=1(0,1).

Then Gp defined by (1.4.2) is the matrix representation of the similitude unitary
group GU (Xp) for Xp with respect to the standard basis.
Let Yp be the space of 3 dimensional column vectors over D equipped with the
skew-hermitian form
0 0 n
3y, ="y |0 n 0]y
n 00

Let us take the standard basis of Y and name the basis vectors as
y-="(1,0,0), e='(0,1,0), y_='(0,0,1).

Then GSU3 p defined in 2.1.3 is the matrix representation of the group GSU (Yp)
for Yp with respect to the standard basis.

We take a polarization Zp = Zp +®Zp,.- of Zp = Xp ®p Yp defined as follows.
Let

XD,i =Xt D
where the double sign corresponds. We decompose Yp asYp =Yp . @ Yp o @YD -
where
Yp+=D-y., Ypo=D-yo, Yp-=D-y_.
Then let

(3.2.3) Zp.s = (XD ® YD,i) ® (XD,i ® YD,())

where the double sign corresponds. To simplify the notation, we write 7, €
Zp.+(A)as zy = (a,b) when

+=a®y,+b®e whereae Xp(A)andb € Xp 4+ (A)

and ¢ (z4) as ¢ (a,b) for ¢ € S (Zp 1 (A)).
Let us compute the pull-back of the (X, y, ¥)-Bessel periods on GSU3_p defined
by (2.3.3) with respect to the theta lift from G p.

Proposition 3.2. Let (np, Vy,,) be an irreducible cuspidal automorphic represen-
tation of G p (A) whose central character is w, and x a character of A} such that
X lax=w3!. Let X € D*.

Then for f € Vn,, and ¢ € S(Zp +(A)), we have
(3.2.4)

82,00 0= [ By 1.0 (1(2)f) (@(g: 6) (v x) dg

Np (A)\GL (&)
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where
(3.2.5) éx =XnX €D (F), vpx:=(x_,—n 'Xx,) € Zp,

and B¢, -1, denotes the (fx,)(_l, ¢)—Bessel period on Gp defined by (1.4.11).
In particular, the (éx, x L y)-Bessel period does not vanish on Vy,, if and only
if the (X, x,¥)-Bessel period does not vanish on 6, (np).

Proof. The proof of this proposition is similar to the one for Proposition 3.1.
Let Ny.p be a subgroup of N3 p given by

1 0 nx
No.p(F)=qup(x):=|l0 1 0]:xeF
0 0 1

Then we note that Ny p is a normal subgroup of N3 p and yx p is trivial on
No.p(A). Since

Zp-(A)(1,up(x)) =Zp,—(A) and z4+(1,up(x)) = z+ +a ® (-nx)y_ forx € A,
we have

(@(1,up()9) () = ¥ (—% trp ((a, a>n2x)) 8(z).

Thus by an argument similar to the one in the proof of Proposition 3.1, one may
show that

(3.2.6) / 0(f8) (huyw'p () du
N3.p(F)\N3 p(A)

) [V3,D(F)\N3,D(A) -/G‘D(F)\G;) (A) Z Z Z

acXp,- yeVp(a)\GL(F) beXp +
(0(rg142 (v(n)), uh)) (a,b) £ (14 (v(h))) g1 due

Here Xp _ is the set of equivalence classes Xp _/~ where a ~ a’ if and only if
there exists a y € G}) (F) such that a’ = ay, a denotes the equivalence class of
Xp .- containing a € Xp _, and, V (a) = {y € GID (F) | ay = a}. Then we may
rewrite (3.2.6) as

(3.2.7)

0(f: ) (huyb!p (u) du = / /
N3,p(F)\N3,p(A) JGL,(F)\G, (A)

> 2 (008120 ).une) (- b) £ (812, (v() dg du.

Np (F)\G},(F) beXp +

[Vs,o (F)\N3,p(A)
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1 -n7'Ay B
Since, foru =10 1 Ale N3 p(A),wehave Zp _(A)(1,u) =Zp,_(A)
0 0 1
and
(L) =z, +x_ @ (B'y_ —Ae+y,)+b® (n~'Any_ +e)
=z +x_®(B'y_—Ae)+b® (n 'Any.),
we obtain

(@(1,w)g) (22) = ¥ (trp ((b,x-) (e =A0)) ) 6 (2) = (trp (b, x-)A)) 6 (24)

Hence in (3.2.7), only b € Xp _ satisfying (b, x_) = X, ie. b = x,(-Xn~")
contributes. Thus our integral is equal to

)i (@(2142 (1)), u)) (v.3) £ (5102 () digy d
Np (F)\G (4)

- / / (g1 AP (v (). uh)$(v.x)
Np (A\G},(A) /Np (F)\Np(A)
x f(ugiA? (v(h))) dgi du

a

where vp x = (x_,x,(=Xn~")). Further for u = ((1) 1) € Np (A), we have

( (ug, h) §) (vp,x) =Yg ()™ (@ (g, 1) $) (vD x)

where we put £x = XnX. Thus our integral becomes

/ / Ve (1) (102 (v (1), )6 (v>.x)
Np (A)\G) (A) J Np(F)\Np(A)
X f(ugiA? (v(h))) du dg,.

As for the integration over A *Mx p (F) \Mx_p (A) in (2.3.3), by a direct compu-
tation, we see that

w2 (v(1)g1, (v x) = V()| w(hods (v(h)g1, (v x)

np(h) - (K" 0 0 —
h=(D 0 h 0) and hoz(hx 0 )

where

0 0 KX 0 ™

Therefore, as in the previous case, we obtain

82,0 0)= [ Bty (n(g) ) ((g1, ) (vp x)d1.

Np (A)\Gp, (A)

The equivalence of the non-vanishing conditions follows from the pull-back
formula (3.2.4) as Proposition 3.1. O
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3.3. Theta correspondence for similitude unitary groups. In our proof of The-
orem 1.1 and 1.2, we shall use theta correspondence for similitude unitary groups
besides theta correspondences for dual pairs (GSp,, GSO42) and (Gp,GSU3 p).
Let us recall the definition of the theta lifts in this case.

Let (X, (, )x) be an m-dimensional hermitian space over E, and let (Y, (, )y) be
an n-dimensional skew-hermitian space over E. Then we may define the quadratic
space

Wxy, (5 )xy) = (ReSE/FX ®Y,Trg/Fr ((, )X ®W)) .

This is a 2mn-dimensional symplectic space over F. Then we denote its isometry
group by Sp (Wx,y). For each place v of F, we denote the metaplectic extension of
Sp (Wx,y) (F,) by Mp (Wx y) (F,). Also, Mp (Wx y) (A) denotes the metaplectic
extension of Sp (Wx y) (A).

Let yx and yy be characters of A /E* such that yx|ax = x} and xy|ax = xj.
For each place v of F, let

b, P UX)(Fy) x U(Y)(F,) = Mp(Wx y)(Fy)

be the local splitting given by Kudla [67] depending on the choice of a pair of
characters y, = (yx.v, Xv,v)- Using this local splitting, we get a splitting

b UX)(A) xUIY)(A) — Mp(Wx,y)(A),

depending on ¥ = (xx, xy). Then by the pull-back, we obtain the Weil repre-
sentation wy, , of U(X)(A) x U(Y)(A). When we fix a polarization Wxy =
W;E’Y ® Wy y, we may realize wy,, so that its space of smooth vectors is given by
S(W;(’Y(A)), the space of Schwartz-Bruhat functions on W;E’Y(A). We define

R :={(g, h) € GU(X) x GU(Y) : A(g) = A(h)} > U(X) x U(Y).

Suppose that dimY is even and Y is maximally split, in the sense that Y has a
maximal isotropic subspace of dimension % dimY. In this case, as in Section 3.1.1
and 3.2.1, we may extend wy, , to R(A). On the other hand, in this case, we have
an explicit local splitting of R(F,) — Sp(Wx.y)(F,) by Zhang [121] and we may
extend wy, , to R(A) using this splitting. These two extensions of wy , to R (A)
coincide.

Then for ¢ € S (W;E’Y (A)), we define the theta function 03){ on R(A) by

(3.3.1) 05 (&)= > wy, (g
wEW;E’Y(F)
Let us define
GU(X)(A)": ={g € GU(X)(A) : A(g) € A(GU(Y)(A))},
GU(X)(F)* : = GU(X)(A)* N GU(X)(F).

We define GU(Y)(A)* and GU(Y)(F)" in a similar manner. Let (o, V, ) be an
irreducible cuspidal automorphic representation of GU(X)(A )*. Then for ¢ € V,,
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and ¢ € S(W;’Y(A)), we define the theta lift of ¢ by

6% (p)(h) = / o(212)6° (318.h) dg)
vox UX) (F)\U(X) (A) VX

where g1 € GU(X)(A)* is chosen so that A(g) = A(h). Further, we define the
theta lift of o by

@) (o) = (05 (9o €0, ¢ € S(WEy(A))).

When the space we consider is clear, we simply write @i:ﬁ(o-) =0y (o). Sim-
ilarly, for an irreducible cuspidal automorphic representation 7 of U(Y)(A ), we
define @if () and we simply write it by © , (7).

4. Proor oF THE GROSS-PrRASAD cONJECTURE FOR (SO (5),SO (2))

In this section we prove Theorem 1.1, i.e. the Gross-Prasad conjecture for
(SO (5),S0 (2)), based on the pull-back formulas obtained in the previous section.

4.1. Proof of the statement (1) in Theorem 1.1. Let (, V) be as in Theorem 1.1
(1). By the uniqueness of the Bessel model due to Gan, Gross and Prasad [32,
Corollary 15.3] at finite places and to Jiang, Sun and Zhu [62, Theorem A] at
archimedean places, there exists uniquely an irreducible constituent 78 of 7 |, (A)*+
that has the (&, A, ¥)-Bessel period.

When D is split and 75 is a theta lift from an irreducible cuspidal automorphic
representation of GSO3 ; (A ), our assertion has been proved by Corbett [20]. Hence
in the remainder of this subsection, we assume that:

(4.1.1) when D is split, 7 is not a theta lift from GSO3 ;
of an irreducible cuspidal automorphic representation.

Let us proceed under the assumption (4.1.1). By Proposition 3.1 and 3.2, the
theta lift 6, (78) of 78 to GSU3 p (A ) has the (X, A™!, )-Bessel period and, in
particular, 6, (78) # 0 where we take X¢ € D™ (F) so that &x, = ¢. For example,
when we take & = 17, we may take X¢ = 1.

Lemma 4.1. Gw(ﬂf) is an irreducible cuspidal automorphic representation of
GSUsz p(A).

Proof. First we note that the irreducibility follows from the cuspidality by Re-
mark 3.1 and 3.2.

Let us show the cuspidality. Suppose on the contrary that 6, (7B) is not cuspidal.

When D is not split, the Rallis tower property implies that the the theta lift
0p.y(n8) of 78 to GSU; p(A) is non-zero and cuspidal. Let w be a finite place of
F such that D(F,,) is split and ﬂfi 18 @ generic representation of G (F,,)*. Since
7rf’ w 1s generic, the theta lift of nﬁ w t0 GSO;(F,,) vanishes by the same argument
as the one for [42, Proposition 2.4]. We note that GSU; p (F,,) =~ GSO;,(F),) and
hence the theta lift of 78 to GSU;_p (A ) must vanish. This is a contradiction.

Suppose that D is split. Then the theta lift of 78 to GSO3 | is non-zero by the
Rallis tower property. Moreover, it is not cuspidal by our assumption on 7. Thus
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the theta lift of 78 to GSO,,g is non-zero, again by the Rallis tower property. Then
we reach a contradiction by the same argument as in the non-split case. O

We may regard 6, (7B) as an irreducible cuspidal automorphic representation of
PGU, > or PGUj3 ; according to whether D is split or not, under the isomorphism
@ in (2.2.6) or ®p in (2.2.5). Recall our assumption that 6, (nﬁw) is generic at a
finite place w. Then the non-vanishing of (X, A~!,y)-Bessel period on 8, (75)
implies the non-vanishing of the central value of the standard L-function for 8, (%)
of PGUy twisted by A~!, namely

1
LS (E,ew(nf) xA—l) £0

for any finite set S of places of F containing all archimedean places because of
the unitary group case of the Gan-Gross-Prasad conjecture for 8, (n%) proved by
Proposition A.2 and Remark A.1 in [29]. Moreover, from the explicit computation
of local theta correspondence in [36] and [83], we see that

L(s,my, x AL (A),) = L (S,Gw(ﬂ'f)v X A;l)

at a finite place v where all data are unramified. Thus when we take Sy, a finite set
of places of F containing all archimedean places, so that all data are unramified at
v & S, we have

LS (% nxX AT (A)) =L5 (% 0, (n5) x A) #0
for any finite set S of places of F with S D Sy.

Let us show an existence of 7°. We denote Gw(ﬂf) by o. Then the theta lift
T = Oy (r-1,4-1)(0) of o to GUz, which we may regard as an automorphic
representation of GSO4 5 by the accidental isomorphism (2.2.6), is an irreducible
cuspidal globally generic automorphic representation with trivial central character
by the proof of [29, Proposition A.2] since 6, (n) has the (Xg, A1, y)-Bessel
period.

Here we recall that, by the conservation relation due to Sun and Zhu [105,
Theorem 1.10, Theorem 7.6], for any irreducible admissible representations 7 of
GOy (k) (resp. GOs33(k)) over a local field k of characteristic zero, theta lifts of
either 7 or 7 ® det to GSp; (k)™ (resp. GSps(k)) is non-zero. Thus we may extend
> to an automorphic representation of GO42(A ) as in Harris—Soudry—Taylor [47,
Proposition 2] so that its local theta lift to GSp;(F,)* is non-zero at every place v.

On the other hand, since X is nearly equivalent to o, we have

(4.1.2) L5(s,2,std) = L5 (s, 7, std ® y£){2(s)

for a sufficiently large finite set S of places of F' containing all archimedean places
by the explicit computation of local theta correspondences in [36] and [83]. Here

LS(l,n, std® yg) #0

by Yamana [120, proof of Theorem 10.2, Theorem 10.3], since the theta lift 6, (ﬂf )
of nf to GSU3_p (A) is non-zero and cuspidal. Hence the left hand side of (4.1.2)
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has a pole at s = 1. In particular, it is non-zero and the theta lift of  to GSp;(A )"
is non-zero by Takeda [106, Theorem 1.1 (1)]. Further, again by Takeda [106,
Theorem 1.1 (1)], this theta lift actually descends to GSp, (A )* = G(A)*. Namely,
the theta lift 7}, := 6,,-1(X) of £ to G(A )" is non-zero since L5 (s, 2, std) actually
hasapoleats =1.

Suppose that 7, is not cuspidal. Then by the Rallis tower property, the theta lift
of ¥ to GL, (A)" is non-zero and cuspidal. Meanwhile the local theta lift of 2, to
GL, (F,)* vanishes by a computation similar to the one for [42, Proposition 3.3]
since X, is generic. This is a contradiction and hence 7/, is cuspidal.

Since X is generic, so is 7}, by [83, Proposition 3.3]. Let us take an extension 7°
of 7} to G (A). Since |G(F,)/G(F,)*| =2, we have n}, ~ 7, or 7}, ~ 1, ® g, at
almost all places v such that r, |, ~ 7rf’ »- Hence 7 is locally G*-nearly equivalent
to m°. O

4.2. Some consequences of the proof of Theorem 1.1 (1). As preliminaries for
our further considerations, we would like to discuss some consequence of the proof
of Theorem 1.1 (1) and related results.

First we note the following result concerning the functorial transfer.

Proposition4.1. Let (7, V) be an irreducible cuspidal automorphic representation
of Gp(A) with a trivial central character. Assume that there exists a finite place
w at which n,, is generic and tempered.

Then there exists a globally generic irreducible cuspidal automorphic repre-
sentation ©° of G (A) and an étale quadratic extension E° of F such that n° is
G*E -nearly equivalent to r. In particular we have a weak functorial lift of r to
GL4(A o) with respect to BC o spin.

Moreover, 1 is tempered if and only if n° is tempered.

Remark 4.1. When D is split, our assumption implies that w has a generic Arthur
parameter. Though our assertion thus follows from the global descent method by
Ginzburg, Rallis and Soudry [43] and Arthur [3], we shall present another proof
which does not refer to these papers.

Proof. Suppose that D is split. When r participates in the theta correspondence
with GSOs3 1, our assertion follows from [96]. Thus we now assume that the theta
lift of 7 to GSOs3 ; is zero. By [74], m has (S,, Ao, ¥)-Bessel period for some S,
and A,. When GSO(S,) is not split, the existence of a globally generic irreducible
cuspidal automorphic representation follows from Theorem 1.1 (1). Suppose that
GSO(S,) is split. Then by Proposition 3.1, the theta lift of 7 to GSOj3 3 is non-zero.
Since m,, is generic, the local theta lift of m,, to GSOj ; is zero as in the proof of
Theorem 1.1 (1) and hence the theta lift of 7 to GSO ; is zero. Hence by the Rallis
tower property, either the theta lift of 7 to GSO; » or the one to GSOj3 3 is non-zero
and cuspidal. Then 7 itself is globally generic by Proposition A.1 in the former
case. In the latter case, the global genericity of r readily follows from the proof of
Soudry [103, Proposition 1.1] (see also Theorem in p.264 of [103]).
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In any case when D is split, we have a globally generic irreducible cuspidal
automorphic representation 7° of G (A) which is nearly equivalent to 7. Thus
when we take the strong lift of 7° to GL4 (A) by [19], it is a weak lift of 7 to
GL4 (A).

Suppose that D is not split. Then by Li [74], there exist an 5, € D~ (F) where
E, := F () is a quadratic extension of F, and a character Ao of A /EXA™ such
that 7 has the (1., A)-Bessel period. Then there exists a desired automorphic
representation 7° of G (A) by Theorem 1.1 (1).

Let us discuss the temperedness. Let o, X and n, denote the same as in the
proof of Theorem 1.1 (1). Suppose that 7 is tempered. Then the temperedness of o
follows from a similar argument as in Atobe-Gan [5, Proposition 5.5] (see also [40,
Proposition C.1]) at finite places, from Paul [85, Theorem 15, Theorem 30], [87,
Theorem 15, Theorem 18, Corollary 24] and Li-Paul-Tan-Zhu [75, Theorem 4.20,
Theorem 5.1] at real places and from Adams-Barbasch [1, Theorem 2.7] at com-
plex places. Then the temperedness of o implies that of £ by Atobe-Gan [5,
Proposition 5.5] at finite places, by Paul [86, Theorem 3.4] at non-split real places,
by Mceeglin [80, Proposition II1.9] at split real places and by Adams-Barbasch [1,
Theorem 2.6] at complex places. As we obtained the temperedness of o from that
of m, the temperedness of X implies that of 7} and hence n° is tempered. The
opposite direction, i.e., the temperedness of 7° implies that of 7, follows by the
same argument. O

Lemma 4.2. Let nt be as in Theorem 1.1 (1). Suppose that o = 6, (nf') is an
irreducible cuspidal autormophic representation of GSU3 p (A ). Here n® denotes
the unique irreducible constituent of n|G,, (a )+ such that 7B has the (E, A)-Bessel
period. We regard o as an automorphic representation of GUyg ¢ (A ) via (2.2.5)
or (2.2.6) and let 11 denote the base change lift of o’|u, ,(a) to GL4 (AE). Let
7° be a globally generic irreducible cuspidal automorphic representation of G (A.)
whose existence is proved in Theorem 1.1 (1). We denote the functorial lift of n° to
GL4 (A) by I zo.
Suppose that

4.2.1) e =I@8---8I
where I1; are irreducible cuspidal automorphic representations of GL,, (A ) and
4.2.2) M, =I1&\---&8ll

where H} are irreducible cuspidal automorphic representations of GLy,; (AE).

Then we have I1, = BC (Ilze), I1o # Iz ® yg and BC (I1;) is cuspidal for
each i. In particular, we have € = k. Here BC denotes the base change from F to
E.

Proof. By the explicit computation of local theta correspondences in [36] and
[83], we see that (I1,), =~ BC(Il,-), at almost all finite places v of E. Thus,
I1, = BC(I1;-) by the strong multiplicity one theorem. Also, by [19], we know
that £ = 1 or 2.
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Suppose that £ = 1. We note that the cuspidality of BC(I1,-) is equivalent to
Iz ® yr # [zo. Suppose otherwise, i.e. [1e =~ 1o ® yg. Then 1,0 = AL (1)
for some irreducible cuspidal automorphic representation 7 of GL,(AEg). Since
I is a lift from PGSp,, the central character of v needs to be trivial and hence
7 =~ V. On the other hand, we have

I, =BC(AI(r)=71B77.

Since this is a base change lift of o[y, ,(a), we have 7 = (7)Y and T # 77 by [2]
(see also [91, Proposition 3.1]). In particular, 7 # 7" and we have a contradiction.
Thus BC (T1,-) is cuspidal and k = 1.

Suppose that £ = 2. First we show that I1,c # Il ® yg. Suppose otherwise,
i.e. [z Il ® yg. Theneither IT; ~ I1; ® yg fori = 1,2, or, [I ~I1; ® yg. In
the former case, we have I1; = AT (y;) with a character y; of A $/E* fori = 1,2.
Then we have 1o = AL (1) B AL (x2) and [, = x| B x| B x2 8 x5 . Since
I, is a lift from PGSp,, the central character of AJ (y;) is trivial and hence
Xi |lax= xe. On the other hand, since Il is a base change lift of 0'|U4,8(A)’
we see that y; |ax is trivial. This is a contradiction. In the latter case, we
have BC (Il;) = BC (I1} ® yg) = BC (I1}) and hence II, = BC (I1;) ®8 BC (IT,).
This implies that 1, is not in the image of the base change lift from the unitary
group and again we have a contradiction. Thus we have 1> # I, ® yg. Then
I1; # II; ® xyE at least one of i = 1,2. Suppose that this is so only for one of the
two, say i = 2. Then I1; = AT (y) for some character y of A ;/E> and BC (Il,)
is cuspidal. We have I1;- = AL (y) BII; and I1, = y 8 y 8 BC (II). Then
X |ax is trivial from the former equality and y | x= yg from the latter equality as
above. Hence we have a contradiction. Thus BC (I1;) for i = 1, 2 are both cuspidal,
I, =BC (I1;) 8 BC (I1) and k = 2. O

The following lemma gives the uniqueness of the constant £(7r) defined before
Theorem 1.2.

Lemma 4.3. Let  be as in Theorem 1.1 (1). Fori = 1,2, let E; be a quadratic
extension of F and i} an irreducible cuspidal automorphic representation of G (A)
which is G*Ei-locally near equivalent to nr. Let o be the functorial lift of m; to
GL4 (A) and consider the decomposition

Hnl? = H,‘71 B--- EEI'I,-,& fOi‘i =1,2
as (4.2.1). Then we have €| = ;.

Proof. Since the case when E| = Ej istrivial, supposethat E| # E,. LetK = E | E».
From the definition of the base change, we have

BCk/E, (BCEl/F(an)) = BCk/E, (BCEl/F(Hn;)) .
Hence

BCg,/p(Ilze) = BCg /p(Ilxg) or BCg  r(lze) = BCE r(Ilze) ® xk/E,
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where yk /g, denotes the character of Ag corresponding to K/E;. In the former
case, we have

an = H,rg or Hﬂf = H,T; ® XYE,
and our claim follows. In the latter case, since xx /g, = XE, © NE,/r, We have
Hzo =Ilgs ® xg, or g =1z ® xE, XE,
and our claim follows. O

Definition 4.1. Let © be as in Theorem 1.1 (1). Then we say that n is of Type I if
mand 1 ® yg are nearly equivalent. Moreover, we say that n is of type I-A if n
participates in the theta correspondence with GSO(S) = GSO3,; and that r is of
type I-B if mt participates in the theta correspondence with GSO(X.,) for some four
dimensional anisotropic orthogonal space X, over F with discriminant algebra E.

Remark 4.2. From the proof of Theorem 1.1 (1), if m is not of type I-A, then the
theta lift of m to GSUs p is cuspidal. Further, we note that D is necessarily split
when 7 is of type I-A or I-B, by definition.

In order to study an explicit formula using theta lifts from G p (A ), the following
lemma will be important later.

Lemma 4.4. Let 7 be as in Theorem 1.1 (1). Then t is either type I-A or I-B if and
only if mt is nearly equivalent to m @ yg. In particular, when n is neither of type I-A
nor I-B, rt|g,, is irreducible where

(4.2.3) Gp =Zg, (A)Gp (A) Gp (F).

Proof. Suppose that 7 is nearly equivalent to 7 ® yr. Then at almost all places
v of F, Indgz g:;+ (7r+,v) is irreducible where 7, ,, is an irreducible constituent
of 7y |G, (r,)*- This implies that 7 and 7° are nearly equivalent and hence 7° is
nearly equivalent to 7° ® yg. Thus Il .- is nearly equivalent to I1 ;o ® y g and hence
1o = 1o ® yg by the strong multiplicity one theorem. When 7 is neither of type
I-A nor I-B, this does not happen by Lemma 4.1 and Lemma 4.2.

Suppose that 7 is either of type I-A or I-B. Then D is split and the functorial
lift TT,; of m to GL4 (A) is of the form AT (7) for an irreducible automorphic
representation 7 of GL; (A g) by Roberts [96]. Then we have I, = I1; ® k.
Hence 7 is nearly equivalent to 7 ® yg.

When 7 is not nearly equivalent to 7 ® g, 7 |g,, is irreducible since Gp is of
index 21in Gp (A). O

Remark 4.3. This lemma give a classification of m such that the twist 1 ® yg of m
by xe has the same Arthur parameter as n. A classification of m such that © and
T ® g are isomorphic when Gp =~ G is given in Chan [16].

4.3. Proof of the statement (2) in Theorem 1.1. Suppose that 7 has a generic
Arthur parameter.

When there exists a pair (D’, ") as described in Theorem 1.1 (2), 7 and 7" share
the same generic Arthur parameter since they are nearly equivalent to each other.
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Hence by Theorem 1.1 (1), we have
LS (% X AT (A)) =LS (% ' x AT (A)) £0
when S is a sufficiently large finite set of places of . Then by Remark 1.3, we have
L (%,71’ X AT (A)) # 0,

i.e. (1.5.5) holds.
Conversely suppose that L (%,ﬂ' X AL (A)) # 0. There exists an irreducible

cuspidal globally generic automorphic representation 7° of G(A ) which is nearly
equivalent to & since m has a generic Arthur parameter. Let U be a maximal
unipotent subgroup of GSO4 and ¥ be a non-degenerate character of U(A )
defined below by (6.1.2) and (6.1.3), which are the same as [83, (2.4)] and [83,
(3.1)], respectively. Let Ug be the maximal unipotent subgroup of GSp, defined by
(6.2.1) and yyy; the non-degenerate character of Ug (A ) defined by (6.2.2) in 6.2.
Note that in [83], Ug is denoted by N and ¢y,; is denoted by ¢ in [83, p.34] and
[83, (3.2)], respectively. Then we note that the restriction of 7° to G (A )" contains a
unique Yy -generic irreducible constituent and we denote it by 7. Let us consider
the theta lift X := 0, (77) of 75 to GSO42(A ). Then by [83, Proposition 3.3], we
know that X is yy-globally generic and hence non-zero. We divide into two cases
according to the cuspidality of .

Suppose that X is not cuspidal. Then by Rallis tower property, 7 participates in
the theta correspondence with GSO3, 1. As in the proof of Lemma 4.1, the theta lift
of 7r{ to GSO;, is zero since r§ is generic. Hence the theta lift 7 := 05’5 '(n$) of n$
to GSO3 ; is cuspidal and non-zero. By Remark 3.1, 7 is also irreducible.

Recall that

GSO3’1(F) ~ GLQ(E) X FX/{(Z, NE/F(Z)) 1 Z € Ex}, PGSO&](F) =~ PGLQ(E).

Then we may regard 7 as an irreducible cuspidal automorphic representation of
GL, (A ) with a trivial central character since the central character of ] is trivial.

Let IT denote the strong functorial lift of 7° to GL4(A ) by [19]. Then at almost
all finite places v of F, we have I1,, ~ AT (71),, and thus by the strong multiplicity
one theorem, IT = AJ (7) holds. Since x is nearly equivalent to 7°, Remark 1.3
and our assumption imply that for a sufficiently large finite set S of places of F, we
have

1 1 1
LS (E,T X A) LS (E,T X A—l) =L (E,n" X AT (A))

1
=L (E,n x AT (A)) #0.

Then by Waldspurger [112], T has the split torus model with respect to the character
(A, A~1). Hence, the equation in Corbett [20, p.78] implies that 7° has the (E, A)-
Bessel period. Hence we may take D’ = Matyy, and 7’ = 7°. Thus the case when
Y is not cuspidal is settled.
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Suppose that X is cuspidal. We may regard X as an irreducible cuspidal glob-
ally generic automorphic representation of GU(2,2) with trivial central character
because of the accidental isomorphism (2.2.6). As in the proof of Theorem 1.1 (1),

our assumption implies that L (%, 2 X A) # 0. Then by [29, Proposition A.2], there

exists an irreducible cuspidal automorphic representation ¥’ of GU(V) such that
>’ is locally U(V)-nearly equivalent to ¥ and X’ has the (e, A, y)-Bessel period
where V is a 4-dimensional hermitian space over E whose Witt index is at least 1.
Then we note that PGU(V) =~ PGSOy ; or PGU3 p for some quaternion division
algebra D’ over F.

In the first case, we consider the theta lift 7}, := 6,,-1(X’) of £’ to G(A)™. Then
by the same argument as the one in the proof of Theorem 1.1 (1), we see that
nf, # 0 by Takeda [106, Theorem 1.1 (1)] and that it is an irreducible cuspidal
automorphic representation of G (A)*. Since X’ has the (e, A, ¥)-Bessel period,
7, has the (E, A)-Bessel period by Proposition 3.1. From the definition, /. is nearly
equivalent to nr5. Let us take an irreducible cuspidal automorphic representation
(', Vz) of G(A) suchthat 1’ |4 y+D 7). Thenn’ islocally G*-nearly equivalent,
and thus either 7’ or 7’ ® yg is nearly equivalent to 7 by Remark 1.2. Since both
" and 7’ ® yg have the (E, A)-Bessel period, our claim follows.

In the second case, we consider the theta lift of X’ to Gp-(A). Then by an
argument similar to the one in the first case, we may show that the theta lift of X’
to Gp/ (A) contains an irreducible constituent which is cuspidal, locally G*-nearly
equivalent to 7 and has the (E, A)-Bessel period. Here we use [120, Lemma 10.2]
and its proof in the case of (I}) with n = 3,m = 2, noting Remark 4.5. This
completes our proof of the existence of a pair (D', n’).

Let us show the uniqueness of a pair (D’,n’) under the assumption that 7 is
tempered. Suppose that for i = 1, 2 there exists a pair(D;, ;) where D; is a quater-
nion algebra over F and 7; is an irreducible cuspidal automorphic representation of
Gp, (A) which is nearly equivalent to 7 such that zr; has the (E, A)-Bessel period.

Suppose that r; is nearly equivalent to n1; ® yg for i = 1,2. Then by Proposi-
tion 4.4, iy, m, are of type I-A or I-B and in particular D| =~ D, =~ Mat,x,. Hence
for i = 1,2, there exist a four dimensional orthogonal space X; over F' with dis-
criminant algebra £ and an irreducible cuspidal automorphic representation o; of
GSO(X;, A) such that m; = 8, (o). Since PGSO(X;, F) = (D})*(E)/E* for some
quaternion algebra D} over F', we may regard o; as an automorphic representation
of (D)*(Ag) with the trivial central character. Since x; has the (E, A)-Bessel
period, o has the split torus period with respect to a character (A, A‘l) by [20,
p.78]. Hence D}(E) = Matyx2(E) by [112]. Since o7 is nearly equivalent to o,
we have 0| = 03 by the strong multiplicity one. Thus 7 =~ 5.

Suppose that 71; is neither type I-A nor I-B for i = 1,2. For each i, let us take
a unique irreducible constituent nf . of ﬂilGDi (a)+ that has the (&;, A, y)-Bessel
period. Note that ﬂﬁ . and ﬂg , are nearly equivalent to each other.

Now let o; denote the theta lift 01/,(715 ,) of ﬂf . to GSU3 p,. Then we regard
o; as an automorphic representation of GUy . via (2.2.5), (2.2.6) and let X; :=
0O, (A-1,a-1) denote the theta lift of o; to GUz,. In turn, we regard Z; as an
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automorphic representation of GSOy > via (2.2.6) and we denote by n;’ , its theta lift
to G (A)*. Then from the proof of Theorem 1.1 (1), o, Z; and n; , are irreducible
and cuspidal. Moreover ni " and ﬂé’ L are both globally generic and hearly equivalent
to each other. Furthermore, since 7; is tempered, o; = 6, (ﬂf ) is tempered at finite
places by an argument similar to the one in Atobe-Gan [5, Proposition 5.5] (see
also [40, Proposition C.1]) and similarly at real and complex places by Paul [85,
Theorem 15, Theorem 30] and Li-Paul-Tan-Zhu [75, Theorem 4.20, Theorem 5.1],
and, by Adams-Barbasch [1, Theorem 2.7], respectively. Similarly %; and 7} , are
also tempered.

By Proposition 3.1 and Proposition 3.2, we know that o; has the (Xg, A, ¢)-
Bessel period. Let GU; denote the similitude unitary group which modulo center is
isomorphic to PGSU3 p, by (2.2.5). Then o; |y, has aunique irreducible constituent
vi which has the (X, A, y)-Bessel period. Then by Beuzart-Plessis [6, 7] (also
by Xue [118] at the real place), we see that U; ~ U, since v and v, are equivalent
to each other. This implies that D; ~ D; and hence Gp, =~ Gp,. Let us denote
D’ ~D;fori=1,2.

We take an irreducible cuspidal automorphic representation 7, of G(A ) such
that 7}|G (a )+ contains m; ,. Then by Remark 1.2, we may suppose that | is nearly
equivalent to 7, or ), ® yg. Thus replacing 7} by 7, ® y if necessary, we may
assume that 7} and x/, are nearly equivalent to each other. Then since 7} and x/, are
generic and they have the same L-parameter because of the temperedness of 77, we
have nr} = 7} by the uniqueness of the generic member in the L-packet by Atobe [4]
or Varma [109] at finite places and by Vogan [110] at archimedean places. Hence
in particular, 7} | =7} .

From the definition of njr’l., we get nf} L= nf .- Then, we see that 1} ~ m, ® w
for some character w of G p/(A) such that Wy is trivial or XE.v at each place v of
F. Since m and m, have the same L-parameter, m ,, and 7; ,, ® w, are in the same
L-packet for every place v of F.

Let us take a place v of F, and write the L-parameter of rq , as ¢, : WDf, —
G'(C). If ¢, is an irreducible four dimensional representation, the L-packet of
¢, 1is singleton, and thus m; , = 72 ,. So let us suppose that ¢, = ¢ ® ¢, with
two dimensional irreducible representations ¢;. Further, we may suppose that
wy, = XE,v since there is nothing to prove when w,, is trivial. This implies that
v ® XE.v = ¢,. Then, by [91, Proposition 3.1], we have ¢; = m(y;) for some
character y; of E} for i = 1,2. Moreover, any member of the L-packet of 7; is
given by the theta lift from an irreducible representation JL(7(y1)) ® 7(y2) of
D’(F,)* x GL,(F,) where JL denotes the Jacquet-Langlands transfer. Since the
theta lift preserves the character twist, we see that

O(JL(m(xi)) ®w(x;)) ® xev = 0(JL(7(x:)) R w(x;))

by m(xi) ® xe,v = m(x;). This shows that in this case, any element in the L-
packet is invariant under the twist by yg . Thus 71, ® yg,, = 7, and hence
T,y = 2,v. o
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Remark 4.4. As we remarked in the end of Section 1.5, the uniqueness of (D', ")
follows from the local Gan-Gross-Prasad conjecture for (SO(5),SO(2)), which is
proved by Luo [77] at archimedean places and by Prasad—Takloo-Bighash [92] (see
also Waldspurger [115] in general case) at finite places. Our proof gives another
proof of the uniqueness.

Remark 4.5. There is a typo in the statement of [120, Lemma 10.2]. The first
condition stated there should be the holomorphy at s = —s,,, + %

5. RALLIS INNER PRODUCT FORMULA FOR SIMILITUDE GROUPS

In this section, as a preliminary for the proof of Theorem 1.2, we recall Rallis
inner product formulas for similitude dual pairs.

5.1. For the theta lift from G to GSO4 . In this section, we shall recall the Rallis
inner product formula for the theta lift from G to GSO4 . It is derived from the
isometry case in a manner similar to the one in Gan-Ichino [39, Section 6], where
the case of the theta lift from GL, to GSO3  is treated.

Let (, V) be an irreducible cuspidal automorphic representation of G (A ) with
a trivial central character. Let us define a subgroup G of G (A) by

(5.1.1) G =Zc(A)G(A)'G(F)
and in this section we assume that:
(5.1.2) the restriction of m to G is irreducible, i.e. 1 ® Yg # 7

for our later use.

Let us recall the notation in 3.1.2. Thus X denotes the four dimensional symplec-
tic space on which G acts on the right and Y denotes the six dimensional orthogonal
space on which GSOy  acts on the left. Then Z = X ® Y is a symplectic space over
F. Here we take X; ® Y as the polarization and we realize the Weil representation
wy of Mp (Z) (A)onV, =S((X,: ®Y)(A)).

Put X" = X&(—X). Then X" is naturally a symplectic space. Let G = GSp (X7)
and we denote by G a subgroup of G X G given by

G :={(g1.82) €GXG :A(g1) =A(g2)},

which has a natural embedding ¢ : G — G. We define the canonical pairing
By VoV, — Cby

Bu(e1,¢92) = / @1(x) @2(x) dx  for ¢1, 2 €V,
(X:®Y)(A)
where dx denotes the Tamagawa measure on (X, ® Y)(A).
Let Z = X" ® Y and we take a polarization Z = Z, & Z_ with

Z,=(X.®(-X) ®Y

where the double sign corresponds. Let us denote by w,, the Weil representation
of Mp(Z(A)) on S(Z*(A)). On the other hand, let

XV :={(x,~x):xeX} and X' =X'Q®Y.
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Then we have a natural isomorphism
Vo ® Ve = S(XT(A))

by which we regard S(XV(A)) as a representation of Mp(Z)(A) x Mp(Z)(A).
Meanwhile we may realize wy on S(X V(A)) and indeed we have an isomorphism

6 :S(Ze(A)) - S(XV(A))
as representations of Mp(Z) (A) such that
6(p1 ® 92)(0) = Bu(p1,92) for @i, ¢z €V,

Let us define Petersson inner products on G(A) and G(A )" as follows. For
fi, fo € Vr, we define the Petersson inner product (, ), on G(A) by

(oo ) = / £i(2) Fale) dg
AXG(F)\G(A)

where dg denotes the Tamagawa measure. Then regarding fi, f> as automorphic
forms on G(A)*, we define

o )l = / £ () o) dh
AXG(F)*"\G(A)*

where the measure dh is normalized so that
vol(AXG(F)"\G(A)*) = 1.

Then from our assumption (5.1.2) on «, as in [39, Lemma 6.3], we see that

(fi, ) r = % (f1, 2) »

since Vol(A*G(F)\G(A)) = 2. For each place v of F, we take a hermitian
G (Fy)-invariant local pairing (, ), of m, so that

513 (fif)e=] | Vv fon),, for fi=®, fin € Ve (i=1.2).

We also choose a local Haar measure dg,, on G (F,) for each place v of F so that
Vol(Kg,v,dg,) = 1 at almost all v, where K, is a maximal compact subgroup of
G (F,). We define positive constants Cg by

dg=Co | | dg.

Local doubling zeta integrals are defined as follows. Let I(s) denote the degen-
erate principal series representation of G (A ) defined by

1. G(A) /9
I(s) = Indﬁ(A) ()(E 613 )

where P denotes the Siegel parabolic subgroup of G. Then for each place v, we
define a local zeta integral by

Zv(s, D,, fl,v’ f2,v) = ./GI(F )CDV(L(gV, 1), S) (ﬂ'v(gv)fl,v, f2,v)7rv dgv
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for @, € 1(s), fi.v, fo.y € Vr,, where G' = {g € G : 1(g) = 1}. The integral
converges absolutely at s = % when ®@,, € I,(s) is a holomorphic section by [88,
Proposition 6.4] (see also [39, Lemma 6.5]). Moreover, when we define a map

S(XV(4)) 3 ¢ (¢l e 1(}) by

61 (s5) = @ (G( g1, 0] O

we may naturally extend [¢] to a holomorphic section in 7 (s).

By an argument similar to the one in the proof of [39, Proposition 6.10], we may
derive the following Rallis inner product formula in the similitude groups case from
the one [41, Theorem 8.1] in the isometry groups case.

Proposition 5.1. Keep the above notation.
Then for decomposable vectors [ = ®f, € V, and ¢ = ®¢, € V,,, we have

©(:9).0(f:9) _ 1 _L.7sd8yr)
fs ) 2 LGxe) L2 DL 1)

1
X l_[ Zg (E’ [6(¢v ® ¢v)]ef\1a fv) .

Here we recall that ®,(f;¢) is the theta lift of f to GO4p, (, ) denotes the
Petersson inner product with respect to the Tamagawa measure and we define

_ 1 L(3’XEV/FV)L(2’ lv)L(49 lv)
(fV’fV)ﬂ", L(lvﬂVaStd®/\/Ev/Fv)

X ZV (%’ [6(¢V ® ¢V)],fv’ fv) s

1
Z& 5’ [6(¢v ® ¢v)]’fv’ fv) :

which is equal to 1 at almost all places v of F by [88].

Recall that 6( f; ¢) denotes the restriction of @ (f; ¢) to GSO42(A ), namely
the theta lift of f to GSO4 . Then as in [39, Lemma 2.1], we see that

2(0(f:9).0(f:¢)) =<0(f:0).0(f:¢))

where the right hand side denotes the Petersson inner product on GSOy4, with
respect to the Tamagawa measure. Hence, Proposition 5.1 yields

f.)x ¢ LG, ve)L(2,1)L(4,1)

X 1_[ ZB (%, [5(¢v ® ¢v)]’fw fv .

(5.14)

5.2. Theta lift from Gp to GSU;3 p. In this subsection, we shall consider the
Rallis inner product formula for the theta lift from G p to GSU3 p as in the previous
section. We recall that the formula in the case of isometry groups is proved by
Yamana [120, Lemma 10.1] where our case corresponds to (Iz) withm = 3,n = 2.
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Let (m,V,) be an irreducible cuspidal automorphic representation of Gp(A)
with a trivial central character. Recall that Gp denotes the subgroup of Gp (A)
given by (4.2.3). In this section, assume that:

(5.2.1) the restriction of  to Gp is irreducible

for our later use.

Let us recall the notation in 3.2.2. Thus Xp denotes the hermitian space of
degree two over D on which Gp acts on the right and Yp denotes the skew-
hermitian space of degree three over D on which GSU3 p acts on the left. Then
Zp = Xp ®p Yp is a symplectic space over F by (3.2.1). Here we take Xp . ®p Yp
as the polarization and we realize the Weil representation wy, of Mp (Zp) (A) on
V.0 =S ((Xp,+ ®p Yp) (A)).

Put Xp = Xp & Xp. Then X} is naturally a hermitian space over D. Let
Gp = GU (X3) and we denote by Gp a subgroup of Gp x Gp given by

Gp :={(g1,82) € Gp X Gp : A(g1) = Ag2)}
which has a natural embedding ¢ : Gp — Gp. We define the canonical pairing

Bo Voo ®Vyp — Cbhy

Bu(ei, ¢2) = / ¢1(x) p2(x)dx  for 1,92 € Vo p
(Xp,+®Yp)(A)

where dx denotes the Tamagawa measure on (Xp + ® Yp)(A).
Let Zp = XID) ® Yp and we take a polarization Zp = Zp . & Zp - with

Zps= (XD,i ® _XD,i) ®Yp

where the double sign corresponds. Let us denote by wy, the Weil representation
of Mp(Zp)(A) on S(Zp +(A)). On the other hand, let

XZ ={(x,x):x € Xp} and )?lv) = XIV) ®Yp.
Then we have a natural isomorphism
Vw,D ® Vw,D = S(ig (A))

by which we regard S()?[V) (A)) as arepresentation of Mp(Zp)(A) XxMp(Zp)(A).
Meanwhile we may realize w, on S (fg (A)) and indeed we have an isomorphism

§:8(Zp+(A)) > S(X}(A))
as representations of Mp(z p)(A) such that

(1 ® 9,)(0) = By, (@1, 92) for i, 92 € Vy p.

Let us define Petersson inner products on Gp (A ) and Gp(A)* as follows. For
f1. f2 € Vz,,, we define the Petersson inner product (, ),, on Gp(A) by

(f1> £2)np 3:/ fi(g) f(g) dg

A*Gp(F)\Gp(A)
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where dg denotes the Tamagawa measure. Then regarding fi, f> as automorphic
forms on Gp(A)*, we define

i)t = / () Fo0h) dh
AXGp(F)*\Gp (A)*

where the measure dh is normalized so that
vol(A*XGp(F)"\Gp(A)*) = 1.

Then from our assumption (5.2.1) on 7p, as in [39, Lemma 6.3], we see that

(fir )y = % (f1, 12) npy

since Vol(A*Gp(F)\Gp(A)) = 2. For each place v of F, we take a hermitian
G p (Fy)-invariant local pairing (, ), , of 7p , so that

(522 (Ffdmp = | | (fins o)y, TOX fi =@y fin € Vi (i =1,2).

v

As in the previous section, we choose local Haar measures dg, on G p (F,) at each
place v of F and we have

dg:CGD l_ldgv
v

for some positive constant Cg,, .
Local doubling zeta integrals are defined as follows. Let Ip(s) denote the
degenerate principal series representation of G p (A ) defined by

In(s) =1 d?D(‘“( 1/9)
p(s) ndz " uy XE5PD

where Pp, denotes the Siegel parabolic subgroup of Gp. Then for each place v, we
define a local zeta integral for @, € Ip ,, (s), f1,v, f2,v € Vap,, by

ZV(S7 D, fl,v’ f2,v) = /1 (I)v(t(gv, 1),S) (ﬂD,v(gv)fl,Va f2,v),rv dgv

Gp(Fy)
where GID = {g € Gp : A(g) = 1}. The integral converges absolutely at s = %
when @, € Ip ,(s) is a holomorphic section by [88, Proposition 6.4] (see also [39,
Lemma 6.5]). Moreover, when we define a map S()?IV) (A)) 2o [¢] €lp (%)
by

1 N
[¢] (g,z) =(g)™* (w(( ! 1(g)"! 14) g))w) 0),

we may naturally extend [¢] to a holomorphic section in Ip ().

By an argument similar to the one in the proof of [39, Proposition 6.10], we may
derive the following Rallis inner product formula in the similitude groups case from
the one [119, Theorem 2] in the isometry groups case.
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Proposition 5.2. Keep the above notation.
Then for decomposable vectors f = ®f, € Vo, and ¢ = ®¢, € V,, p, we have

Of:9).0(£:9))  L(I,ms51d® x) i (1
(Feos fen)  LGuxe)L(Z DL(4.1) l_l & (2’ [9(¢ ®¢v>]’fv’fv)-

Here recall that 0, ( f; ¢) is the theta lift of f to GSU3 p, ( , ) denotes the Petersson
inner product with respect to the Tamagawa measure and we define

_ 1 L(3’/\/EV/FV)L(2’ IV)L(4> IV)
(fV’fV)ﬂ'ng L(l’ﬂ-VaStd®XEv/F‘,)

<2, 3.0 0 0. £ ).

which is equal to 1 at almost all places v of F by [88].

1
ZE 5, [6(¢v ® ¢v)]’fv, fv) :

6. ExpLICIT FORMULA FOR BESSEL PERIODS ON GU(4)

Let GU (4) stand for one of GU; » or GU3 ;. In [29], the explicit formula for the
Bessel periods on GU (4) is proved under the assumption that the explicit formula
for the Whittaker periods on GU; » holds. In this section we shall show that this
assumption is indeed satisfied in the cases we need, from the explicit formula for
the Whittaker periods on G = GSp,, which in turn will be proved in Appendix A.
Thus the explicit formula for the Bessel periods on GU(4) holds by [29], in the
cases which we need for the proof of Theorem 1.2.

6.1. Explicit formulas. Let (7, V) be an irreducible cuspidal tempered globally
generic automorphic representation of G(A) such that 7|g is irreducible. We
recall that the subgroup G of G (A) is defined by (5.1.1). Let 7° denote the unique
generic irreducible constituent of |G (a)+. Let (¥, Vx) denote the theta lift of 7°
to GSO42(A). Then as in [83, Proposition 3.3], we know that X is an irreducible
globally generic cuspidal tempered automorphic representation. Here we prove the
explicit formula for the Whittaker periods for ¥ assuming the explicit formula for
the Whittaker periods for .

Let us recall some notation. Let X, Y, Y, and Z be as in Section 3.1.2 and we use
a polarization Z = Z, & Z_ with

Z,=(X®Y:) ®(X:®Y0)
where the double sign corresponds. We write z,. = (ay, as; b1, bo) when
2+ =a1®y1+a2®y,+b; ®e +by®ey € Z, witha; € X, b; € X;.

Recall that the unipotent subgroups Ny, N1 and Ny of GSO4, are defined by
(3.1.10), (3.1.11) and (3.1.12), respectively. Let us define an unipotent subgroup U
of GSO4,2 by

1 0\ _ 8
(6.1.1) U:=4i(b) =0 14 X|:X= 0
0 1 b
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where S is given by (2.1.2). Let

(6.1.2) U:=Ny,U.

Then U is a maximal unipotent subgroup of GSO4 > and we have
Ny <NoN; <NgN{N2=Nyr<NypU=U.

Then we define a non-degenerate character i, of U(A ) by

(6.1.3) Yo (uo(x)u1 (51, 1) ua(s2, 12)ii(b)) = ¢ (2dty + b).
By [83, Proposition 3.3], X is ¢y-generic. Namely

W“«@:=/' () wg (w)du for g € Vs,
UF)\U(A)

is not identically zero on Vs. Now we regard X as an automorphic representation
of GUy» by the accidental isomorphism (2.2.6) and let Iy = I1{ & - - - &8 H; denote
the base change lift of X |y,, to GL4(AEg) where II7 is an irreducible cuspidal
automorphic representations of GL,,, (A g). Here the existence of I1x follows from
[65].

Recall that in Section 5.1, the Petersson inner products on G (A ) and GSO42(A)
using the Tamagawa measures, denoted respectively as (, ) and ( , ), are intro-
duced. Moreover at each place v of F, we choose and fix an G (F,)-invariant
hermitian inner product ( , ), on Vs so that the decomposition formula (5.1.3)
holds. Similarly at each place v, we choose and fix a GSOy4 » (F, )-invariant hermit-
ian inner product { , ), on Vs, so that the decomposition formula

(614) <¢1, ¢2> = l_[ <¢1,v’ ¢2,v>v for ¢i =Q®y ¢i,v € VZ (i = 1’2)

holds.
Then as in Section 2.4, at each place v of F, we may define a local period
W, (¢y) for ¢, € V5 by the stable integral

st
(615) (WV(SDV) ::/ <Zv (nv) Py, 90v>v . lﬁ[_Jl (nv) dl’lv
U(F,) (v, o)y

when v is finite. When v is archimedean, we use the Fourier transform to define
W, (¢y). See [76, Proposition 3.5, Proposition 3.15] for the details.

We shall prove the following theorem, namely the explicit formula for the Whit-
taker periods on Vg, in 6.2.

Theorem 6.1. For a non-zero decomposable vector ¢ = ®¢p, € Vs, we have

(6.1.6) LA 22 I At W

4
Wi (@)> 1 HﬂL@Xﬁ .
(¢, @) 20 L(1,1g,A ]—[W( v)

where
L(1,Mg,,As*)

i 2 (joxk,)
Here we note that W (¢,) = 1 at almost all places v by Lapid and Mao [71].

(W\:)(Sov) =

W, (@y).
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Before proceeding to the proof of Theorem 6.1, by assuming it, we prove the
following theorem, namely the explicit formula for the Bessel periods on GU (4).

Theorem 6.2. Let (rr,V,) be an irreducible cuspidal tempered automorphic rep-
resentation of Gp(A) with trivial central character. Suppose that n has the
(&, A, y)-Bessel period and that © is neither of type I-A nor type I-B. Let 8 denote
the unique irreducible constituent of nt|G,,(a )+ which has the (¢, A, y)-Bessel pe-
riod. We denote by (o, V) the theta lift of n8 to GSUs_p, which is an irreducible
cuspidal automorphic representation by Lemma 4.1 and Lemma 4.4.

Then for a non-zero decomposable vector ¢ = @, € V., we have

. L(%,O’XA_I)
Xz)
EPNL(Lmystd @ xe)L(1, xE) 1)

— b
(¢, 9) 2¢ i (#V)

where

B 2 14
| X,l//./\(‘p)l _ ]—l L,
j=1

-1
4
; L(1,my,std® xgv)L(1, xE,) @A,,ux., (@v)
af e =] ]e0.xE,) ! . : v 7Y

=1 L (%’O-V % A;l) (@v, vy

and X € D* is taken so that & = Sx in (3.2.5).

Proof. Letus regard o~ as an automorphic representation of GU(4) with trivial cen-
tral character via the accidental isomorphisms @ (2.2.6) or ®p (2.2.5), depending
whether D is split or not. Let () = ©,, (7-1 o-1)(0") denote the theta lift of o to
GU, , with respect to ¥ and (A, A=1). By [29, Proposition 3.1], 6(o) is globally
generic and, in particular, non-zero. By the same argument as in the proof of [29,
Theorem 1], we see that 8(o) is cuspidal and hence irreducible by Remark 3.1 and
3.2. Moreover by the unramified computations in [68] and [83, (3.6)], we see that
L5(s, X, A?) hasapole at s = 1 when S is a sufficiently large finite set of places of F
containing all archimedean places, where L5(s, X, /\,2) denotes the twisted exterior
square L-function of X (see [26, Section 2.1.1] for the definition). Since 8(o") is
generic, [26, Theorem 4.1] implies that it has the unitary Shalika period defined
in [26, (2.5)]. Then, by [83, Theorem B], the theta lift of 8(c) to G(A)*, which
we denote by (7}, Vy;), is an irreducible cuspidal globally generic automorphic
representation of G (A )*. We note that 2 is nearly equivalent to 7’,.

Let us take an irreducible cuspidal automorphic representation (7', V) of G(A)
such that V/|g(a)+ D Vz;. Then n” is globally generic. Moreover 7’ ® yg is not
nearly equivalent to 7’ by our assumption on . Hence 7’| is irreducible. Thus
we may apply Theorem 6.1, taking 7° = 7’ and £ = 6(0), and we obtain the
explicit formula for the Whittaker periods on 6(o"). Then by [29, Theorem A.1],
the required explicit formula for the Bessel periods follows. O

6.2. Proof of Theorem 6.1. We reduce Theorem 6.1 to a certain local identity in
6.2.2 and then prove the local identity in 6.2.3.

As we stated in the beginning of this section, what we do essentially is to deduce
the explicit formula (6.1.6) for the Whittaker periods on GSOy4 > from (6.2.3) below,
the one for the Whittaker periods on G.
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6.2.1. Explicit formula for the Whittaker periods on G = GSp,. Let Ug denote the
maximal unipotent subgroup of G. Namely

(6.2.1) Ug = {m (n) (102 i) : X € Symy,n € N2}

h
0
matrices in GL,. Then we define a non-degenerate character ¢y, of Ug(A) by

(6.2.2) Yus (u) =y (uyip +duyy) foru= (u,'j) e Ug (A).

Then for an automorphic form ¢ on G (A ), we define the Whittaker period Wy (¢)
of ¢ by

where m (h) = ‘ ho_l) for h € GL, and N, denotes the group of upper unipotent

Was, )= [ 8w i, (n) dn.

UG (F)\Ug (A)
The following theorem shall be proved in Appendix A.

Theorem 6.3. Suppose that (7, V) is an irreducible cuspidal tempered globally
generic automorphic representation of G (A). Let 1, = 1| @ - - - 8 [y denote the
Sfunctorial lift of & to GL4(A).

Then for any non-zero decomposable vector ¢ = Qp,, € V., we have

Wi @OF 1 T C2))
623 e o o T T W (o).
(p) 2 (1, M, Symz) y

Here (Wc";’v(gov) is defined by

L (I,H,r,v, Symz)

W v( v) =
G T TR 4 2))

(WG,V(QOV)
and Wg ., (¢y) is defined by

W (py) = / (v 8) ot ()

Ug (F,) (¢v, @v)
when v is finite and by the Fourier transform when v is archimedean.

6.2.2. Reduction to a local identity. Let us go back to the situation stated in the
beginning of 6.1.

First we note that the unramified computation in [68] implies the following
lemma.

Lemma 6.1. There exists a finite set Sg of places of F containing all archimedean
places such that for a place v & So, we have

L (I,HZV,AS+) =L (l,ﬂ'v,std ®XE) L (1, Hﬂ',v, Sym2) L (17XEV) .

Let us recall the following pull-back formula for the Whittaker period on X =
0 W (71' O) .
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Proposition 6.1. [83, p. 40] Let f € Vo and ¢ € S(Z.(A)). Then

624) WY (0(¢: f)) = /

(wy (g1, DP)((x-2,x-1,0,x2))
N(A)\G' (&)

X Wy, (7°(g1) f) dg1.

Suppose that f = ® f;, and ¢ = ®¢,. Then by an argument similar to the one in
obtaining [28, (2.27)], when Wy, (f) # 0, we have

WY (003 f)) = Car - Wyu, (D) - | | £3(v. 1)
where

Liwnfo = [

(wy, (g1, 1)¢y) ((x-2,x-1,0,x2))
N (F,)\G(F,)

X W, (77(81) fv) dgi,v
when ¢ = ®, ¢, and f = ®, f,,. We also define
=16 ) L3 1)

-EV(¢V7 fv) = L (LHmv’Symz) (WG,v(fv) .

Here the measures are taken as the following. Let dg, be the measure on G' (F,)
defined by the gauge form and dn, the measure on N (F,) defined in the manner
stated in 1.2. Then we take the measure dg; , on N(F,)\G'(F,) so that dg, =
dn, dgl,v-

Let © (73, ) := Homgp, )+ (Qy, . Ty) where Q,, is the extended local Weil
representation of G(F,)* X GSOy4, (F,) realized on S (Z, (F,)), the space of
Schwartz-Bruhat functions on Z, (F,). We recall that the action of G(F,)" X
GSOy4, (Fy) on S (Z, (F))) via Qy, is defined as in the global case (e.g. see [83,
2.2]). We also recall that for X = 6, (7°), we have £ = ®, X, where X, = 0y, (75)
is the local theta lift of 77,.

Let

0, :8(Z, (Fv)) ® V7r3 - VZV

be a G(F,)* X GSO4 (F,)-equivariant linear map, which is unique up to a scalar
multiplication. Since the global mapping

S(Z:(A) ® Ve 3 (¢, f) > 0y (¢': f) €V

is G(Fy)* x GSOy4 (F,)-equivariant at any place v, by the uniqueness of 6,, we
may adjust {6, }, so that

Gw (¢,;f,) =®, 0, (¢:/ ®f\:) for f, =Qy f\: € Vo, ¢, =®y ¢:; €S (Z,(A)).

Then as in [28, Section 2.4], combining Theorem 6.3, the Rallis inner product
formula (5.1.4), Lemma 6.1, Lemma 4.2 and Proposition 6.1, we see that a proof
of Theorem 6.1 is reduced to a proof of the following local identity (6.2.5).
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Proposition 6.2. Let v be an arbitrary place of F . For a given f, € V= satisfying

We v (fy) # 0, there exists ¢, € S(Z,(F\)) such that the local integral L, (¢, f,)

converges absolutely, L, (¢, f,) # 0 and the equality

Zy(bv, fv, ) - Wi (0(dy ® 1)) _
1Ly (8, f)I?

holds with respect to the specified local measures.

(6.2.5) (WG,v(fv)

Let us define a hermitian inner product 8,,, on S(Z,(F,)) by

B @)= [ s@T@dr for 6.0 SEZ(F).
Z.(Fy
Here on Z, (F,) ~ (F,)'?, we take the product measure of the one on F,. Then we
consider the integral

(6.2.6)
22 f0.8) = / T f+ £ )y By (i (8)6. 8') d
Gl(F,)

- / / T2@) )y (@, (8. 1)) ()T Q) dedg for f. f' € V.
Gl(F,) JZ.(Fy)

The integral (6.2.6) converges absolutely by Yamana [120, Lemma 7.2]. As in
Gan and Ichino [40, 16.5], we may define a GSOy4 » (F, )-invariant hermitian inner
product By, : Vs x Vs — C by
Bs(0(¢® f),0(¢' ® f) = Z°(f, [, &)
Here we note that for 4 € SO4,(F,), we have
Bs(2(h)0(¢® 1), 0(¢" ® [7)) = Bs(0(wy (1, h)¢ ® [),0(¢" ® f')).
As in the definition of W,,, we define

WY (1, ¢2) = /U(F )BZ(E(H)@,@)%Z’U(”)_I dn for ¢; € X, (i=1,2).

Then by an argument similar to the one in [28, 3.2-3.3], indeed by word for word,
Proposition 6.2 is reduced to the following another local identity, which is regarded
as a local pull-back computation of the Whittaker periods with respect to the theta
lift.

Proposition 6.3. For any f, f' € Vzs and any ¢, ¢’ € CZ (Z,(F,)), we have

(62.7) Wy (6(6® f).0(¢' & 1)) = / /
N(F,)\G'(F,) J N(F,)\G'(Fy)

Wa.v (75 (8) .75, (&) ) (wy, (8. 1) §) (x0) (wy, (8',1) ¢’) (x0) dg dg’.
Remark 6.1. Since {g-xo : g € G'(F,)} is locally closed in Z,(F,), the mappings
N(F,)\G'(F) 2 g0 ¢(g™ x0) €C, N(F)\G'(F) 38" = ¢'(g7 x0) € C

are compactly supported, and thus the right-hand side of (6.2.7) converges abso-
lutely for ¢,¢' € C (Z:(F,)).
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6.2.3. Local pull-back computation. Here we shall prove Proposition 6.3 and thus
complete our proof of Theorem 6.1.

Since we work over a fixed place v of F, we shall suppress v from the notation
in this subsection, e.g. F means F,. Further, for any algebraic group K over F, we
denote its group of F-rational points K (F) by K for simplicity.

The case when F is non-archimedean. Suppose that F' is non-archimedean. From
the definition, the local Whittaker period is equal to

/ / / (w (8. M)W F @ (8) f /W (n)™" d dg dn.
U Gl Jz,

Recall that we have defined subgroups Ny, Ny, N> and U of U in (3.1.10), (3.1.11),
(3.1.12) and (6.1.1), respectively. Then because of the absolute convergence of the
integral (6.2.6), the above local integral can be written as

(6.2.8) /ﬁsz ‘/N” /Nl ‘/NO /Z+ /Gl(w¢(g, uou 2 ) (x) ¢’ (x)

xA(n°(Q) f, Wy (uaii) ™ dx dg dug duy dus dii.

Let us define Z, ., := {(a1,a2;0,0) € Z, : a; and a, are linearly independent}.
Then since Z, . ® (X4 ® Yp) is open and dense in Z,, we have

/ D(z)dz = / / D(z1 +22) dzp dzy
Z. Zio J X, 0¥y

forany @ € L'(Z,). We consideramap p : Z, . — Fdefinedby p((a;,az;0,0)) =
(ay,az). This is clearly surjective. For each r € F, we fix x; € Z, , such that
p(x;) = t. Then by Witt’s theorem, the fiber p~!(x;) of x; := (af,a’;0,0) is given
by
plx) = {y-x, = (yal,yd5 :0,0):y € Gl} .

We may identify this space with G'/R; as a G'-homogeneous space. Here R,
denotes the stabilizer of x; in G!. From this observation, the following lemma
readily follows (cf. [28, Lemma 3]).

Lemma 6.2. For each x; € Z, ., there exists a Haar measure dr, on R, such that

/@(z)dz:// / ®(g7' - x, +z) dz dg, dt.
Z, F JR\G! Jx,eY,

Here dg, denotes the quotient measure dr;\dg on R;\G'.

Further, we note that the following lemma, which is proved by an argument
similar to the one for [76, Lemma 3.20]. (cf. [28, Lemma 3]).

Lemma 6.3. For ¢1,¢> € CX (Z,) and fi, f» € Vo, let

Gor.on. 11,12 (1) =/GI/R\G1¢1 ((gg')‘1 ‘xz) ¢2 (g“ -xt) (n° (&) f1, f) dg dg’

fort € F. Then the integral is absolutely convergent and is locally constant.
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Remark 6.2. When F is archimedean, by an argument similar to the one for
[76, Proposition 3.22], we see that this integral is absolutely convergent and is a
continuous function on F not only for C° (Z,.) but also for S(Z..).

By Lemma 6.2, the integral (6.2.8) can be written as

/No ‘/F </Rt\Gl ‘/X+®Y0 /Gl (wy (g, uoh))(y ™" - xs + D (v +2)

x(n°(g) f, f') dg dz dy, dt duy.

Moreover, by the computation in [83, Section 3.1], we have

(wy (g uo@MP)(y ™" - xt +2) = Y (=x0)p(y ™" - x; +2).

Then because of Lemma 6.3, we may apply the Fourier inversion with respect to x
and ¢, and thus the above integral is equal to

62.9) / / / (wu (g WAy - x0+ 29 (r T 30 +2)
R()\G1 X;®Y) G!
x(n°(g) f, f') dg dz dyy dt duy

) ‘/RO\G1 v/X+®Y0 /Gl (wy (78, h)$) (x0 + 2) (wy (¥, ") (x0 + 2)
% (x°(9)f 1"} dg dz dyo.

The support of ¢’ (y~" -x¢+z) as a function of X, ®Yy is compact since ¢’ € C°(Zy).
Therefore this integral converges absolutely and is equal to

'/X+®Y0 ‘/RO\G' ~/Gl (a)lﬂ(yg’ ]/l)¢)(_x0 + Z)(a)l/,('y, 1)¢')(X0 + Z)
X(n°(g)f, ') dg dyo dz.

Now, let us take (x_,x_1 : 0,0) as xo. Then we have

Ry =N.

1

Let us define a map g : X; ® Yo — Matyx, by

(x_2,b1) (x_2, bz))
(x-1,b1) (x-1,b2)

with b; € X;. Clearly this map is bijective. Hence, there exists a measure d7 on
Mat, > such that we have

/ D(x_0,x_1:2)dz =/ D(x_p,x_1 :x7)dT
X;:®Y)

Maty o

Q(b1®€1+bz®€2)=(

with x7 = q‘1 (T). Here we note that the measure dz on X, ® Y} is taken to be the
Tamagawa measure and hence we have the Fourier inversion

/ / O(T)y (tr (TS()T’)) dT dT’ = @(0)
Matyy; o/ Matyxo
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with the above Haar measures d7T, dT’ on Mat, if the integral converges. Thus
we have

Lo Lo Lo [ st mmenosos o @G et
X (m°(8) [, f) dg dyo dz duy duy

) -/N ‘/IVI /Matzxz /N\Gl G! (wy (v8, uruzh)¢) (xo +x1) (Wy (v, 1)¢’) (x0 + x7)
x(n°(g) f, f')dg dyo dT du; du,.

Moreover, similarly to the global computation in [83, Section 3.1], we may write
this integral as

oo [ el 2)sr-))
Ny JN; JMatyyy JN\G! JG! nh n

X (wy (78, h)p) (xo+x7)(wy (v, 1)) (x0 +x7)(7°(8) f, f) dg dyo dT duy du,

where we write u; = u;(sy,t1) and up = up(s2,12), and we put Ty = 8 (1)) By an

argument similar to the proof to show (6.2.9), we may apply the Fourier inversion
to this integral, and we see that this is equal to

/ / (o (78, )8 (0 + x13) @y (- D) (ro + xm)x° (8) f+ f) g dyo.
Nu\G! JG!

Now we note that from the argument to obtain (6.2.9), this integral converges
absolutely. Then by telescoping the G '-integration, we obtain

f / / (wy (rg, 1)) (xo +x1,) (@9 (rs 1) (o +710)
NG JN\G! IN
X (x°(rg) £, 7" (y) ') dr dg dyo.

Put zo = xo + x1; = (x-2,x-1,0,x2). Recall that from the computation in [83,
Section 3.1], we have

(6.2.11) wy (v(A)g, i (b)h)¢(z0) = ¥ (—dan)wy (g, i(b)h)$(z0)

ar

when we write A =
asy

a
12 , and we have
an

(6.2.12) 20(1,@(b)) = zo(w(b), 1).
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Therefore, Wy, (0 (¢ ® f),6 (¢’ ® f')) is equal to

/F ‘/N\G‘ /N\G1 /N Y (=b)(wy (rg, @(5))¢) (20) (wy (v, 1)) (20)
XAn®(rg) f,n°(y) f") dr dg dyo db

) ~/F ‘/N\Gl ‘/];]\Gl Sym? Y (=b — dax)(wy (w(b)g, 1)¢)(20)

X (wy (v, D) (20)(n° (v(A)g) f,7°(¥) f") dA dg dyo db.

By an argument similar to the one in [28] showing that [28, (3.30)] is equal to
a(n(g)¢, n(h)¢’) there, indeed, by word for word, we see that this integral is equal
to

st
[ ] ] e 0o @t
N\G! JN\G! JUG
X (r°(ng) f,7°(y) ) dndg dyo.
Thus Proposition 6.3 in the non-archimedean case is proved.
The case when F is archimedean. Suppose that F is archimedean. Recall that
WY (G1,¢2) = Wy, 5, Wu)  for g € =% (i=1,2),

where we set
Wg, 5,(n) = /U By (Z(nu) 1, g2)yy (nu) du  forn € U,

which converges absolutely and gives a tempered distribution on U/U_, by [76,
Corollary 3.13]. Let us define U’ = NgN|N;. Then U’ , = U_. Moreover, for any
ieUandu €U, wehave du'ia ' (u)~' € U, and we obtain W, 4, (i) =
W, 4, (u'it). Hence, we may regard it as a tempered distribution on Ux(U'|U",).
Then for a tempered distribution 7 on U x (U’/U",,), we define partial Fourier
transforms 17 of I for Jj=1,2by

(Lhiefy=UL1®p) and (Ifiefh) =1L %)
where f; € S (U) and f> € S (U’/U".,), respectively. Then we have

=1 =2 —~
I? (yy) =1' (yu) =1(Yv).

From the definition of By, we have

Waisop.awer®= [ [ [ @ilmnwat

X (n® (@) f, W' (nu) dx dg du

_ /U N /N 0 /G | /Z (@m0 )

X (n° () f, f' g (nu) dx dg dug du,
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for ¢,¢" € S(Z,) and f, f* € V. Clearly, Lemma 6.2 holds in the archimedean
case also. Then as in (6.2.9), because of Remark 6.2 and the Fourier inversion, the
above integral is equal to

</UDO/N0 -/N\G' -/X+®Y0 ‘/G](wl/,()/g, nu)¢)(xo+z)(a)l/,(y, 1)¢/)(XO+Z)
X(m°(g)f, f") dg dz dyo du.

As (6.2.9), this integral converges absolutely. Let us denote this integral by
Js,4. 7,7 (n). Then from the definition,

Jo. 00 1.1 = Woipes).oper)-

Again, from the definition, for ¢ € S(U’ /U’ ), we have

2 —_—
gt fop b0 9) = Upg poprbu - @) = / / / / /
ULy, JU. /Ny J N\G! /X, 8Y J G!

X (wy (y8, nu)¢) (xo + 2) (wy (v, 1)¢") (xo + 2)
X (7°()f> [1Ye(myry' (n) dg dz dyo du dn.

By a computation similar to the one to obtain (6.2.10), this integral is equal to

/N| /Nz -/N\Gl ‘/X+®YO /Gl(wz//()’g,uluzu)@(xo+z)(a)l/,(y,1)¢’)(x0+z)
X (1°(8) [+ fY@(urua)yy;' (uruz) dg dz dyo du duy duy

o A O Wy 3 (v EXE )

X (wy (78, b)) (xo +x7) (wy (7, 1)¢") (x0 + XT)
XA7°(g) f, [ Yp(uruz) dg dyo dT duy dus.

As above, we may apply the Fourier inversion, and thus this is equal to

(1) - / / (o (78, 1)9) (x0 + x1,) (@ (7, DF) o + 1)
N\G! JG!
x(n°(g) f, f') dg dyo.

Hence,

Jow ) = [ . [ @ty 08) o +x1) @ Ty DG+ 37,

X{(n°(g)f, f') dg dyo.
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Here, we note that by Remark 6.2, this integral converges absolutely. Then this
identity shows that we have

(6.2.13)
1
Towrr” @=[ [ [ @b rxn) @l D)

X{(n°(g)f, f')e(b)dg dyodb

for ¢ € S(U). As in the non-archimedean case, by (6.2.11) and (6.2.12), we may
easily show that this is equal to

-1 p
-/];/\Gl '/];I\Gl /]V '/}; wUG (v(x)n)(w¢(g, 1)¢)(ZO)((")¢(Y’ 1)¢ )(ZO)
XA (v(x)ng) f,7° () f)e(ii(x)) dx dn dg dyo

since the integral in (6.2.13) converges absolutely. Thus Proposition 6.3 is proved
in the archimedean case also.

7. Proor oF THEOREM 1.2

In this section, we complete our proof of Theorem 1.2. Let (m,V,) be an
irreducible cuspidal tempered automorphic representation of G (A ) with a trivial
central character. Throughout this section, we suppose that 7 is neither of type I-A
nor type I-B. When 7 is one of these types, our theorem is already proved in [20,
Theorem 7.5].

The case when B¢ 5 y # 0on Vy is treated in 7.1 and the case when B¢# 5y =0
on V, is treated in 7.2, respectively.

7.1. Proof of Theorem 1.2 when B¢ » , % 0.

7.1.1. Reduction to a local identity. Suppose that B¢ A, # 0on V.. Let (0, V)
denote the theta lift of 7 to GSUs p (A ), which is an irreducible cuspidal automor-
phic representation. As in the proof of Theorem 6.1, our theorem may be reduced
to a certain local identity. Let us set some notation to explain our local identity.

As in Section 5.1 and Section 5.2, we fix the Petersson inner product (, ) on V,
and the local hermitian pairing (, ), on m,. As in (3.2.3), we define the maximal
isotropic subspaces Zp .. Let

Op,yv : S (ZD,+ (Fv)) QVn, = Vo,

be the Gp(F,)* x GSU3 p (F,)-equivariant linear map, which is unique up to
multiplication by a scalar. As in Section 6.1, let us adjust {HD,V}V so that

9D,1// (¢/;fl) =Q®y GD,V (¢:; ® f\:)
for f' =®, f, € Vzand ¢’ = ®, ¢}, € S (Zp+ (A)). Let us choose X € D*(F)
so that Sx = £. Then by Proposition 3.2, we have

(7.1.1) Bya1(0(F 2 9) = Bea(f) - | [ (fir 60)



GROSS-PRASAD CONJECTURE AND BOCHERER CONJECTURE 65

where f = ®f, € Vp, and ¢ = ®¢p, € S(Zp +(A)), and we define

Ko (fosdv) = / AN, Ye,y (”v(g)fv)¢v(g_1 “Vp.x) dg.

Np (F)\Gh (Fy)

Here, we take the measure dh, on G}) (F,) defined by the gauge form, the measure
dn, on Ng,, (F,) defined in 1.2 under the identification D (F,) =~ F2 and the mea-
sure dgi, on NGD(FV)\G})(FV) such that dh, = dn, dg;,,. Then by combining
the explicit formula of the Bessel periods on o given in Theorem 6.2, the Rallis
inner product formulas (5.1.4) and Proposition 5.2, Lemma 6.1 and Lemma 4.2,
and the above pull-back formula (7.1.1), we see that Theorem 1.2 is reduced to the
following local identity.

Proposition 7.1. Let v be an arbitrary place of F. For a given f, € V. satisfy-
ing ag py (fy) # 0, there exists ¢, € S(Zp,+ (F,)) such that the local integral
K (fv; dv) converges absolutely, K, (f,; ¢y) # 0 and the equality

Zv(‘pv,fv’ my) a/\;l,(//x,v (0(¢v ®fv) a'/\v,l//,s,v(f\/)

19 (fos d0) 2 - (fos v

holds.
Remark 7.1. In Corollary 7.1, the existence of f, with an, ., (fv) # 0 is shown.

Let us define hermitian inner product on S(Zp +(F,)) by

By p(6.4) = / POT W) dx for 6.8 € S(Zp.a(Fy).

ZD,+(Fv)

Then we consider the integral

705000 = [ 0 B s (0166 s

for f,f" € m, and ¢,¢" € S(Zp+(F,)). As in Section 6.2, this converges
absolutely and gives a GSU3 p (F))-invariant hermitian inner product

Bo, Vo, XVy, —C

by
Bo, (0(6® [).0(¢" ® ) =Z°(f. [": 6. ¢).
By the Rallis inner product formula (5.1.4) and Proposition 5.2, at any place v,
there exist f,, f,, ¢, ¢’ such that Z°(f, f’;¢,¢") # 0 since 6, p(7) # 0. Thus,
Bs, 0.
For ¢; € o, we define

st

A1) = [ B (b 6N O, ) dr
N3, p (Fy) J Mx (Fy)

Here, at an archimedean place v, a stable integration means the Fourier transform as

in the definition of @, 4, . Then by an argument similar to the one in [28, 3.2-3.3],

we may reduce Proposition 7.1 to the following identity.
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Proposition 7.2. Forany f, f' € Vn, and any ¢, ¢’ € CZ (Zp +(F,)), we have

(712) A0($®f).0(4"®f)) =

/ / e (o (B) fomy (W) f7)
ND(FV)\Gll)(Fv) ND(FV)\GID(FV)

X (wyy (1, 1) ) (x0) (wy, (W, 1) ¢’) (x0) dhdh’.

Before proceeding to a proof of this proposition, we give some corollaries of this
identity.

Corollary 7.1. For an arbitrary place v of F, we have ay, ., % 0 on m,.

Proof. Sine B, # 0, (7.1.2) implies that aa, y,, # 0 on x, if and only if
Upct oy F 0 on o,. Moreover, by [28, Corollary 5.1], Upt oy, F 0 on o, since
the theta lift of o, to GU, »(F,) is generic. Thus our claim follows. O

As another corollary, a non-vanishing of local theta lifts follows from a non-
vanishing of local periods.

Corollary 7.2. Let k be a local field of characteristic zero and D be a quaternion
algebra over k. Let T be an irreducible admissible tempered representation of G ¢
with a trivial central character. Let S € D' and y be a character of Tp,s,-
Suppose that Uy ,ys, # Oont. Then A % 0on by p(t) X0y (7). In particular

Oy, (1) #0and Z* (¢, @', f, f') # 0 for some f, f" € Tand ¢, ¢’ € S(Zp ).

Remark 7.2. By [120, Lemma 8.6, Remark 8.4 (1)], we know that the existence of
such f, f', ¢, ¢’ is equivalent to the non-vanishing of the theta lift of T to GSU3 o
when k # R. Though the equivalence is not clear when k = R, we shall use
Corollary 7.2 to show that the local non-vanishing of the theta lifts implies the
global non-vanishing of the theta lifts in 7.2.

Proof. By our assumption, the right-hand side of (7.1.2) is not zero for some
f, f',é,¢" when F, # R. Hence, the left-hand side is not zero, and in particular

Z.(¢’¢,’f’f,)¢0' O

7.1.2. Local pull-back computation. Here we shall prove the identity (7.1.2) and
thus we complete our proof of Theorem 1.2 when B¢ , o # 0. Here we give a proof
of (7.1.2) only in the non-archimedean case since the archimedean case is similarly
proved as in the proof of Proposition 6.3. Our proof is a local analogue of the proof
of Proposition 3.1 and Proposition 3.2. Moreover we will consider only the case
when D is split since the proof is similar and indeed is easier in the non-split case
as in the global computation. Since the argument in this subsection is purely local,
in order to simplify the notation, we omit subscripts v and we simply write K (F')
by K for any algebraic group K defined over F' = F,,.
From the definition, we may write the left-hand side of (7.1.2) as

st , — o
S L L ] e@n s o @@ @A dedg
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where X is chosen so that Sx = S. Further as in (3.1.13), this is equal to

/F” /F:t /F:t /Mx /Gl Z+(cu¢,(g, uo(s)ut (s1, 1)Uz (52, 12)1)$) (X) ¢’ (x)

XA () f, fYN(OW (xa151 + Xont) + X182 + X1282) " dx dg dt ds) dty dsy dty ds

X111 X12

X21  X22
Z, such that a’, al, are linearly independent and {(a’, a’) = r. Let us denote by Q,
1% y p 1% y

the stabilizer of x, in G'. Then as in the proof of Proposition 6.3, for each r € F,
there is a Haar measure dg, of Q, such that

/q>(x)dx=// /CD(h‘l-Ar+b)dbdhrdr
Z. FJQO,\G! /X2

with dh, = dq,\dh, provided that the both sides converge. Then applying the
Fourier inversion, because of (3.1.15), our integral becomes

st st
/ / / / / / (m(Q)fs [N (x2151 +x221) +X11S2+x12t2)_1
F2 JF? JMx JG' JQ0\G' X}

X (wy (hg,ui(s1,t1)uz(s2,12)t)$) (Ao + b) (wy (h, 1)¢") (Ao + b)
db dh dx dg dt ds; dt, dsy dt;

when we write X = ) For each r € F, we may take A, = (a},a},0,0) €

with Ag = (x_2,x_1,0,0). This is verified by an argument similar to the one for
[76, Lemma 3.20]. We note that Q¢ = N from the definition. Moreover, as in [76,
Lemma 3.19], the inner integral fo fG, /Qo\ Gl in converges absolutely, and thus

this is equal to

st st
/ / / / / /(ﬂ(g)f,f’>A(t)¢(x21s1+x2211+x11s2+xl2t2)—1
F2 Jr2 Jo)\G' JG' Jmx Ix?

X (wy (hg,ui(s1,t)ua(s2,2)1)$) (Ao + b)(wy (h, 1)¢") (Ao + D)

db dhdx dg dt ds, dt, dsy dt,.

From the proof of Lemma 3.2, this integral is equal to

CEN N N Y By RCCTRE ORI

x (wy (1 1)§') (Ao + b) A() (tr (::2 tz) (SO (gj Zii gj Zii) - X))

1 h
db dh dx dg dt ds, dt, ds; dty.
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Now we claim that we may define the stable integral

/ / / (x(§)f 1) (wy (hg. 1)) (Ao + b)(@y (. ") (Ao + b)
F2 JF? JX?

x A1)y (tr (j? 2) (So (gj ’;3 gj Z;;) - X)) db ds, dt> ds dt,

and we may choose a sufficiently large compact open subgroup F; of F (1 <i < 4)
so that it depends only on ¢ and fFSZZ FS; s = /F] sz /F3 /F4 -+ +. This claim easily
follows from the following lemma in the one dimensional case.

Lemma 7.1. Let f be a locally constant function on F which is in L'(F). Then
there exists a compact open subgroup Fy of F such that for any compact open
subgroups F’ and F"' of F containing Fy, we have

ary [ [ rewendcar= [ [ pewe .

Proof. Suppose that y is trivial on Fy := @™Op and not trivial on @™~ 'OF. Put
F’ = @™ Op with m’ < m. Then we may write the left-hand side of (7.1.4) as

ars [ [ sewenaas [ e aa

The first integral of (7.1.5) converges absolutely. Hence by interchanging the order
of integration, it is equal to

/F\O/F,f(x)t//(xy)dydx:/F\Of(x) (/F/;_/,(xy) dy) dx =0

since y — ¥ (xy) is a non-trivial character of F’ for each x € F \ O. As for the
second integral of (7.1.5), we have

/F,/Of(x)l//(xy) dx dy
- ./mmo _/of(x)l//(xy) dx dy + Amfo\wmof(x) (/0 W(xy) dy) dx

where the inner integral of the second integral vanishes as above. Thus the left
hand side of (7.1.4) is equal to

[ [ rewtaa.

Similarly the right-hand side of (7.1.4) becomes as above, and our claim follows. O
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By Lemma 7.1, we see that (7.1.3) is equal to

/N\Gl /G‘ /MX /th /th /X% (m()f> ") (wy (hg, 1)$) (Ao +b)

/ s2 (x_2.b1) (x_2.b2)
S G [ i s B
db dh dx dg dt ds, dt, dsy dt;.

Then applying the Fourier inversion, we get

(7.1.6) /N\G1 /G1 MX(n(g)ﬁf)
X (wy (hg, 1)) (Ao + Bo)(wy (h, 1)¢") (Ao + Bo) A(r) db dh dx dg dt

where By = (0, 0, %xl + X—ZHXQ,—%Xl — z—ﬁ)@) and Xg = A() + By. By [76,

Proposition 3.1], for a sufficiently large compact open subgroup Ny of N, we have

/MX /Ns’f(nt))((nt) dnd;:/NO /MX F(nt) y(nt) dn dt

and thus we may define

/St f(nt) y(nt) dndt.
N Jmx

Further, we note a simple fact that we have

/Gg(h) dh:/N\G ‘/NStg(nh) dndh

when both sides are defined. Thus (7.1.6) is equal to

/N\Gl /N\Gl /Mx /NSt<7r(g)f,f'>

X (wy (hg. 1)$) (Ao + Bo)(wy (. 1)¢") (Ao + Bo)A(t) db dh dx dg dt.

Then the same computation as the one to get (3.1.17) from (3.1.16) may be applied
to the above integral, and thus we see that our integral is equal to

/ / s (0 (1) fomy (1) )
N\G1 N\G1

X (wy (1) ¢) (x0) (wy (W', 1) ¢") (x0) dh .
Hence the identity (7.1.2) holds when B¢ 4 4 # 0.

7.2. Proof of Theorem 1.2 when B 5 4 = 0. First we note the following propo-
sition concerning the non-vanishing of the L-values.

Proposition 7.3. Let 7 be an irreducible cuspidal tempered automorphic repre-
sentation of Gp(A) with trivial central character. If Gp ~ G and 7 is a theta
lift from GSO3,1, then L(s,m,std ® xyg) has a simple pole at s = 1. Otherwise
L(s,n,std ® yg) is holomorphic and non-zero at s = 1.
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Proof. Suppose that Gp =~ G, i.e. D is split. Then there exists an irreducible
cuspidal globally generic automorphic representation 7y of G(A ) such that 7 and
my are nearly equivalent. Then our claim follows from [120, Lemma 10.2] and
[101, Theorem 5.1].

Suppose that D is not split. Let us take a quadratic extension Ey of F such
that 7 has (Ep, Ag)-Bessel period for some character Ay of Ago /E;. Then by
Theorem 1.1 (1), we see that there exists an irreducible cuspidal tempered au-
tomorphic representation g of G(A) such that for a sufficiently large finite set
S of places of F containing all archimedean places, m,, 7, are unramified and
BCg,/r(n,) = BCg,yF(mo,y) for v ¢ S. This implies that

L5 (s, 7o, std ® xg,xE)L> (s, 70, std ® xE)
=L5(s,m,std® )(EO/\/E)LS(S, m,std ® YE).

From the case when Gp =~ G, the left-hand side of this identity is not zero at s = 1,
and thus so is the right-hand side, which possibly has a pole at s = 1.

Suppose that L5 (s, ,std ® XE, FXE) has a pole at s = 1. We may take a
quadratic extension £y C D of F such that yg, = xg,xe. Then by Yamana [120,
Lemma 10.2], x is a theta lift from GSU; p, which is a similitude quaternion
unitary group of degree one defined by an element in E; as in (2.1.12). In this
case, 7 is not tempered, and thus it contradicts to our assumption on x. Thus,
L5(s,m,std ® xg,/rxE) is holomorphic at s = 1. Further, by an argument similar
to the one for L5 (s, 7, std® x g,/ r X E), We see that L5 (s, 7, std® y k) is holomorphic.
Therefore, it is holomorphic and non-zero at s = 1. O

Suppose that B¢ 4 4 = 0 on V. We shall show that the right-hand side of (1.6.2)

is zero. If L (% X AL (A)) = 0, then there is nothing to prove. Hence, we may

suppose that L (%, X ATl (A)) # 0. Then we shall show that for some place v of

F, we have @y, y,, =0onm,.

Assume contrary, i.e. @a,,y,, # 0on x, for any v. Let us denote by 72"

the unique irreducible constituent of 7|, a)+ such that @y, y,, # 0 on me,*

for any v. From our assumption aa, ., # 0 on m, and Corollary 7.2, we
see that ay-1 , ~ # 0 on the theta lift 0y,.p(my) of m, to GSU3 p(F,) and
Zy(¢y, fv,m) # 0 for some f, € m, and ¢, € S(Zp +(F,)). Since n’ is nearly

equivalent to 7, we have L(1, 7, std® yg) # 0. Therefore, the theta lift 6, p (nB slocy

of nf 1oe ¢4 GSUs p(A) is non-zero by Yamana [120, Theorem 10.3], which states
that the non-vanishing of local theta lifts at all places together with the non-vanishing
of the L-value implies the non-vanishing of the global theta lift. We note that
actually in [120, Theorem 10.3], there is an assumption that D is not split at real
places, which was necessary to ensure that the non-vanishing of the local theta lift
implies Z, (¢, fv,m) # 0 for some f, € 7, and ¢, € S(Zp +(F,)). Since the
non-vanishing of Z,(¢,, f,, ) for some f, and ¢, is shown in our case by the
argument above, we may apply [120, Theorem 10.3] regardless of the assumption.
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Recall that from the proof of Theorem 1.1 (1), 8, p (727'°°) is tempered. Let us
regard 6, D(nf’loc) as automorphic representations of GUy .. By the uniqueness
of the Bessel model for GUy . proved in [29, Proposition A.1], there uniquely
exists an irreducible constituent 7 of 6, D(nf ’]OC)|U(4) such that 7 has the local

(X, A, ¥,)-Bessel model at any place v.
On the other hand, we note L (1/2,7 x A™') # 0 since L (%,n X AT (A)) #

0. Then by [29, Theorem 1.2], there exists an irreducible cuspidal automorphic
representation 77 of U(Vp) with four dimensional hermitian space Vj over E such
that 7/ has (X, A, ¥,)-Bessel period. Then we know that 7 and 7’ have the same
L-parameter, in particular, 7, ~ 7/ when v is split. At a non-split place v, by the
uniqueness of an element of the tempered L-packet which has the same Bessel
period due to Beuzart-Plessis [6, 7], we see that U(Vp) ~ U(Jp) and 7 = 7’.
Moreover, by Mok [82], we have 7 = 7’. Therefore, T = 7’ has (X, A1 y)-
Bessel period, and this implies that 8, p (72°°) also has (X, A~', ¥)-Bessel period.
Then Proposition 3.1 and 3.2 show that & has (E, A)-Bessel period, and this is a
contradiction. Thus, (1.6.2) holds when B¢ A y =0 on V.

8. GENERALIZED BOCHERER CONJECTURE

In this section we prove the generalized Bocherer conjecture. In fact, we shall
prove Theorem 8.1 below, which is more general than Theorem 1.4 stated in the
introduction.

8.1. Temperedness condition. In order to apply Theorem 1.2 to holomorphic
Siegel cusp forms of degree two, we need to verify the temperedness for corre-
sponding automorphic representations.

Proposition 8.1. Suppose that F is totally real. Let T be an irreducible cuspidal
automorphic representation of Gp (A ) with a trivial central character such that T,
is a discrete series representation for every real place v of F. Suppose moreover
that 7 is not CAP. Then 1 is tempered.

Remark 8.1. When D is split, i.e. Gp ~ G, Weissauer [116] proved that T, is
tempered at a place v when 1, is unramified. Moreover, when 1, is a holomorphic
discrete series representation at each archimedean place v, Jorza [64] showed the
temperedness at finite places not dividing 2.

Proof. First suppose that Gp =~ G. Let I denote the functorial lift of 7 to GL4(A)
established by Arthur [3] (see also Cai-Friedberg-Kaplan [14]).

When II is not cuspidal, since 7 is not CAP, II is of the form I1 = II; @ I,
with irreducible cuspidal automorphic representations I1; of GL,(A ). Since 7, is
a discrete series representation for any real place v, II; , is also a discrete series
representation. Then II; is tempered by [11] and thus the Langlands parameter of
I1, is tempered at all places v of F. Hence 7 is tempered.

Suppose that IT is cuspidal. Then by Raghuram-Sarnobat [93, Theorem 5.6],
I1, is tempered and cohomological at any real place v. Let us take an imaginary
quadratic extension E of F such that the base change lift BC(IT) of TT to GL4(A )
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is cuspidal. Note that BC(IT) is cohomological and that BC(IT)Y ~ BC(ITY) =~
BC(IT) ~ BC(IT)?. Then Caraiani [15, Theorem 1.2] shows that BC(II) is
tempered at all finite places. This implies that I1,, is also tempered for any finite
place v. Thus 7 is tempered.

Now let us consider the case when D is not split. Since 7 is not CAP, by
Proposition 4.1, there exists an irreducible cuspidal automorphic representation 7’
of G (A) and a quadratic extension Ey of F such that 7’ is G*¥0-locally equivalent
to 7. Moreover 7 is tempered if and only if 7’ is tempered. By [75, 80, 85, 86], 7,
is a discrete series representation at any real place v. Then the temperedness of 7’
follows from the split case. Hence 7 is also tempered. O

As an application of Proposition 8.1, the following corollary holds.

Corollary 8.1. Suppose that F is totally real. Let T be an irreducible cuspidal
globally generic automorphic representation of G(A) such that T, is a discrete
series representation at any real place v. Then T is tempered and hence the explicit
SJormula (6.2.3) for the Whittaker periods holds for any non-zero decomposable
vector in V.

Proof. Recall that the functorial lift IT of 7 to GL4 (A ) is cuspidal or an isobaric sum
of irreducible cuspidal automorphic representations of GL, by [19]. In particular
7 is not CAP by Arthur [3]. Then by Proposition 8.1, 7 is tempered and our claim
follows from Theorem 6.3. O

8.2. Vector valued Siegel cusp forms and Bessel periods. Let $; be the Siegel
upper half space of degree two, i.e. the set of two by two symmetric complex
matrices whose imaginary parts are positive definite. Then the group G (R)* =
{g€G(R):v(g) >0} acts on £, by

¢(Z) = (AZ+B)(CZ+D)™" forg= (A B

+
C D)GG(R) and Z € 9,

and the factor of automorphy J (g, Z) is defined by
J(g,Z)=CZ+D.
For an integer N > 1, let
Fo(N):{yeGl (Z):y = (é‘ g),ch (modNZ)}.

8.2.1. Vector valued Siegel cusp forms. Let (0,V,) be an algebraic representation
of GL, (C). Then a holomorphic mapping @ : $, — V, is a Siegel cusp form of
weight o with respect to Ty (N) when @ vanishes at the cusps and satisfies
(8.2.1) D (v(Z) =0 (y,Z2))D(Z) foryeTy(N)andZ € 9.

We denote by S, (I'y (V)) the complex vector space of Siegel cusp forms of weight
o with respect to I' (N). Then @ € S, (I') (N)) has a Fourier expansion

D(Z) = Z a(T,®) exp [27V-1tr (TZ)| where Z € $; and a (T, D) € V,.
>0
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Here T runs over positive definite two by two symmetric matrices which are semi-

integral, i.e. T is of the form T = (b‘/l2 b£2), a,b,c € Z. We note that (8.2.1)
implies
(8.2.2) a(eT'e,®)=po(e)a(T,®) foree GL,(Z).

From now on till the end of this paper, we assume o to be irreducible. It is well
known that the irreducible algebraic representations of GL, (C) are parametrized
by

(8.2.3) L ={(n,m)€Z?:n >m}.
Namely the parametrization is given by assigning
Ox = Sym™"'™" @ det™ tok = (ny,ny) €L.

Suppose that o = o, with k = (n+ k,k) € L. Then we realize o concretely
by taking its space of representation V,, to be C [X,Y],, the space of degree n
homogeneous polynomials of X and Y, where the action of GL, (C) is given by

0(g)P(X,Y) = (detg)*-P((X,Y)g) forgeGL,(C)andP e€C [(X,Y],.
Let us define a bilinear form
ClXx,Y],xC[X,Y],>(P,Q)— (P,Q), €C
by
N v une ] (—l)i(l?) ifi+j=mn;
(8.2.4) (xXy" L x/ynJ) = i
0 otherwise.
Then we have

(8.2.5) (0(8) P,o(g)Q), = (detg)"* (P,Q), forg e GL, (C).
We define a positive definite hermitian inner product (, ), on V, by

(8.2.6) (P,Q)p = (P, o (wo)é)n where wq = (_01 (1))

Here Q denotes the polynomial obtained from Q by taking the complex conjugates
of its coefficients. Then (8.2.5) implies that we have

(8.2.7) (e (@) v.w)o=(v,0("g)w)o forgeGL,(C)andv,w € V,.

In particular the hermitian inner product (, ), is U (R )-invariant. Then for
D, D" € S5, (I'h (N)), we define the Petersson inner product (@, @), by
(8.2.8)

, 1
<¢’ D >g =

[Sp, (Z) : Ty (N)

where X = Re (Z) andY = Im (Z). The space S, (I'y (~V)) has a natural orthogonal
decomposition with respect to the Petersson inner product

Se (o (N)) =S, (T (N)™ @ S, (Lo (N))"™

/ (D (Z),d (2)), (detY)* 3 ax ay
| Jroovns,
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into the oldspace and the newspace in the sense of Schmidt [100, 3.3]. We note
that when n is odd, we have S, (I'y (N)) = {0} for o with x = (n + k, k) by (8.2.1)
since —14 € Iy (V).

8.2.2. Adelization. Given @ € S, (I'g (N)), its adelization ¢g : G (A) — V, is
defined as follows (cf. [98, 3.1], [100, 3.2]). For each prime number p, let us define
a compact open subgroup P;_, (N) of G (Q,) by

Pip (N) := {gEG(Zp) :g:(é IB;),CEO (modNZp)}.

Then we define a mapping ¢ : G (A) — V, by
-1
(829 ¢ (®) = () 0/ (g0 VT 1)) @ (g(V=T 1)

when
g=78ko Withy € G(Q), g0 € G (R) andko € [ | Prp (N).
p<oo

Let L be any non-zero linear form on V,. Then L (¢g) : G (A) — C defined
by L (¢a) (g) = L (pe (g)) is a scalar valued automorphic form on G (A). Let
V (@) denote the the space generated by right G (A )-translates of L (¢g). Then
V (@) does not depend on the choice of L and we denote by 7 (@) the right regular
representation of G (A) on V (®). Note that the central character of 7 (®) is trivial.

We recall that for scalar valued automorphic forms ¢, ¢’ on G (A ) with a trivial
central character, their Petersson inner product (¢, ¢") is defined by

(6.8 = / 0() 9 (3) dg
Zg(A)G(Q\G(A)

where Zg denotes the center of G and dg is the Tamagawa measure.

Lemma 8.1. Let L be a non-zero linear form on V,. Take v' € V, such that
L(v)=(v,v)oforanyv €V,.
Then we have
(L(¢a),L(pa))=C (') (D,P), forany® €S, (I'o(N))
where
Vol (Zg (A) G (Q\G (A)) (v,
Vol (Sp, (Z) \$2) dimV,,

Proof. Let Ko, = Uz (R). We identify K, as a subgroup of Sp, (R) via

(8.2.10) C()=

KOOBA+\/—1B|—>(2 _AB) € Sp, (R).

Let dk be the Haar measure on K., such that Vol (K., dk) = 1. Then by the Schur
orthogonality relations, we have

/KmL(Q (k)—lv) .de _ <v,wzfi,r;l<;;v/>g
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On the other hand, it is easily seen that for @ € S, (I'y (N)), we have

(D, ®>Q _ (9o, ‘P<15>Q
Vol (Sp, (Z)\$2) Vol (Zg (A) G (Q)\G (A))

where
(o Gy = / (o (8), 90 (2))odz.
Zg(A)G(Q)\G(A)

Hence

2
@), =c )" [ [ e(e® " vo@)| ardg
Zg(A)G(Q\G(A) YKo

_c(v)! / / IL (¢o (k) dg di
Ko JZG (A)G(Q\G(A)

=C (v) ' (L (¢a) . L (¢a))o-
O

8.2.3. Bessel periods of vector valued Siegel cusp forms. Let E be an imaginary
quadratic field of Q and —Dg its discriminant. We put

1 0
when Dg =0 (mod 4);
0 Dg/4
(8.2.11) Sg = . 1
/ when Dg = -1 (mod 4).
1/2 (1+Dg) /4

Given S = Sg as above, we define Ts, N and ¢g as in 2.3.1. Then T (Q) =~ E*.

Let A be a character of Ts (A) which is trivial on A *Ts (Q). Let ¢ be the
unique character of A /Q such that ¥ (x) = ¢~27V=1x and the conductor of e
is Z, for any prime number £. Then for a scalar valued automorphic form ¢
on G (A) with a trivial central character, we define its (S, A, ¥ )-Bessel period
Bg A,y (¢) by (2.3.1) with the Haar measures du on N (A) and dt = dt. dty on
Ts (A) =Ts (R) x Ts (A f) are taken so that Vol (N (Q) \N (A),du) = 1 and

Vol (RX\TS (R) ,dtoo) = Vol (TS (Zp) ,dl‘f) =1.

Then we note that

2hg 12
=D/"-L(1 .

For a V,-valued automorphic form ¢ with a trivial central character, it is clear
that for a linear form L : V, — C we have
(8.2.12)

Bsaw (L() =L [ /A

Recall that we may identify the ideal class group Clg of E with the quotient group

Ts (&) /Ts (QTs (R)Ts (Z).

Vol(A™Ts (Q)\Ts (A),dt) =

/ A s ) o (tu) drdul.
*Ts(Q)\Ts(A) JN(Q)\N(A)
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Let {zc : ¢ € Clg} be a set of representatives of Clg such that 7. € [],<. T (Qp).
We write t. ast; = y. m k. with y. € GL, (Q), m. € {g € GL, (R) : detg > 0},
ke € [1p<e Gl (Zp). Let S. = (detye)~! - "y.Sy.. Then the set {S, : ¢ € Clg}
is a set of representatives for the SL, (Z )-equivalence classes of primitive semi-
integral positive definite two by two symmetric matrices of discriminant Df.

Thus when ¢ = g for @ € S, (I'h (N)) and A is a character of Clg, we may
write (8.2.12) as

(8.2.13) Bsay (L(¢p)) =228 . L (By (®;E))

where

(8.2.14) BA(®:E) i=w(E) " 1o | D A©)" - a (S, D)
CEC]E

is the vector valued (S, A, r)-Bessel period where
82.15) 1, = / o(r) dt with T} = SL, N Ts, Vol (TS1 (R),dt) -1
T4 (R)

(e.g. Dickson et al. [21, Proposition 3.5] and Sugano [104, (1-26)]).

Remark 8.2 (An erratum to [27]). The definition of B (®; E) in the vector valued
case in [27, Theorem 5] should be replaced by (8.2.14). The statement and the
proof of [27, Theorem 5] remain valid.

Suppose that 0 = o, where k = (2r + k, k) € L. We define Qs , € C[X,Y],,
by
(8.2.16)

Os,0(X,Y) = ((X, Y)S (;()) . (detS)_% where § = Sg in (8.2.11).

Then for @ € S, (I'y (N)), the scalar valued (S, A, y)-Bessel period B, (®; E) of
@ is defined by

(8.2.17) Br (D;E) := (Br (D3 E), 05.0),, -

8.3. Explicit L-value formula in the vector valued case. Let us state our explicit
formula for holomorphic Siegel modular forms. In what follows, whenever we refer
to a type of an admissible representation of G over a non-archimedean local field,
we use the standard classification due to Roberts and Schmidt [93].

Let N be a squarefree integer. We say that a non-zero @ € S, (I'y (N)) is a
newform if

(1) @ € S, (To (V)™

(2) @ isaneigenform for the local Hecke algebras for all primes p notdividing N
and an eigenfunction of the local U (p) operator (see Saha and Schmidt [99,
2.3]) for all primes dividing N.

(3) The representation 7 (@) of G (A) is irreducible.



GROSS-PRASAD CONJECTURE AND BOCHERER CONJECTURE 77

Then the following theorem is derived from Theorem 1.2 exactly as Dickson,
Pitale, Saha and Schmidt [21, Theorem 1.13] except that we need to compute local
Bessel periods at the real place adapting to the vector valued case. We perform the
computation of them in Appendix B.

Theorem 8.1. Let N > 1 be an odd squarefree integer. Let 0 = o, where
k= (2r + k, k) with k > 2. Let @ be a non-CAP newform in S, (I'o (N)). Suppose

D
that (—E) = —1 for all primes p dividing N. When k = 2, suppose moreover that
p

7 (D) is tempered.
Then we have
|Ba (D E)[P _ 2446 L (1/2,m (&) X AL (N)) e
(D, D), Dg L (1,7 (P),Ad) v P

(8.3.1)

where ¢ = 5 if @ is a Yoshida lift in the sense of Saha [98, Section 4] and ¢ = 4
otherwise. The quantities J,, for p dividing N are given by

L if n (D), is of type llla;
Jp= (1 +p_2) (1 +p_1) x12 ifx (@), is of type VIb;
0 otherwise.

Remark 8.3. When k > 3, n (®) is tempered by Proposition 8.1.

_k
Remark 8.4. Since B (®; F) = ZI‘DE2 -B (D E) whenr =0, (1.8.2) follows from
(8.3.1) by putting N =1 and r = 0.

Remark 8.5. In the statement of the theorem, we used the notion of Yoshida lifts in
the sense of Saha [98]. Though it is necessary to extend the arguments concerning
Yoshida lifts in [98, Section 4] in the scalar valued case to the vector valued case
to be rigorous, we omit it here since it is straightforward. We also mention that the

arguments in [98, 4.4] now work unconditionally since the classification theory in
Arthur 3] is complete for G = PGSp, ~ SO (3, 2).

Remark 8.6. Recall that the L-functions in (8.3.1) are complete L-functions. We
may rewrite the explicit formula in terms of the finite parts of the L-functions by
observing that the relevant archimedean L-factors are given by

L(1/2,7 (D) x AL (A)) =2 Q) 2** )T (k+r - 12T (r+1)2

and

L(1,n (D) ,Ad) = 26 (271-)—(4k+6r+1)
XT(k+2r)T(k—1)T (2r+2)T (2k +2r - 2)
respectively.

Remark 8.7. Let us consider the case when D is a quaternion algebra over Q which
is split at the real place, i.e. D(R) ~ Matyy»(R). Assuming that the endoscopic
classification holds for Gp = Gp/Zp, we may apply Theorem 1.2 to holomorphic
modular forms on Gp (A). In this case, Hsieh-Yamana [55] compute local Bessel
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periods and show an explicit formula for Bessel periods such as (8.3.1) for scalar
valued holomorphic modular forms, including the case when Gp = G and N is an
even squarefree integer. Meanwhile we shall maintain N to be odd in Theorem 8.1,
since our computation of the local Bessel period at the real place in the vector
valued case in Appendix B is performed under the assumption that N is odd.

As we noted in Remark 1.5, after the submission of this paper, Ishimoto [59]
showed the endoscopic classification of SO(4, 1) for generic Arthur parameters.
Therefore, we may apply our theorem to the case of Gp ~ SO(4, 1).

Remark 8.8. A global explicit formula such as (8.3.1) is obtained in a certain
non-squarefree level case by Pitale, Saha and Schmidt [90, Theorem 4.8].

APPENDIX A. EXPLICIT FORMULA FOR THE WHITTAKER PERIODS ON G = GSp,

Here we shall prove Theorem 6.3.

Let (7, V) be an irreducible cuspidal globally generic automorphic representa-
tion of G (A). Then Soudry [103] has shown that the theta lift of 7 to GSO3 3 is
non-zero and globally generic. We may divide into two cases according to whether
the theta lift of 7 to GSOs3 3 is cuspidal or not.

Suppose that the theta lift of 7 to GSO3 3 is cuspidal. Since PGSOz 3 ~ PGL4
and the explicit formula for the Whittaker periods on GL, is known by Lapid
and Mao [71], the arguments in 6.2 and 6.2.3, which are used to obtain (6.1.6)
in Theorem 6.1 from (6.2.3), work mutatis mutandis to obtain (6.2.3) from the
Lapid—Mao formula in the case of GL4.

Suppose that the theta lift of 7 to GSOj3 3 is not cuspidal. Then the theta lift of
7 to GSO,; is non-zero and cuspidal.

Thus here we give a proof of Theorem 6.3 only in the case when x is a theta lift
from GSO, . Recall that PGSO, > ~ PGL; X PGL,. Our argument is similar to
the one for [76, Theorem 4.3]. Indeed we shall prove (6.2.3) by pushing forward
the Lapid—Mao formula for GSO, > to G.

A.1. Global pull-back computation. Let (X, (, )) be the 4 dimensional symplec-
tic space as in 3.1.2 and let {x, x2,x_1,x_»} be the standard basis of X given by
(3.1.5).

Let Y = F* be an orthogonal space with a non-degenerate symmetric bilinear
form defined by

(vi,v2) ="viJgvy forvi,va €Y
where Jy is given by (2.1.6). We take a standard basis {y_», y_1, y1, y2} of Y = F*
given by
y_» ="(1,0,0,0), y_1="(0,1,0,0), y;=(0,0,1,0), y>=70,0,0,1).
We note that (y;, y—;) = 6;; for 1 <i,j < 2.

Put Z = X ® Y. Then Z is naturally a symplectic space over F. We take a
polarization Z = Z, ® Z_ where

Z,=X.®Y
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and X, = F-x.1+F-x.,. Here all the double signs correspond. When z, = x; ®a;+
Xy ®ap € Z, (A) where ay,a; € Y, we write z, = (ai,az) and ¢ (z4) = ¢ (ay,az)
forp € S (Z; (A)).

Let N, > denote the group of upper triangular unipotent matrices of GO, 5, i.e.

1 x y —xy
010 -

N2,2(F): 0 0 1 _;} |x,y€F
0 00 1

We define a non-degenerate character ¥, » of Np 2(A) by

1 x y —xy
010 —-y|_

'7[’2,2 00 1 _ _¢(x+y)‘
00 0 1

Then for a cusp form f on GSO;» (A ), we define its Whittaker period W, 2 (f) by

Waa(f) = / f(n) ¥ (n)~" dn.
N2 2(F)\N22(A)

The following identity is stated in [42, p.113] but without a proof. Though it is
shown by an argument similar to the one for [42, Proposition 2.6], here we give a
proof for the convenience of the reader.

Proposition A.1. Let ¢ be a cusp form on GOy (A). For ¢ € S(Z(A),), let
Oy (¢, @) (resp. 0y (¢, ¢)) be the theta lift of o (resp. the restriction of ¢ to

GSOs5 (A)) 10 G (A).
Then we have
(A.1.1)
Wau, ©uto.0) = [ B8 (2, yo1 431 Wy (0(2) ) dg
No(A)\O22(A)

where Ny denotes the unipotent subgroup

1 x —x x?
01 0 -—x
M=o o 1 x|
00 0 1
which is the stabilizer of y_, and y_1 + y1.
Similarly we have
(A.1.2)
Wy, (04 (9. ¢)) = / $(¢™" (v-2,y-1 + 1)) Wy, , (07 (8)¢) dg.
No(A)\SO22(A)
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Proof. Since the proofs are similar, we prove only (A.1.1). From the definition of
the theta lift, we may write

/ Oy (¢, ¢) (ug) Yug (u)™" du
N(F)\N(A)

_ /O D0 wy(g. ) plar,a)g(h) dh

22(FN022(A) (4 ") ex

where
_ ((ar,a1) (ar,az2)) _ (0 O
X= {(ala‘ZZ) €Y(F): ((a;,ai) (a;,ai)) - (0 1)}

Then as in [23, Lemma 1], only (aj,a;) € X such that a; and a; are linearly
independent contributes in the above sum. Thus, by Witt’s theorem, we may
rewrite the above integral as

/ >, wy (g MOy y-2, ™ (y-1 +y1)) @(h) dh
0220FN022(4) Ny (F)\022(F)
=/O > wy (8 YW @(y-2,y-1+y1) ¢(h) dh

2,2(F)\O22(A) yeNo(F)\022(F)

- / w0y (g M) (—2, y-1 + 1) @(h) dh
No(F)\O22(A)

=/ / wy (8 h)¢(y-2,y-1 +y1) ¢(nh) dndh.
No(A)\Oz2(A) JNo(F)\No(A)

Thus by (6.2.1) we have
(A13) Wi, @ (.00 = [ i /
No(A)\O22(A) N2 (F)\N2(A) J No(F)\Np(A)
wy (m(u)g, h)¢(y_2,y_1 + y1)e(nh)yu, (m(u))™" dhdu.
Here we have

wy (m(u)g, h)d(y-2,y-1+y1) = wy (g, mo(u)h)p(y_2,y-1+y1)

2

1 ¢ g a
2 2 4 -
where mg(u) = 8 (1) (1) 2 foruz(o 1),since Yug(mu)~! = y(-a).
2
0 0 0 1
By noting the decomposition
O e T L i e [
010—y:010—%01 0o -2
001 —x| fo o 1 -Zfflo o 1 =-Z2[
000 1 0 0 0 1 J\0o o0 0 1

the required identity (A.1.1) follows from (A.1.3). O
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Recall the exact sequence
1 - GSOz,z - GOz,z — Uy — 1.

Hence we have

0u(s.0)(0) = [ 0,(¢° : 6°)(g) de
2 (F)\uz (A)
where ¢® = o (&) and ¢® = wy (g)¢. Thus we have
2
Wau, @0 00| = [ Wy, (By (9%, 6%)) de
M2 (F)\pu2(A)
where
T (00470 = [ W, (04 (6, 6%)) Wy (0 (9 9) de.
w2 (F)\p2(A)

A.2. Lapid-Mao formula. Let us recall the Lapid-Mao formula in the GL; case.
Let (7, V;) denote an irreducible cuspidal unitary automorphic representation of
GL,(A). Then for f € V,, its Whittaker period is defined by

1 x

W= [ rl 3)eens

\Zvvith the Tamagawa measure dx = [ dx,. Let v be a place of F. For f, € 7, and
fv € Ty, by [76] (see also [71, Section 2] ), we may define

Wa(fo, ﬁ) = ./I; B‘rv (7o (xv) fos ﬁ)‘/’v(_x\/) dx,.

Put
L(1,7,,Ad)
{r,(2)

which is equal to 1 at almost all places v by [71, Proposition 2.14]. Let us define

o f) = / F(9) dg
AXGLy(F)\GL2(A)

where dg is the Tamagawa measure. We note that Vol (A *GL,(F)\GL,(A), dg) =
2. Further, let us take a local GL, (F,)-invariant pairing (, ), on 7, X 7, such that
(f, ) =TI{fv, fi)v- Then by [71, Theorem 4.1], we have

2 1 _&r@ T
(A2.1) WD =3 Tirag | WU T).

Wi (fo o) = Wa(fus 1)

for a factorizable vector f = ®f,, € V..
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A.3. Local pull-back computation. We fix aplace v of F' which will be suppressed
from the notation in this section. Further, we simply write X (F) by X for any
object X defined over F. Let o be an irreducible tempered representation of GO, >
such that its big theta lift ®(o) to H is non-zero. Because of the Howe duality
proved by Howe [52], Waldspurger [113] and Gan-Takeda [37], combined with
Roberts [95], ®(o ) has a unique irreducible quotient, which we denote by n. Put
R ={(g,h) € G XG0y, : A(g) = v(h)}. Then we have a unique R-equivariant
map
0:wy ®0 > .

Let B, : wy ® w, — C be the canonical bilinear pairing defined by

Bu(0.8)= [ 603w d
By [39, Lemma 5.6], the pairing Z : (0 ® 0) ® (wy, ® wy) — C, defined as

{r(2)r(4)

L(1,o,std) Jo,, Bo(wy (h)¢. ) (o (). G) dh,

Z(w’ QZ’ ¢’ a) =

which converges absolutely by [76, Lemma 3.19], gives a pairing 8, : 1®71 — C
by
B (0(¢,$),0(, ) = Z(¢, 8.6, 9).

Proposition A.2. We write yo = (y-2,y-1 +y1). Forany u € Ny,

(5F(2)§F(4) )_1 St

L1 o std) B (x(nm(u)0(¢, ¢),0(, $)uy (n) " dn

Nu

= / / (wy (g.m(u)¢) (yo)d(h~" - yo)(o(8)p, o (h)@) dg dh.
02’2 No\SOz’z
Let us define

Wy, (f1.12)) =/ Br(m(u) fi, L)W (u) du.

Un

Take the measure dho = 2dh|so, ,. Then

L(1,0,std)

_ st S
[V2 */02,2 -/NO\SOM ((Ux//(g’ m(u))¢) (yo)¢(h=" - yo)
X (o (g)e,o(h)p)dg dhdu.

By an argument similar to the one for [28, Section 3.4.2] and [29, Section 5.4], we
see that this is equal to

-1
(L2 D)y, . 00.07.5)

/N\o /N\so /N (‘“z/r(g’m(u))fﬁ)(YO)m@'(g)go,o-(h)@dgdhdu,
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Further, it is equal to

st . #
(A3.1) Zl /N o /N o /N (w05 m@)9") 0F0 T30
X {o(g)¢®, a(h)g)dg dhdu

- [ et 0 ) Waa(o ()¢t o (1) de dh
No\SO2,2 J/ No\SO;,»

e=+1

where we define
St

Wan(er.¢2) = | (oWer, )5 5w)du for ¢; €V,
Nap

Let us introduce a measure d’h = {r(2)>dh. Then we get

W, @.0.0@3) =Y, [ e y0dn
H No\SO2,2 J/ No\SO,»

e=+1

x Wy, (0 ()¢, o (D)§) dg d'h.
Here
. L(1,01,Ad)L(1, 0>, Ad)
Wi (0g" o () = =T

A.4. Proof of Theorem 6.3. Let (0, V) be an irreducible cuspidal automorphic
representation of the group GO, 2(A). Suppose that o is induced by the rep-
resentation o; ® 03 of GLy(A) X GLy(A). For f = fi® f» € Vo, @V, We
have

Wouh = [ al("3)m)eoa [ on(( ) m)uena

for h = (h1, hy) € SO22(A). Moreover, for any place v of F, we have

Wi (0. B0) = Wy (01,02 81.0) W (02,0, 2.v)

with ¢, = (¢1,v, ¢2.v) and @, = (@14, ¥2,,). Then by (A.1.2) and the Lapid-Mao
formula (A.2.1), we obtain

Wra(o(9)e®, o (h)e).

| {r(2)?
Wowy O™ 97) = 4 T G AD LT 00, AD)

x W (7(80)92) as (E(hvm)a))
-/llz(F)\.uz(A) lj / /(NO(FV)\Soz,z)Z ((,D,z g
X ¢(gy" - v0)d, (B! - vo) dg dh

1 (r(2)? /[
4 L(1, 01, Ad)L(1, 02, Ad) J iy (Fy\a(a) o, (No(Fy)\S02.2)
Wy, (0 (800w, T (1)) 05 (25" - 0) b (" - yo) dg dh.
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By (A.3.1), this is equal to

1 Cr(2)LF(4) b —_ =
I TT o AD L oA | | Wi, (0(6:00).6%,.8,)),

and thus this completes our proof of Theorem 6.3.

APPENDIX B. EXPLICIT COMPUTATION OF LOCAL BESSEL PERIODS AT THE REAL
PLACE

The goal of this appendix is to compute explicitly the local Bessel periods at the
real place and to complete our proof of Theorem 8.1. In this section, we use the
same notation as in Section 8.

For a newform @ € S, (I'h (V)) in Theorem 8.1, we define a scalar valued
automorphic form ¢g s on G (A ) by

(B.0.1) $a.5(8) = (9o (8).05.,0),, forgeG(A),

where ¢g is the adelization of @ given by (8.2.9) and Qg , by (8.2.16). We note
that by the argument in [21, 3.2], ¢ s is a factorizable vector ¢p s = ®, P 5.1
For a place v of Q, we define J, by

’
a 9
(B.0.2) J = VP50 bs.v)
<¢¢,S,V’ ¢¢,S,v>v

It is clear that J,, remains invariant under replacing ¢4 _ s , by its non-zero scalar
multiple. Further, we put

40 (2) Lo (4)

L(1, xE)
with the Haar measure constant C ¢ defined by (1.6.1). Then the following identity
holds.

Theorem B.1.

(B.0.3) C=Cs

24k+6r—le—47r tr(S)
DEg
Recall that C (Qs, ) is defined by (8.2.10) for v/ = Qs 0.

(B04) c (QS,Q) Cls =

Remark B.1. In the scalar valued case, i.e. r = 0, the explicit computation of J
is done in Dickson et al. [21, 3.5] using the explicit formula for matrix coefficients
when k > 3. Meanwhile Hsieh and Yamana (55, Proposition 5.7] compute J, in a
different way when k > 2, based on Shimura’s work on confluent hypergeometric
functions.

We note that the left hand side of (B.0.4) depends only on the archimedean
representation 7 (@), and the vector ¢ s .. Thus our strategy is to first obtain
an explicit formula (B.1.12) for the Bessel periods of vector valued Yoshida lifts
by combining the results in Hsieh and Namikawa [53, 54], Chida and Hsieh [18],
Martin and Whitehouse [78], and, then to evaluate C (Qs,,) CJw by singling out
the real place contribution, comparing (B.1.12) with (1.6.2).
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B.1. Explicit formula for Bessel periods of Yoshida lifts. For a prime number
p, let

F(()l) (p) = {(Z Z) €SLy(Z):¢c=0 (mod p)}

and Sy (F(()]) ( p)) the space of cusp forms of weight k with respect to Fél) (p).

In order to insure what follows to be non-vacuous, first we shall prove the
following technical lemma.
Lemma B.1. Let k| and ky be integers with ki > ko, > 0. Then there is a
constant N = N(ky,ky, E) € R such that for any prime p > N, there exist distinct
normalized newforms f; € Sox,+2 (Fél) ( p)) fori = 1,2 satisfying the condition:

(B.1.1) the Atkin-Lehner eigenvalues of f; at p fori = 1,2 coincide.
Proof. We divide into the following two cases:

(B.1.2a) ki =k, (mod 2);

(B12b) ki+1=ky,=0 (mod 2)

Suppose that (B.1.2a) holds. Then by Iwaniec, Luo and Sarnak [60, Corollary
2.14], there is a constant N (k1, k») such that, for any prime p > N(ky, k), there

exist distinct normalized newforms f; € Sax,+2 (F (gl) ( p)) for i = 1,2 such that

e(1/2,m) =¢e(1/2,7)
where 7r; denotes the automorphic representation of GL, (A ) corresponding to f;
fori = 1, 2. Since x; is unramified at all prime numbers different from p, we have
(=D e, (1/2,m) = (=D e, (1/2,72) .

Hence &, (1/2,7m1) = &, (1/2,m2) by (B.1.2a). Then by the relationship between
the local e-factor at p and the Atkin-Lehner eigenvalue at p (e.g. [54, 4.4]), we see
that (B.1.1) holds.

Suppose that (B.1.2b) holds. Then by Michel and Ramakrishnan [79, Theorem 3]
or Ramakrishnan and Rogawski [94, Corollary B], there exists a constant N; =
Ni(k1, E) such that for any prime p > Nj, there exists a normalized newform

f1 € Sax 42 (Fél) (p)) such that
L(1/2,m)L(1/2,m X yg) #0.
In particular, £ (1/2, 1) = 1, and thus as in the previous case, we have
(-DR* e, (1/2,71) = 1.
Moreover, by [60, Corollary 2.14], there exists a constant N = N, (k) such that

for any prime p > N, there exists a normalized newform f> € Soy,+2 (F(()l) ( p))
such that

e(1/2,mp) =—-1.
Then by taking the constant N to be max(Nj, N;), the condition (B.1.1) holds by
the same argument as above. O
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B.1.1. Vector valued Yoshida lift. As for the Yoshida lifting, we refer the details to
our main references Hsieh and Namikawa [53, 54].

Let k; and k, be integers with k; > k, > 0. Then by Lemma B.1, we may take
a prime number p satisfying the condition:

(B.1.3) p is odd, and inert and unramified in E

and may take distinct normalized newforms f; € Sy, +2 (Fél) (p)) (@ =1,2) satis-
fying the condition (B.1.1).

For a non-negative integer r, we denote by (7, W,.) the representation (o, V) of
GL; (C) where 0 = 0(y,—r),1.6. T = Sym?” @ det™". We note that the action of the
center of GL, (C) on ‘W, by 7, is trivial and the pairing (, ),, is GL, (C)-invariant
by (8.2.5). Let p be a prime number and D = D, , the unique division quaternion
algebra over Q which ramifies precisely at p and 0. Let Op be the maximal order
of D specified as in [53, 3.2] and we put (jD =0p®; 7.

Definition B.1. A, (D>< (A), éD), the space of automorphic forms of weight r
and level Op on D* (A) is a space of functions g : D* (A) — W, satisfying
g (zyhu) =7, (he) ™' g (hy)
forze A%,y e D*(Q), u€OF and h = (he,hy) € D* (R) x D* (Aj).
For i = 1,2, let nr; be the irreducible cuspidal automorphic representation of
GL, (A) corresponding to f;. Let niD be the Jacquet-Langlands transfer of x;
to D* (A). We denote by Ay, (D>< (A) ,(jD) [7P] the 7P -isotypic subspace of

A, (DX (A) ,(jD). Then Ay, (D>< (A) ,ép) [zriD] has a subspace of newforms,

which is one dimensional. Let us take newforms f; € Ay, (D>< (A) ,(jD) [nlp]
for i = 1,2 and fix. Then to the pair f = (f{, ), Hsieh and Namikawa [53, 3.7]
associate the Yoshida lift 6¢, a V,-valued cuspidal automorphic form on G (A)
where o = o, with

K = (k] +k2+2,k1 —k2+2) elL.

The classical Yoshida lift 05 € S, (I'g (p)) is also attached to f in [53, 3.7] so that
O is obtained from 6 by the adelization procedure in (8.2.9).

B.1.2. Bessel periods of Yoshida lifts. Let ¢¢ s denote a scalar valued automorphic
form attached to 6; as in (B.0.1). Hsieh and Namikawa evaluated the Bessel periods
of ¢¢ s in [53].

First we remark that by [53, Theorem 5.3], for any sufficiently large prime number
g which is different from p, we may take a character A of A [ satisfying:

(B.1.4a) L(1/2,7m ® AL (Ao)) L (1/2, 7 ® AL (Agl)) £0:
(B.1.4b) the conductor of Ag is ¢""Og where m > 0;

(B.1.4¢) Ao |ax is trivial;
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(B.1.4d) Ao, 1s trivial.
Then [53, Proposition 4.7] yields the following formula.

Lemma B.2. We have
2

ki+k
(B.15)  Bs.a,u (dr.s) :qzm-(—Z\/—l) e T P(fi,Ag",lz)

i=1

where a; = (=1)"*! and
P (fi,Ag", 12) - / ((XY)k" i, (z)) CAZ (D) dt,
EXAX\AE 2k;

From (B.1.5), we have

2
2
2 _ | | .
(B16) |BS,A0,1// (¢f’S)| — q4m . 22(k1+k2) .e 4rtr(S) . |P (fi,Agl, 12)| .
i=1

Since p is odd and inert in E, we may evaluate the right hand side of (B.1.6)
by Martin and Whitehouse [78]. Namely the following formula holds by [78,
Theorem 4.1].

Lemma B.3. We have

(B.1.7) w_l £2) L(l/z’ﬂi®ﬂ] (A(‘)"')) -(1+ _1)—‘
B loe|? 4 &, ? L (1,7, Ad) p
[ (2k; +2)

2¢ma DY’ T (ki + 1)

where £(s) denotes the complete Riemann zeta function, ¢g, the scalar valued
automorphic form on D* (A) defined by

oy, (h) = ((XY)k" i, (h))Zk for h € DX (A)

i

and

lee,|* = / lpr, (W) dh.
AXD*(Q\D*(A)

Here dh is the Tamagawa measure on A *\D* (A), and thus
Vol(A*D* (Q,)\D* (A),dh) = 2.

Remark B.2. The factor % in (B.1.7) originates from the difference of measures
between the one used here and the one in [78].

In order to utilize the explicit inner product formula for vector valued Yoshida
lifts in Hsieh and Namikawa [54], we need the following lemma.

Lemma B.4. Let us define an inner product {£;,£;) fori = 1,2 by

B.18) 6 £) = 3 46 (@) (@), -
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where (., >Tk,- is defined by (8.2.6), a runs over double coset representatives of
DX (Q)\D* (Af) /OX and Ty = (a 0% a~' n D> (Q)) {1},
Then fori = 1,2, we have
I T (ki +1)? 1
TQRki+1) (2K +1)

B.19) gl =2"-3-p7 (1-p7") Af ).

Proof. Since H¢fi||2 = ”7‘[{') (hoo) ¢fi||2 for hoo € D* (R), we have

) 1
o |” = Vol (R*\D* (R), dh)

« / / \pt, (hheo)|” dh .
RA\D*(R) JA*D*(@)\D*(4)

By interchanging the order of integration, we have

) 1
||¢fi|| "~ Vol (R*X\D* (R), dheo)

x / / |6, (hhoo)|” dheo dh.
AXDX(@\D* (&) JRX\D*(R)

Here the Schur orthogonality implies

1 2

Vol (RX\DX (R),dhoo) RX\D*(R)
_ d-_l X XY ki XY ki
! (( ) ’( ) )2k

dhe

()1 (hhe)

2k;

(£ ()£ (B)

2k;
-1

i

where d; = dimSym?4 = 2k; + 1 and ((XY)k",(XY)ki)Zk = (=D)ki (Zkk}')
i L

Hence

2 Zkl - _]/ revaay
™ = 2ki +1 f;(h) . f; (h dh.
e, | (ki) (2k; +1) AXDX(Q)\DX(A)( (h) T ( ))Zki

By [53, Lemma 6], we have

(B.1.10) / (fi (h) . f; (h)) dh
AXDX(Q)\D*(4) 2k

(=D

B 2kl +1 ,/A;XDX(Q)\DX(A)

Finally by Chida and Hsieh [18, (3.10)] with the following Remark B.3, we obtain
(B.1.9). O

(& (h) . §; (), dh.

Remark B.3. In [18], the Eichler mass formula is used to express the right hand
side of (B.1.10) in terms of the inner product defined by (B.1.8). There is a typo in
the Eichler mass formula in [18, p.103]. The right hand side of the formula quoted
there should be multiplied by 2.
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Let us recall the inner product formula for ¢ by Hsieh and Namikawa [54,
Theorem A].

Proposition B.1. We have

(0. )

B.1.11) ————————
( ) (1, f1)(f2, )

2~ (2ki+6) 1

=L ) D Gk D) (e ) (1492

Here (6, 6¢) o is given by

1
[Sp2(Z) : To (p)]

with 0 = 0, where k = (k1 + ko +2, k1 — ky +2).

(05,00)0 = / (05(2),0;(2)), (dety)1=R=1 ax qy
To(p)\:

Thus by combining (B.1.6), (B.1.7), (B.1.9) and (B.1.11), we have
2
B 4k +2ky+5 ,—4mtr(S)
| Tt (ff’s)l =2 ‘ 2(14p7!) (14p72) - g
<0 ’ 9f>g DE
L(1/2,m ® AT (Ao)) L (1/2,m,® AT (A'))
L(1,m,Ad)L(1,m,Ad)L (1,7 X mp) '

(B.1.12)

Here we note that the both sides of (B.1.12) are non-zero due to the conditions
(B.1.1) and (B.1.4).

B.2. Proof of Theorem B.1. Since the Ichino-Ikeda type formula has been proved
for Yoshida lifts by Liu [76, Theorem 4.3], the computations in Dickson et al. [21]
implies

[Bs.ro (¢15)" _ Clo

(brs.drs) 22 2 (1 +P_1) (1 +p‘2) Jy

L(1/2,m ® AL (M) L (1/2,m @ AL (A'))
L(l,ﬂ'],Ad)L(l,ﬂ'Q,Ad)L (1,72'] Xﬂ'z)

(B.2.1)

Thus in order to evaluate J.,, we need to determine J,.

Here we use a scalar valued Yoshida lift to evaluate J,,. First we recall that (B.0.4)
holds in the scalar valued case, i.e. when k, = 0, as we noted in Remark B.1. By
Lemma B.1, when ¢ is large enough, there also exist distinct normalized newforms

Il € Sak+2 (Fél) (p)) and f] € $» (Fél) (p)) satisfying the condition (B.1.1), and,

a character Aj, of A} satisfying the conditions (B.1.4) for 7} (i = 1,2) where 7;
is the automorphic representation of GL; (A). Define f’ similarly for | and .
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Since (B.0.4) is valid in the scalar valued case, we have

|BS,A0,1// (¢f’,S)|2 24ki+5 ,—4 7 tr(S) c _1

(Pp.s.br.s) Dg ' (QS’Q(kl»kl))

L(1/2,7, ® AT (A)) L (1/2,7, ® AT (A,™"))
L(1,n!,Ad) L (1,75, Ad) L (1, 7! x })

-2(1+p_1)(1+p_2)-]q'

We note that J, here is the same as the one in (B.2.1). Then by comparing the
formula above with (B.1.12) for " and A, we have J, = q*m.
Finally by comparing (B.1.12) with (B.2.1) substituting J, = q*", we have

24k1+2k2+7e—47r tr(S)

Dg

(B22) C (QS,Q) Cle =

in the general case.
For @ in Theorem 8.1, a scalar valued automorphic form ¢4 s defined by

da.s(8) = (¢a (8),0s.0),, forgeG(A)

is factorizable, i.e. .5 = ®, P s,,. Let us choose k; and k, so that
(27”+k,k) = (kl +k2+2,k1 —k2+2), 1.€e. kl =r+k-2, kz =r.

Then for ¢¢ s = ®, ¢r 5., in (B.2.1), the archimedean factor ¢¢ s o iS a non-zero
scalar multiple of ¢ 5 . Thus (B.0.4) follows from (B.2.2). O

B.3. Proof of Theorem 8.1. Let us complete our proof of Theorem 8.1. By
Theorem 1.2, we have

(B.3.1)

[Bs.au (¢0.5)  Clu L(1/2,7(#) x AL () it
($o.5,Ps) 2073 L (1,7 (P),Ad) N i

where c is as stated in Theorem 8.1. By (8.2.13) and (8.2.17), we have
Bs.y (¢a,s) =2 2""S) . B, (B1E).
Since (¢a.5. pa,s) = C (0s,0) - (P, P), by Lemma 8.1, we have
2
B (B E)* _ [Bsaw (95|

(D, D)y (b5, do.s)
Thus by combining (B.3.1), (B.3.2) and (B.0.4), the identity (8.3.1) holds.

(B.3.2)

. 2—2647rt1‘(s)c (QS,Q) .

APPENDIX C. MEROMORPHIC CONTINUATION OF L-FUNCTIONS FOR SO(5) X SO(2)

As we remarked in Remark 1.3, here we show the meromorphic continuation of
LS5(s, 7 x AI(A))in Theorem 1.1, when AT (A) is cuspidal and S is a sufficiently
large finite set of places of F containing all archimedean places. The following
theorem clearly suffices.



GROSS-PRASAD CONJECTURE AND BOCHERER CONJECTURE 91

Theorem C.1. Let n (resp. ) be an irreducible unitary cuspidal automorphic
representation w of Gp(A) (resp. GLy(A)) with a trivial central character. Then
LS (s, n X T) has a meromorphic continuation to C and it is holomorphic at s = %

for a sufficiently large finite set S of places of F containing all archimedean places.

When D is split, then Gp ~ G and the theorem follows from Arthur [3]. Hence
from now on we assume that D is non-split.

By [74], for some & and A, 7 has the (&, A, y)-Bessel period. Thus we may use
the the integral representation of the L-function for Gp X GL; introduced in [84].
Then the meromorphic continuation of the Siegel Eisenstein series on GU3 3, which
is used in the integral representation is known by the main theorem of Tan [107]
(see also [89, Proposition 3.6.2]). Hence by the standard argument, our theorem is
reduced to the analysis of the local zeta integrals. Meanwhile the non-archimedean
local integrals are already studied in [84, Lemma 5.1]. Hence it suffices for us to
investigate the archimedean ones. Since the case when E, is a quadratic extension
field of F, is similar to, and indeed simpler than, the split case, here we only
consider the split case.

Let us briefly recall our local zeta integral (see [84, (28)]). Let v be an
archimedean place of F. Since we consider the split case, D, is split and we

may assume that Gp (F,) = G (F,) = GSp, (F,) and ¢ = (é _01) Then we have

Te (F,) = {g € GLa (F) | 'gég = det (g) £} = {(’y“ ){) e GLz(F)} :

In what follows, we omit the subscript v from any object in order to simplify the
notation. Let A be a unitary character of F*. Then we regard A as a character of

AL A (ER) wefy 3 emson
y X X—=Yy y X

For a non-trivial character ¢ of F, let B¢ 5, (7) denote the (&, A, y)-Bessel model
of m, i.e. the space of functions B : G(F) — C such that

B(tug) = A(t)y(u)B(g) fort € T¢(F),u € N(F)andg € G (F),

which affords 7 by the right regular representation. Let ‘W (7) denote the Whittaker
model of 7, i.e. the space of functions W : GL,(F) — C such that

w (((1) )16) g) =y (—x)W(g) forx e F and g € GL, (F),

which affords 7 by the right translation. Let Go (F) = GLy(F) X G(F) and we
regard G as a subgroup of GLg(F) by the embedding

0 b
e[t )4 )~ oL

coan o9
aox
oo

0
B
0
D



92 MASAAKI FURUSAWA AND KAZUKI MORIMOTO

Let us define a subgroup Hy of G by

1= s (3 i) (5 ) vernnereen

where

y(h) =x -y forhz(’y“ )yc) € Te (F).

Let P3 be the maximal parabolic subgroup of GL¢ defined by

hy X
P3 = {(Ol hZ) : hl,hz (S GL3} .

Then we consider a principal series representation

det hy
det Ay

3s+%
fs(h)} :

For f; € I(A,s), B € Bgpy (r) and W € W (1), our local zeta integral
Z(fs, B, W) is given by

I(A;5) = {fsiGLé(F) SC|f ((%1 fé)h) :A(dethl)

det hy

Z(fs,B,W) =/ fs (6o (g1,82)) B(82)W(g1) dgi1 dg2

Zy(F)Ho(F)\Go(F)
where Z; denote the center of G and

0 0 00 0 -1

0O 1 000 O

g0 = 1 0 00 O0 O

711 -1 1.0 0 0

0 0 00 1 -1

0O 0 01 0 -1

As explained above, Theorem C.1 follows by the standard argument if we prove the
following lemma.

Lemma C.1. Let sg be an arbitrary point in C. Then we may choose fg, B and W
so that Z( fs, B, W) has a meromorphic continuation to C and is holomorphic and
non-zero at s = .

Proof. For ¢ € CZ(GLg(F)), we may define Ps[¢] € I(A,s) by

o 0\ (13 X
] (h) = h
Polelt) /GL3<F) /GL3<F) /Mam(F)‘p((O hZ)( 13) )

. |detin ‘3”%/\ det iy
det Ay det hy

-1
) dhy dhy dX.

In what follows we construct ¢ of a special form, whose support is contained in the
open double coset P3 (F) 8pGo (F) in GLg (F).
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Let By be the group of upper triangular matrices in GL,, and, P, the mirabolic
subgroup of GL,, i.e.

PO(F)z{(g ll’)|aeFX,beF}.

We define a subgroup My of G by

Mo(F>={(’g A,?h_l)uelfx,heBo(F)}

and M = ((Pg, Mp). Then by the Iwasawa decomposition for Gy (F) and the
inclusion
(C.0.1) Ho (F) € Go (F) N6, P5 (F) 6,
we have
P53 (F) 00Go (F) = P3 (F) 6oM (F) Ko

where K is a maximal compact subgroup of Go (F). We take Ko = ¢ (K1, K»)
where K (resp. K3) is a maximal compact subgroup of GL; (F) (resp. G (F)).
By direct computations, we see that

6o N (F) 0;' NP3 (F) = {1¢};

6o M (F) 651 NP3 (F) =600 A (F) 6;";

60 Ko 65" NP3 (F) = {1¢},

A(F)z{(a'13 13):a€FX}.

Let us define subgroups Ty, No of Gg by

where

X
a
Ty (F) = L( 1), Y P cx,y,A € F* ¢
/ly_l
1y
Ny (F) = L(l )lc)’ ! | ‘x,yeF

Then for ¢; € CZ (No (F)), g2 € CZ (To (F)), 93,04 € CZ (GL3 (F)), ¢s €
C (Matsy3 (F)) and @6 € C2(Kp), we may construct ¢’ € C°(GLg(F)), whose
support is contained in P3 (F) 80G¢ (F), by

= ¢6(k)s03(h1)904(h2)905(x)¢1(no)/ @a(toa)d*a
A(F)

where ng € Ny (F), tg € Ty (F) and k € K.
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Then the local zeta integral Z(Ps[¢’], B, W) is written as

2t B w = [ o] (03 mmaonane. o)

73s+% A det hl
det /i

det /1y
X
det Ay

-1
) W(I’lo’ﬂo,] k])B(n()’zlo,zkz) dhy dh, dX dl’l() dt() dk

det 1y

—3s+% det h -1
:/‘P6(L(k1,k2))¢3(h1)904(h2)‘/75(x)¢1(”0)‘P2(IOG) dotn, A(dzh;)

X W(l’l()’] 10,1 k1 )B(l’lo’zlo,gkz) d*a dhy dhy dX dng dty dk

_3S+%A det i -
det hy det iy

s 10 11, 0
x A()|]* 2W(no,l (0 l)to,lkl)B(Ho,z( 02 12)10,2/62)

d*a dhy dhy dX dng dto dk

det

- / 06 (1K1, k)03 () ea(ha)gs(X)er (m0)@a (1)

where we write ng = L(l’lo’l,no,g) € No(F), tg = L(t()’],l‘o’z) € Ty (F) and k =
t(ky,ky) € Kp. Since we may vary ¢; (1 < i < 6), our assertion in Lemma C.1
follows from the same assertion for the integral

359 (11, 0 A0\
(C.0.2) /FXA(A)W zB( 0 12)W(O T aa

For any ¢ € C2°(F*), there exists Wy € W (1) such that W (g (1)) = ¢ (a)

by the theory of Kirillov model for GL,(R ) by Jacquet [61, Proposition 5] and for
GL,(C) by Kemarsky [66, Theorem 1]. Thus our assertion clearly holds for the
integral (C.0.2). O
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