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Abstract

Background Efficiently assessing glucose handling capacity is a critical public health
challenge. This study assessed the utility of relatively easy-to-measure continuous glucose
monitoring (CGM)-derived indices in estimatingglucosehandling capacities calculated from
resource-intensive clamp tests.
Methods We conducted a prospective study of 64 individuals without prior diabetes
diagnosis. The study performed CGM, oral glucose tolerance tests (OGTT), and
hyperglycemic and hyperinsulinemic-euglycemic clamp tests. We validated CGM-derived
indices characteristics using an independent dataset from another country and
mathematical models with simulated data.
Results A CGM-derived index reflecting the autocorrelation function of glucose levels
(AC_Var) is significantly correlated with clamp-derived disposition index (DI), a well-
established measure of glucose handling capacity and predictor of diabetes onset.
Multivariate and machine learning models indicate AC_Var’s contribution to predicting
clamp-derived DI independent from other CGM-derived indices. The model using CGM-
measured glucose standard deviation and AC_Var outperforms models using commonly
used diabetes diagnostic indices, such as fasting blood glucose, HbA1c, and OGTT
measures, in predicting clamp-derived DI. Mathematical simulations also demonstrate the
association of AC_Var with DI.
ConclusionsCGM-derived indices, including AC_Var, serve as valuable tools for predicting
glucose handling capacities in populations without prior diabetes diagnosis. We develop a
web application that calculates these CGM-derived indices (https://cgm-ac-mean-std.
streamlit.app/).

Early detection of declining glycaemic regulatory capacity is crucial for
predicting and preventing the onset of diabetes (DM)1–5. However,
optimal methods for detecting such declines have yet to be established.
While glucose tolerance is typically assessed using glycated hemo-
globin (HbA1c), fasting blood glucose (FBG) and oral glucose

tolerance tests (OGTTs)—which are also used for diagnosing diabetes
—these measures provide only snapshot measurements and fail to
capture the dynamic nature of glucose regulation under physiological
conditions6–9. Although hyperinsulinemic-euglycemic and hypergly-
cemic clamp tests are the gold standards for assessing glucose
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Plain language summary

Diabetes is a chronic disease in which the
body cannot effectively use amolecule called
insulin or does not produce enough insulin.
Insulin is a hormone that regulates a type of
sugar called glucose. Early detection of
impaired insulin-mediated glucose regulation
can be used to predict the onset of diabetes
and its complications. This study investigated
whether continuous glucosemonitors, which
are less invasive than those commonly used
to diagnose diabetes, could be useful in
detecting impaired glucose regulation. Our
results suggest that continuous glucose
monitoring data could serve as a valuable,
less invasivealternative for assessingglucose
control in individuals without diagnosed dia-
betes, allowing for better diagnosis and
monitoring of these individuals.
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regulatory capacity10, their resource-intensive nature limits their
widespread clinical use.

Continuous glucose monitoring (CGM) has emerged as a powerful
tool for capturing glucose dynamics under physiological conditions with
ease11–21. Recent studies have revealed substantial heterogeneity in glucose
fluctuation patterns, even among individuals classified as having normal
glucose tolerance (NGT) according to conventional criteria13,22, suggesting
that current diagnostic frameworks may miss subtle, early changes in glu-
cose regulation that precede clinically apparent dysglycaemia. Indeed,
decreases in insulin secretion and insulin sensitivity have been reported to
begin years before diabetes is diagnosed3.

Despite the wealth of temporal data provided by CGM, translating
these complex time-series patterns into clinically meaningful indicators of
glucose regulatory capacity remains a significant challenge. Existing CGM-
derived measures, such as the mean amplitude of glycaemic excursions
(MAGE) and J-index, have improved our understanding of glucose
variability21. However, thesemeasures focus primarily onmean or variance-
based measures, potentially overlooking critical information embedded in
temporal dynamics. Furthermore, the relationship between these CGM-
derived measures and established indices of glycaemic regulatory capacity,
such as the disposition index (DI, a product of insulin sensitivity and
secretion)2 remains poorly understood, particularly in individuals
with NGT.

Here, we propose an analytical framework that uses the auto-
correlation function of glucose to quantify the regulatory capacity of
glucose homeostasis. In a dataset of 64 individuals with no prior
diagnosis of diabetes, this framework identified a previously unrec-
ognized subgroup of individuals who, despite meeting NGT criteria,
have reduced DI comparable to those with impaired glucose tolerance
(IGT). Moreover, measures of glucose autocorrelation and variability
were independently associated with DI.

Methods
Study design and population
This study was conducted in accordance with the Declaration of Helsinki
and its amendments, and was approved by the ethics committee of Kobe
University Hospital (Approval No. 1834; Kobe, Japan). Written informed
consent was obtained from all participants. Study participants who had no
previous diagnosis of diabetes and were over 20 years old were recruited
fromKobeUniversityHospital (Hyogo, Japan) from January 2016 toMarch
2018. Exclusion criteria were: (1) taking medications that affect glucose
metabolism (e.g., steroids, β blockers); (2) patients with psychiatric dis-
orders; (3) pregnant or breast-feedingwomen; and (4) deemed unfit for any
other reason by attending physicians.

The study participants initially underwent a 75-g oral glucose tolerance
test (OGTT) in the morning after an overnight fast. Following the OGTT,
theywore a continuousglucosemonitoring (CGM)device (iPro;Medtronic,
Minneapolis,MN,USA) formore than 72 h.Within 7 days after theOGTT,
the participants underwent a consecutive hyperglycemic and
hyperinsulinemic-euglycemic clamp test.

A total of 70 participants were initially enrolled. One participant
taking a β blocker, two participants with missing CGM data, two parti-
cipants with protocol deviation, and one participant with missing OGTT
and/or clamp data were excluded from the analysis. Consequently, data
from 64 participants were used in the analysis. The sample size of 64
participants closely aligned with that of 57 individuals investigated in a
previous study, where statistically significant correlations between CGM-
derived indices and the ability to regulate blood glucose were
demonstrated14. Of note, with a type I error of 0.05, a power of 0.8, and an
expected Spearman correlation coefficient of 0.35, a sample size of 66
(Bonett and Wright’s method) or 64 (Caruso and Cliff’s method) was
required to detect a significant difference from zero in the correlation
coefficient. This sample size estimation was performed using SPSS ver-
sion 29 (SPSS Inc.).

OGTT, consecutive hyperglycemic and hyperinsulinemic-
euglycemic clamps, and CGM
In a standard 75-g OGTT, venous blood samples were collected at 0, 30, 60,
90, and 120min after glucose ingestion for measurement of plasma glucose
and serum insulin levels (measured by the hexokinase UV method (SEKI-
SUIMedical Co., Ltd., Japan) and chemiluminescent enzyme immunoassay
(Minaris Medical Co., Ltd., Japan), respectively). Given the low proinsulin-
to-insulin ratios (approximately 0.052 in normal glucose tolerance (NGT)
and 0.078 in type 2 diabetes mellitus (T2DM)23) and the minimal cross-
reactivity of this chemiluminescent enzyme immunoassay (approximately
2%24), the potential impact of proinsulin on our insulin measurements and
derived indices would be minimal compared to the inter-individual varia-
tion observed in our study (e.g., clamp disposition index values of 40.8 in
NGT versus 13.9 in T2DM) (Supplementary Table 1). In our study popu-
lation, which consisted primarily of individuals with no prior diagnosis of
diabetes, we did not find any measurements that fell below the detection
limit of insulin, which is approximately 0.5 mU/L.

The hyperglycemic and hyperinsulinemic-euglycemic clamp analysis
was performed with the use of an artificial endocrine pancreas (STG-55;
Nikkiso Co., Ltd, Tokyo, Japan) as described previously25. In brief, from 0 to
90min, a hyperglycemic clampwas performed by intravenous infusion of a
bolus of glucose (9622mg/m2) within 15min followed by that of a variable
amount of glucose to maintain the plasma glucose level at 200mg/dL. Ten
minutes after the end of the hyperglycemic clamp, a 120-min hyper-
insulinemic-euglycemic clamp was initiated by intravenous infusion of
human regular insulin (Humulin R, Eli Lilly Japan K.K., Kobe, Japan) at a
rate of 40 mU m-2 min-1 and the hyperinsulinemic state was maintained to
achieve a target glucose level of the fasting level and a serum insulin con-
centration of 100 μU/ml. Plasma glucose concentrations were measured
every minute during the clamp and averaged over a 5-min period. The data
on plasma glucose and serum insulin were also collected before and at 5, 10,
15, 60, 75, 90, 100, 190, and 220min after the onset of the clamp tests.

Data from the CGMwere used in the analysis for the 72-h period from
the next days fitted with iPro. Capillary blood glucose levels were measured
at least three times per day using a glucometer (Accucheck Performa, Roche
DiabetesCare JapanK.K., Tokyo, Japan), whichwas required for calibration
of theCGMsystem.CGMwas performed for an average of 5.5 days (SD0.7)
for all participants. The CGM measurements were completed before the
clamp tests for all participants.

Study design and population of a previously reported dataset
We also performed an analysis using a publicly available dataset of CGM
(Dexcom G4 CGM System; Dexcom, Fort Lauderdale, FL, USA), OGTT,
and steady-state plasma glucose (SSPG) test outcomes from a previously
reported study14. SSPG indicates insulin sensitivity, and was measured by
infusing octreotide, insulin, and glucose, as previously described14. The
participantsof that study, recruited fromtheSanFranciscoBayArea, hadno
previous diagnosis of diabetes14. Among the study participants (32 females
and 25males), 5, 14, and 38 individualsmet their criteria of “type 2 diabetes”
(HbA1c ≥ 6.5%, FBG ≥ 126mg/dL, or 2-h glucose during 75-g OGTT ≥
200mg/dL), “pre-diabetes” (HbA1c > 5.7% and <6.5%, FBG 100–125mg/
dL, or 2-h glucose during 75-g OGTT 140–199mg/dL) and “normoglyce-
mia” (glucose-related parameters below the diagnostic thresholds for pre-
diabetes)14. The study was approved by the Stanford Internal Review Board
(IRB 37141), and written consent was obtained for all participants.

CGM-derived parameters
CGM_Mean and CGM_Std represent the mean and standard deviation of
glucose values measured by CGM, respectively. CONGA, LI, JINDEX,
HBGI, GRADE, MODD, MAGE, ADRR, MVALUE, and MAG were cal-
culated using EasyGV software21. Here, we introduced indices, the mean
(AC_Mean) and the variance (AC_Var) of the autocorrelation function of
glucose values at lags 1–30 with a lag of 5min. The code that calculates
AC_Mean and AC_Var is available from the repository (https://github.
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com/HikaruSugimoto/CGM_AC)26 and the web application (https://cgm-
ac-mean-std.streamlit.app/). While autocorrelation function has been used
to analyze this type of time series data27,28, it has not been thoroughly
investigated to date. AC_Mean and AC_Var used in analyzing blood glu-
cose levels after consuming standardized meals14 were calculated from the
autocorrelation function at lags 1–10, aswehadCGMdata available for only
2.5 h after standardized meals were consumed.

DTW_Low, DTW_Mod, and DTW_Sev are previously proposed
CGM-derived indices that represent the dysregulation of glycemia14. These
indices were calculated by a previously reportedmethod14. In brief, the time
series data of CGM were fragmented into sliding windows of 2.5 h, with a
75% overlap. Then, by applying spectral clustering, three clusters of glucose
patterns (low,moderate, and severe)were identified, and the fractionof time
in each category was defined as DTW_Low, DTW_Mod, and DTW_Sev,
respectively.

Calculation of clinical indices
As previously described29,30, we calculated indices related to glucose hand-
ling capacities, as follows.

Insulinogenic index (I.I):
Ratio of the increment of immunoreactive insulin (IRI) to that of

plasma glucose at 30min after the onset of the OGTT.
Composite index:

10000=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FPG× FIRI×G× I
ph i

;

where FPG, FIRI, G, and I are fasting plasma glucose, fasting IRI, mean
blood glucose levels, andmean serum IRI concentrations during theOGTT,
respectively.

Oral DI:
Product of the composite index and the ratio of the area under the

insulin concentration curve from 0 to 120min to that for plasma glucose
from0 to120min,withoutusing thedatameasured at 90min, in theOGTT.

AUC_IRI:
Incremental area under the IRI concentration curve from 0 to 10min

during the hyperglycemic clamp.
Insulin sensitivity index (ISI):
The mean glucose infusion rate during the final 30min of the clamp

(mg/kg/min)dividedbyboth theplasmaglucose (mg/dL) and serum insulin
(μU/mL) levels at the end of the clamp and then multiplying the resulting
value by 100.

Clamp DI:
The product of AUC_IRI and ISI.
Metabolic clearance rate of insulin (MCRI):
Ratio of insulin infusion rate to the steady-state plasma insulin con-

centration during the hyperinsulinemic-euglycemic clamp test.

Mathematicalmodel estimating insulin sensitivity, secretion, and
clearance
To estimate insulin sensitivity, insulin secretion, and insulin clearance from
clamp tests, we constructed amathematical model of the feedback loop that
links glucose and insulin as shown in a previous study29 as follows:

dG
dt

¼ flux1� flux2þ flux3� flux4þ influxG

¼ k1Y � k2Gþ k3
k8 þ I

� k4GI þ f 1 tð Þ
ð1Þ

dI
dt

¼ flux6� flux7þ influxI ¼ k6X � k7I þ f 2 tð Þ ð2Þ

dY
dt

¼ �flux1þ flux2 ¼ �k1Y þ k2G ð3Þ

dX
dt

¼ flux5� flux6 ¼ k5Y � k6X; ð4Þ

where the variables G and I denote blood glucose and insulin concentrations,
respectively. The variable Y denotes the effective glucose on induction of
variable X, which can be regarded as secreted insulin from β-cells. The fluxes,
influx G and influx I denote glucose and insulin infusions, respectively. These
fluxes were estimated using the previously reported method29, as follows.

For each of the 64 participants, the parameters of the model to
reproduce the time course were estimated by a meta-evolutionary pro-
grammingmethod to search theminimumglobally, followed by application
of the nonlinear least squares technique to search the minimum locally, as
previously described30. Each parameter of the model for serum glucose and
insulin concentration was estimated in the range from 10–4 to 104. For these
methods, the parameters were estimated tominimize the objective function
value, which is defined as residual sum of the square (RSS) between the
actual time course obtained by clamp analyses and the model trajectories.
RSS used in the model for serum glucose and insulin concentration was
given by the following equation:

RSS ¼ nI
nG þ nI

X

nG

i¼1

G ti
� �� Gsim ti

� �� �2

þ nG
nG þ nI

X

nI

i¼1

I ti
� �� Isim ti

� �� �2
;

ð5Þ

where nG and nI are the total numbers of time points of measuring blood
glucose and insulin, respectively, and ti is the time of i-th time point. G tð Þ
is the time-averaged blood glucose concentration within the time range
ðt � 5Þ min to t min with every 1-min interval, I tð Þ is the blood insulin
concentration at t min. GsimðtÞ and IsimðtÞ are simulated blood glucose
and insulin concentrations, respectively. Blood glucose and insulin
concentrations of each subject were normalized by dividing them by the
respective maximum value. The numbers of parents and generations in
the meta-evolutionary programming were 400 and 4000, respectively. Of
note, the previous study showed that this mathematical model was
reasonably able to capture the essential characteristics of the time-series
data, and k4, k5, and k7 well represent insulin sensitivity, secretion, and
clearance, respectively29. This simulation was conducted using MATLAB
R2021a (https://jp.mathworks.com/).

Mathematical model used for simulating the characteristics of
AC_Mean and AC_Var
In simulating the characteristics of AC_Mean and AC_Var, we used a
simple and stable model31, which can be written as follows:

dG
dt

¼ �kgluG� ksenIGþ kpro þ f ð6Þ

dI
dt

¼ ksec
ktim

Z t

t�ktim

Gds� kcleI ð7Þ

where the variables G and I denote blood glucose and insulin concentra-
tions, respectively. Parameter values reported as the averages for healthy
subjects were as follows31:

kglu ¼ 0:0226; ksen ¼ 5:64× 10�5; kpro ¼ 1:93;

ksec ¼ 0:074; ktim ¼ 14:9; kcle ¼ 0:1262:

We simulated how 24-h profiles of G changed as ksecksen and kcle,
which correspond to the DI and insulin clearance, respectively, were
changed from one-half to twice as large as the values. Five mg/dL/min
glucose was applied for 10min at 6-, 12-, and 18-h as the external input
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of glucose f . We also validated the results using another mathematical
model representing both a single meal and daily life32. We also calculated
the AC_Mean and AC_Var from G added with zero-mean gaussian
white noise with variances of 0.25, 0.5, or 1. This simulation was con-
ducted using SciPy v1.10.133.

Statistics and reproducibility
We investigated the predictive performance of CGM-derived indices for
assessing the glucose handling capacities across five major methodologies:
multiple linear regression, partial least squares (PLS) regression, least
absolute shrinkage operator (Lasso) regression, random forests, and logistic
regression. These regression models were used to estimate the important
features for the predictions34–36. Of note, these prediction models were
conducted as post hoc analyses, not to discuss the sufficiency of the input
variables, but to estimatewhich of the input variables examined in this study
are important in the predictions. Given this purpose, we performed only
these five models. The input variables for these models consisted of 27
variables: body mass index (BMI), abdomen circumference (Acir), body fat
percentage, systolic blood pressure (SBP), diastolic blood pressure (DBP),
total cholesterol (TC), triglycerides (TGs), low-density lipoprotein choles-
terol (LDL-C), high-density lipoprotein cholesterol (HDL-C), FBG,HbA1c,
CGM_Mean, CGM_Std, CONGA, LI, JINDEX, HBGI, GRADE, MODD,
MAGE, ADRR,MVALUE,MAG, DTW_Mod, DTW_Sev, AC_Mean, and
AC_Var. This modeling was conducted using scikit-learn v1.0.2., a python-
based tool kit (https://scikit-learn.org/stable/).

The predictive performance assessment of multiple linear regression
included measures such as the coefficient of determination (R2), the
adjusted coefficient of determination (AdjR2), and Akaike information
criterion (AIC). The multicollinearity of the input variables was estimated
by the variance inflation factor (VIF). PLS regression was conducted to
estimate the importance of the input variables in predicting the DI. The
variable importance in projection (VIP) scores37, which were generated
from PLS regression, were used for estimating the importance of the input
variables. Lasso regression is a kind of linear regression with L1
regularization38,39. The optimal regularization coefficients, lambda, were
based on leave-one-out cross validation. For multiple linear regression, PLS
regression, Lasso regression, and logistic regression, z-score normalization
was performed on each input variable.

Random forest is an ensemble learning method, which generates
classification decision trees by selecting subsets of input predictor variables
randomly40. Random forests have been used to predict T2DM and its
complications, and to estimate risk factors associatedwith T2DM36,41,42. The
study employed 300 decision treeswithGini as the criterion for determining
the best splits. The predictive performance of random forests was assessed
using accuracy and F1 score based on leave-one-out cross-validation. The
importance of the input variables in predicting glycemic anomaly is based
on the permutation and the feature importance function of the random
forest function. Boruta43 was also used to test whether the input variables is
usable for the prediction.

Associations between indices were assessed using Spearman’s cor-
relation test, and correlation coefficients were reported with 95% con-
fidence intervals (CIs) through bootstrap resampling. The number of
resamples performed to form the bootstrap distribution was set at 10000.
P < 0.05 was considered statistically significant. Benjamini-Hochberg’s
multiple comparison test was also performed with a significance
threshold of Q < 0.05.

Hierarchical clustering analysis was also conducted using a method
that combines Euclidean distance measure and Ward linkage. It was
adopted after Z score normalization. Comparisons among individuals in
each cluster were performed by analysis of variance followed by Tukey’s
honestly significant difference test.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Characterization of glucose dynamics using autocorrelation
functions
To more accurately and comprehensively evaluate glucose handling capa-
city, we developed CGM-derived measures based on autocorrelation
functions: AC_Mean and AC_Var (Fig. 1a, Methods). These quantify how
quickly glucose autocorrelation decays with increasing time lag, reflecting
the degree of similarity between current glucose levels and those several
minutes earlier. For example, individuals with higher clamp test-derived
disposition index (clamp DI) showed gradual glucose fluctuations char-
acterized by slow autocorrelation decay (e.g., participant #13: clamp DI =
65.7, AC_Mean = 0.62, AC_Var = 0.049), whereas those with lower clamp
DI showed rapid fluctuations with steep autocorrelation decay (e.g., parti-
cipant #46: clamp DI = 11.5, AC_Mean = 0.24, AC_Var = 0.12). Conven-
tional measures failed to capture these differences, as evidenced by
participant #46 having a lower mean glucose (95mg/dL) and standard
deviation (16mg/dL) compared to participant #13 (107mg/dL and 18mg/
dL, respectively). Based on these observations and the mathematical
properties of the autocorrelation function, which remains invariant under
standardization (mean = 0, variance = 1), we hypothesized that these
measures may encode information about glucose regulatory capacity not
captured by conventional measures.

Association between glucose dynamics autocorrelation and
disposition index
To test this hypothesis, we examined the relationship between these mea-
sures (AC_Mean and AC_Var) and established measures of glucose reg-
ulatory capacity, including the disposition index and insulin clearance,
which have been reported to predict the development of future T2DM
beyond FBG and plasma glucose levels at 120min during the OGTT
(PG120)1,2. Participant characteristics are detailed in Methods and Sup-
plementary Table 1.

AC_Mean showed a significant correlation with insulin clearance
(k7, r = 0.28; 95% CI: 0.04 to 0.50). AC_Var showed significant correlations
with oralDI (r=–0.28; 95%CI:–0.51 to–0.02), clampDI (r=–0.31; 95%CI:
–0.52 to –0.07), insulin sensitivity (k4, r= –0.31; 95%CI: –0.52 to –0.06) and
insulin clearance (k7, r = –0.31; 95% CI: –0.54 to –0.06) (Fig. 1b). These
correlations remained significant after Benjamini–Hochberg multiple test-
ing (Q < 0.05). AC_Mean also showed a statistically significant correlation
with k4k5 (corresponding to the clamp DI, r = 0.29; 95% CI: 0.05 to 0.50).
AC_Var showed statistically significant correlations with k4k5 (r = –0.29;
95% CI: –0.50 to –0.05) and metabolic clearance rate of insulin (MCRI,
r = –0.33; 95% CI: –0.55 to –0.08). Furthermore, AC_Mean and AC_Var
calculated from different lags were significantly correlated with k7, oral DI,
and clamp DI (Supplementary Fig. 1a).

For comparison, we assessed conventional measures including FBG,
HbA1c, andCGM-derivedmeasures such asmean (CGM_Mean), standard
deviation (CGM_Std), and dynamic time warping-based measures
(DTW_Low,DTW_Mod, andDTW_Sev). TheDTW-basedmeasureshave
been shown to identify individuals with decreased ability to control blood
glucose inpopulationsprimarily classified ashavingNGT14.Thesemeasures
were not significantly correlated with all of oral DI, clamp DI, k4, and k7,
with which AC_Var was significantly correlated, but were significantly
correlated with PG120, insulinogenic index (I.I.), and the composite index,
with which AC_Var was not significantly correlated (Fig. 1b), suggesting
that autocorrelation-based measures capture different aspects of glucose
regulation than conventional measures.

Combined use of CGM-derived indices improves prediction of
glucose handling capacity
The dynamic time warping used to calculate DTW_Low, DTW_Mod and
DTW_Sev globally aligns time series data and may not fully capture auto-
correlated structural information44. As a result, these DTW-basedmeasures
primarily reflect the mean and variance of glucose levels45,46. In contrast,
AC_Var, calculated from the autocorrelation function of glucose levels, can
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vary independently of mean and variance, given its definition formula.
Indeed, AC_Var was not significantly correlated with DTW_Sev (r = 0.06;
95% CI: –0.20 to 0.32). Based on these rationales, we hypothesized that
combining AC_Var with the DTW-based measures could improve the
prediction of glucose handling capacity.

To test this hypothesis, we examined the relationship between
DTW_Mod, DTW_Sev, AC_Var, DI, and diabetes diagnosis (Fig. 1c–h).
Given the strong correlation between AC_Mean and AC_Var (r = –0.74;
95% CI: –0.85 to –0.60), we focused on AC_Var. As DTW_Low,
DTW_ModandDTW_Sev sum to1,we excludedDTW_Low.WechoseDI
because it effectively reflects glucose disposal capacity and predicts the
development of T2DM47. Clustering analysis based on DTW_Mod,
DTW_SevandAC_Var (Fig. 1c) revealed fourdistinct groups: cluster 1 (low
DTW_Sev, lowAC_Var), cluster 2 (lowDTW_Sev, highAC_Var), cluster 3
(high DTW_Sev, low AC_Var) and cluster 4 (high DTW_Sev, high
AC_Var). Participants in cluster 3 had significantly lower oral DI compared
to cluster 1 (Fig. 1d), while those in cluster 2 had significantly reduced clamp

DI compared to cluster 1, suggesting that elevated DTW_Sev (cluster 3) or
AC_Var (cluster 2) is associatedwith reducedDI.Aspredicted, cluster 4had
significantly lower values for both oral DI and clamp DI compared to
cluster 1.

We next investigated the association between cluster assignment and
diabetes diagnosis (Fig. 1e). Cluster 4 was enriched for impaired glucose
tolerance (IGT) and T2DM, whereas cluster 1 contained predominantly
individualswithNGT.Among thosediagnosedwithNGT, some individuals
with high AC_Var were assigned to clusters 2 or 4. Within this NGT
subgroup (NGT_2), clamp DI values were significantly lower than NGT
individuals in cluster1 (NGT_1) andcomparable to thosewith IGT(Fig. 1f),
suggesting that AC_Var can identify individuals who are diagnosed asNGT
based on FBG, HbA1c and OGTT, but whose disposition index is as low as
that of IGT.

We thenperformedmultiple regression analyses amongoralDI, clamp
DI, and the CGM-derived indices (Fig. 1g–i). R2 of the models predicting
oral DI and clampDI fromDTW_Mod,DTW_Sev, andAC_Var were 0.24

Fig. 1 | Characterization of glucose dynamics using autocorrelation functions.
a Representative continuous glucose monitoring (CGM) time series data and their
corresponding autocorrelation functions from two participants. Red lines indicate
the mean autocorrelation values (AC_Mean), with red shading indicating the var-
iance (AC_Var). The autocorrelation was calculated with different time lags, where
lag 1 represents the correlation (R) between glucosemeasurements taken 5 min apart
(Glucose (t) vs Glucose (t+ 5 × 1)), lag 5 represents 25-min intervals (Glucose (t) vs
Glucose (t+ 5×5)) and lag 15 represents measurements 75-min intervals (Glucose
(t) vs Glucose (t+ 5 × 15)). bHeatmap of Spearman’s correlation coefficient with P
values for testing the hypothesis of no correlation. The analysis is based on data from
64 participants. c Hierarchical clustering of CGM-derived indices (DTW_Mod,
DTW_Sev, andAC_Var) in 64 participants using Euclidean distance as ametric with
the Ward method. Rows represent individual participants and columns show the
standardized values of theCGM-derived indices. dBox plots of oralDI and clampDI
for each cluster. Each point corresponds to the value for a single participant.

*P < 0.05. The P values corresponding to the symbols are as follows: Cluster 1 (Oral
DI) vs Cluster 3 (Oral DI), 0.038; Cluster 1 (Oral DI) vs Cluster 4 (Oral DI), 0.006;
Cluster 1 (ClampDI) vsCluster 2 (ClampDI), 0.034; Cluster 1 (ClampDI) vsCluster
4 (Clamp DI), 0.021. e Sankey diagram showing the relationship between cluster
assignment and diabetes diagnosis. f Clamp DI values stratified by glycaemic sub-
types: NGT_1 (NGT in cluster 1), NGT_2 (NGT in cluster 2 or 4), and IGT. The P
values corresponding to the symbols are as follows: NGT_1 (Clamp DI) vs NGT_2
(Clamp DI), 0.047; NGT_1 (Clamp DI) vs IGT (Clamp DI), 0.030. g–i 95% con-
fidence intervals for regression coefficients showing the contributions of: (g)
DTW_Mod, DTW_Sev and AC_Var to oral DI; (h), DTW_Mod, DTW_Sev and
AC_Var to clamp DI; and (i), CGM_Std and AC_Var to clamp DI. PG120, plasma
glucose concentration at 120 min during the oral glucose tolerance test; I.I., insuli-
nogenic index; oral DI, oral disposition index; AUC_IRI, area under insulin curve
during the first 10 min of hyperglycemic clamp test; ISI, insulin sensitivity index;
clamp DI; clamp disposition index.
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and 0.14, respectively. AC_Var showed significant independent negative
correlations with both oral DI (P = 0.029) and clamp DI (P = 0.010), sug-
gesting that AC_Var contributes to the prediction of DI independently of
DTW-based measures. AC_Var also had a negative correlation with clamp
DI that was statistically significant (P = 0.048) independent of CGM_Std
(Fig. 1i), which was significantly correlated with clamp DI (Fig. 1b). R2, the
adjusted coefficient of determination (Adj R2), and the Akaike Information
Criterion (AIC) of the model predicting clamp DI from CGM_Std and
AC_Var were 0.18, 0.15, and 583, respectively. Of note, R2, AdjR2, and AIC
of themodel predicting clampDI fromoralDIwere only 0.15, 0.14, and583,
respectively. Moreover, R2, AdjR2, and AIC of the model predicting clamp
DI from FBG, HbA1c and PG120 were only 0.09, 0.046, and 591, respec-
tively. Collectively, we conclude that combiningAC_Var with conventional
CGM-derived indices can increase the accuracy of predicting DI.

Relationship among clinical parameters
To provide an overview of the relationship among indices derived from
OGTT, clamp tests, CGM, and other clinical parameters, we constructed a
correlation network (Fig. 2a). AC_Mean and AC_Var showed significant
correlations with some insulin-related indices (blue nodes), but relatively
weak associations with other parameters (red, magenta and green nodes).
After Benjamini-Hochberg correction formultiple comparisons (Q < 0.05),
AC_Var retained significant correlations with oral DI and clamp DI
(Supplementary Data 1). In contrast, DTW_Sev and CGM_Mean corre-
lated significantly with FBG, HbA1c, and PG120. The weak correlations
between AC_Var and FBG, HbA1c, and PG120 suggest that it captures
different aspects of glucose regulation that cannot be captured by conven-
tional diabetes diagnosis methods.

To assess multicollinearity of the variables, we calculated variance
inflation factors (VIF) for these variables. Since the purpose of this study
was to estimate glucose handling capacities from relatively easy-to-
measure indices, we included only CGM-derived indices, indices from a
single blood test, and those from physical measurements as the input
variables (CGM_Mean, CGM_Std, CONGA, LI, JINDEX, HBGI,
GRADE, MODD, MAGE, ADRR, MVALUE, MAG, DTW_Mod,
DTW_Sev, AC_Mean, AC_Var, TC, TGs, LDL-C, HDL-C, FBG, HbA1c,
BMI, abdomen circumference (Acir), body fat percentage, SBP, and
DBP) (Fig. 2b, Methods). We removed the variable with the highest VIF
one by one until the VIF of all variables were less than 10, resulting in 18
variables (DBP, SBP, AC_Var, AC_Mean, HBGI, MAG, GRADE,
DTW_Mod, ACir, BMI, MODD, FBG, HbA1c, TG, HDL-C, LDL-C,
body fat percentage, MVALUE) (Fig. 2c). AC_Mean and AC_Var were
included in these variables. Even when excluding measures until the VIF
of all variables was less than 5, AC_Mean was included in the remaining
variables (Supplementary Fig. 1b), suggesting that the autocorrelation
function of glucose levels has relatively low multicollinearity with other
measures.

Prediction of glucose control abilities
To identify key variables forDI prediction, we used PLS regressionwithVIP
scores37 (Fig. 2d, e) and Lasso regression39 (Fig. 2f–k). PLS regression has
been used for datasets with mutually correlated input variables and output
variable, and important predictors can be estimatedbyVIP37. Lasso employs
L1 regularization, which leads to models with fewer parameters, and has
been used to select useful features to predict DM from numerous input
variables38. Cross-validation identified two optimal PLS components, with
AC_Var and several other CGM-derived measures having VIP scores >1
(Fig. 2d, e). The leave-one-out cross validation indicated that the optimal
regularization coefficients of lasso (Lambda)were 0.061 for oral DI and 3.49
for clampDI (Fig. 2f, g). At these Lambdas, the coefficients of AC_Var were
estimated asnon-zero coefficients for bothoralDI andclampDI (Fig. 2h–k).
Collectively, these results indicate that CGM-derived indices, including
AC_Var, contribute to the prediction of DI.

To further investigate the predictive potential of glucose dynamics for
glucose regulatory capacity, we implemented random forest models using

the indices shown in Fig. 2b. Decreases in insulin secretion and insulin
sensitivity have been reported to start years before diabetes development
and to be present in the pre-diabetes stage3, and in this study, some indi-
viduals diagnosed with NGT had relatively low I.I. and composite index
(Supplementary Fig. 2a). We defined decreased glucose control abilities
based on established parameters: I.I. <0.4, composite index <3.0, FBG >
110mg/dL or PG120 > 140mg/dL (Supplementary Fig. 2a, b). These
thresholds are consistent with previously reported abnormal ranges in the
literature48–50.

Themaximum leaf nodes of the 6 and the features with AC_Mean and
AC_Varprovided the relatively better performance for predicting decreased
glucose control abilities, with the accuracy and F1 scores of 0.73 and 0.51,
respectively (Supplementary Fig. 2c). Feature importance analysis showed
that AC_Mean was a stronger predictor than conventional markers
including FBG (Supplementary Fig. 2d). TheBoruta algorithm43, whichuses
strict feature selection criteria by comparing shadow features, confirmed the
statistical significance of AC_Mean in predictive accuracy (Q < 0.05)
(Supplementary Fig. 2d).

To validate the importance of AC_Mean and AC_Var in predicting
decreased glucose control abilities, we also performed a logistic regres-
sion analysis with L1 regularization (Supplementary Fig. 2e–g). The
leave-one-out cross validation indicated that the optimal regularization
coefficients, lambda, was 18.5 (Supplementary Fig. 2e, dashed line). At
this lambda, the coefficient of AC_Var was estimated as non-zero coef-
ficient (Supplementary Fig. 2f, g). Collectively, these results indicate that
including AC_Mean or AC_Var alongside conventional indices
improves the accuracy of identifying individuals with decreased glucose
handling capacities.

Validation of the characteristics of AC_Mean and AC_Var using
an independent dataset
To validate the utility of AC_Mean and AC_Var in predicting glucose
control capacity, we analyzed an independent dataset14 of 57 participants
who were free from prior diabetes diagnosis, with 5 individuals meeting the
criteria for T2DM, 14 having pre-DM, and the remaining participants
havingNGT (Methods). A correlation network showed that AC_Mean and
AC_Var were significantly correlated with insulin sensitivity (SSPG, r =
–0.36; 95% CI: –0.57 to –0.09 and r = 0.48; 95% CI: 0.23 to 0.68, respec-
tively), while showingmodest correlations with other CGM-derived indices
(Fig. 3a). These associations remained significant (Q < 0.05) after
Benjamini–Hochberg correction formultiple comparisons (Supplementary
Data 2). These results were consistent with the result that AC_Var was
significantly correlated with k4, which corresponds to insulin sensitiv-
ity (Fig. 1b).

The assessment ofmulticollinearity using VIF revealed that AC_Mean
exhibited relatively low multicollinearity with other indices (Fig. 3b, c),
consistent with findings from previous analyses (Fig. 2b, c). The VIF of the
indices calculated using the previously reported dataset (VIFp) and those
calculated using the dataset obtained in this study (VIFt) were statistically
significantly correlated (Fig. 3d), confirming the reproducibility of the
relationships between the clinical parameters.

PLS regression identified AC_Var as an important predictor of SSPG
(VIP > 1; Fig. 3e). Similarly, Lasso regression with leave-one-out cross-
validation (Lambda = 0.69) confirmed AC_Mean and AC_Var as sig-
nificant predictors of SSPG (Fig. 3f–h).

To investigate the effects of meal composition on AC_Mean and
AC_Var, we calculated these indices using the previously reported CGM
data that were collected after consuming standardized meals14 (Supple-
mentary Fig. 3). The standardizedmealswere about the same in calories, but
differed in the amounts of proteins, fat, and fiber: cornflakes and milk
(Cereal) were low in fiber and high in sugar, peanut butter sandwiches
(Bread and PB) were high in fat and high in protein, and PROBAR protein
bars (Bar) were moderate in fat and protein. The previous study indicated
that DTW_Low, DTW_Mod, and DTW_Sev were able to capture the dif-
ferences in glucose fluctuations due to different meals (Supplementary
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Fig. 3a)14. By contrast, one-way analysis of variance for testing the sig-
nificance of differences in AC_Mean andAC_Var for eachmeal showed no
significant difference (Supplementary Fig. 3b), suggesting that AC_Mean
and AC_Var were more robust to meal types.

AC_MeanandAC_Var reflectchanges inglucosedynamicswhen
DI and insulin clearance change simultaneously
We next examined AC_Mean and AC_Var characteristics using simulated
blood glucose data. We focused on DI and insulin clearance, as these

Fig. 2 | Relationship between clinical measures. a A spring layout of the correlation
network of CGM-derived indices (red), blood glucose-related indices (magenta), insulin
sensitivity, secretion, and clearance-related indices (blue); and other clinical measures
(green).Relationshipswith absolute Spearman’s correlation coefficients of 0.25 orhigher
are connected with edges. The width of the edges is proportional to the corresponding
correlation coefficient. b VIF of all variables. c VIF of each variable remaining after
removing the variable with the highest VIF one by one until the VIF of all variables are
less than 10.d, eVIP scores fromPLS regression for predicting (d) oralDI and (e) clamp
DI. Dotted lines indicate significance threshold (VIP ≥ 1). f, g Relationship between
regularization coefficients (Lambda) and the mean squared error (MSE) based on the
leave-one-out cross-validation inpredicting (f) oralDI and (g) clampDI.Dotted vertical
lines indicate optimal lambda values.h, iLasso regularization paths along the Lambda in

predicting (h) oral DI and (i) clamp DI. Cyan, magenta, and gray lines indicate the
estimated coefficients ofAC_Mean,AC_Var, and the other input variables, respectively.
Dotted vertical lines indicate the optimal Lambda. j, k Estimated coefficients at the
optimal Lambda inpredicting (j) oralDIand (k) clampDI.Only variableswithnon-zero
coefficients are shown. BMI, body mass index; SBP, systolic blood pressure; DBP,
diastolic blood pressure; TC, total cholesterol; TG, triglycerides; LDL-C, low-density
lipoprotein cholesterol;HDL-C,high-density lipoprotein cholesterol; FBG, fastingblood
glucose; PG120, plasma glucose concentration at 120min during the oral glucose tol-
erance test; I.I., insulinogenic index; oral DI, oral disposition index; AUC_IRI, area
under insulin curve during the first 10min of hyperglycemic clamp test; ISI, insulin
sensitivity index; clampDI; clamp disposition index, VIF; variance inflation factor, VIP;
variable importance in projection.
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parameters decrease simultaneously in the early stage of glucose
intolerance29. For simulation of the mathematical model (see Methods), we
used parameters reported as the mean values in NGT31. We changed DI
(ksecksen) and insulin clearance (kcle) from one-half to twice the NGT’s

values (Fig. 4a). As ksecksen and kcle increased, FBG levels remained
unchanged (Fig. 4a, #α), but there was a point at which blood glucose levels
decreased (Fig. 4a, #β) and a point at which blood glucose levels increased
(Fig. 4a, #γ). As the pattern of blood glucose dynamics changed in this way,

Fig. 3 | Validation of AC_Mean and AC_Var characteristics using an indepen-
dent dataset14. a A spring layout of the correlation network of CGM-derived indices
(red), blood glucose-related indices (magenta), insulin sensitivity-related index (blue);
and other clinicalmeasures (green). Relationships with absolute Spearman’s correlation
coefficients of 0.25 or higher are connected with edges. The width of the edges is
proportional to the corresponding correlation coefficient. The analysis is based on data
from 57 participants. b VIF of all variables. c VIF of each variable remaining after
removing the variable with the highest VIF one by one until the VIF of all variables are
less than10.dComparisonofVIFvaluesbetween thepreviously reporteddataset (VIFp)
and the current study dataset (VIFt). Points represent individual indices. Spearman
correlation coefficient R is shown with 95% confidence intervals. eVIP scores from the
PLS regression predicting SSPG. Dotted line indicates significance threshold (VIP ≥ 1).

fRelationship between regularization coefficients (Lambda) and themean squared error
(MSE) based on the leave-one-out cross-validation in predicting SSPG. Dotted vertical
lines indicate optimal lambda values. g Lasso regularization paths along the Lambda in
predicting SSPG. Cyan, magenta, and gray lines indicate the estimated coefficients of
AC_Mean, AC_Var, and the other input variables, respectively. Dotted vertical lines
indicate the optimal Lambda. h Estimated coefficients with the optimal Lambda in
predicting SSPG. Only variables with non-zero coefficients are shown. BMI, bodymass
index; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein choles-
terol; HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; PG120,
plasma glucose concentration at 120min during the oral glucose tolerance test; SSPG,
steady state plasma glucose; VIF, variance inflation factor; VIP, variable importance in
projection.
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AC_Mean increased and AC_Var decreased (Fig. 4b), consistent with the
results that AC_Mean was positively correlated with insulin clearance, and
AC_Var was negatively correlated with DI and insulin clearance (Fig. 1b).
We validated these relationships using an independentmathematicalmodel
describing both single meal and daily glucose dynamics32, which showed
similar directional changes in AC_Mean and AC_Var with increasing
insulin secretion, sensitivity, and clearance (Supplementary Fig. 4a, b).

To assess the noise sensitivity ofAC_Mean andAC_Var, we compared
blood glucose dynamics simulated using themean values of ksecksen and kcle
at NGT with those simulated using the half values of the parameters.
Applying Gaussian white noise with the mean of 0 and the variance of 1
(Supplementary Fig. 4c, d), followed by the calculation of AC_Mean and

AC_Var was repeated 1000 times. Since the exact modeling of the statistical
properties of CGM sensor errors is difficult51, we only investigated the
properties of AC_Mean and AC_Var at different white noise magnitudes.
Of note, the blood glucose difference due to the differences in ksecksen and
kcle was at most 0.45mg/dL, and the variance of the difference was only
0.014. Even if the appliednoise is greater than thedifference between the two
groups, AC_Var in particular could distinguish the two groups (Fig. 4c,
P<0:01). Cohen’s d of AC_Var was larger than that of AC_Mean (Fig. 4c),
suggesting that AC_Var wasmore robust to noise than AC_Mean. Of note,
Cohen’s d quantifies the size of the difference between two groups, and
conventionally Cohen’s d values of 0.2, 0.5 and 0.8 represent small, medium
and large effect sizes, respectively. A larger value of Cohen’s d indicates a
larger difference between groups. The observed correlation between
AC_Var and DI, which is stronger than the correlation between AC_Mean
and DI shown in Fig. 1b, is consistent with the ability of AC_Var to dis-
criminate betweendifferences inDI despite addednoise, as shown inFig. 4c.

As the variance of the noise was reduced, the Cohen’s d of both
AC_Mean and AC_Var became larger (Supplementary Fig. 4e–h). As the
measurement period was increased from 24- to 72-h (Supplementary
Fig. 4i), or as the measurement interval was reduced from every 5min to
every 1min (Supplementary Fig. 4j), the Cohen’s d of both AC_Mean and
AC_Var became larger. Under all conditions (Fig. 4c, Supplementary
Fig. 4d–j), Cohen’s d of AC_Var was larger than that of AC_Mean.

Web application for calculating CGM-derived indices
To easily calculate CGM-derived indices, we developed a web application
(https://cgm-ac-mean-std.streamlit.app/)26 that calculates CGM_Mean,
CGM_Std, AC_Mean, and AC_Var (Supplementary Fig. 5). This applica-
tionwas implemented in Streamlit. In using this application, glucose should
be measured every 5min. The application can also run on a local machine
using the code in GitHub repository (https://github.com/HikaruSugimoto/
CGM_AC)26.

Discussion
Here we found that AC_Var was significantly correlated with both insulin
clearance and DI and that AC_Var could identify a subgroup of NGT
individualswith reducedDI comparable to thosewith IGT. Previous studies
have shown that insulin clearance is a predictor of the development of
T2DM in non-DM individuals1, while DI has been shown to predict T2DM
progression independently of FBG and PG1202. Collectively, these findings
suggest thatAC_Var can identify abnormalities in glucose dynamics even in
a predominantly NGT population, potentially serving as an alternative to
single-point blood tests or OGTT, which have been shown to be
inadequate6–8 or inconvenient9 for pre-diabetes screening.

We used several analytical approaches including multiple linear
regression, PLS regression, Lasso regression, random forests, and logistic
regressionwith L1 regularization to predict DI, insulin secretion and insulin
sensitivity. Although DI has been identified as a predictor of the develop-
ment of T2DM2 and reduced insulin sensitivity and secretion are known to
precede the onset of T2DM3, accurate quantification of these parameters
requires extensive testing. Our predictive models only included indices
derived from a single-point blood test, physical examinations, and CGM,
which are relatively easy to measure. Given that the predictive performance
of the linear regression model with CGM_Std and AC_Var as input vari-
ables and clamp DI as the objective variable was about the same as that of
predicting clamp DI from oral DI, these relatively easy-to-measure indices
can be alternatives to OGTT and clamp tests in screening protocols.

Our analysis focused primarily on the mean and variance of the
autocorrelation function at lags 1-30, established CGM-derived indices21,
and three previously reported indices for identifying abnormal glucose
regulation14. However, the mean and the variance of the autocorrelation
function at lags 1–2 (Supplementary Fig. 1a) were also significantly corre-
lated with oral DI (r = –0.29; P = 0.02 and r = 0.29, P = 0.02, respectively),
and other CGM-derived indices of glycemic variability have been
reported27,52–63. It is necessary to investigate these other CGM-derived

Fig. 4 | Characterization of AC_Mean and AC_Var using simulated glucose
dynamics. a Twenty-four-hour simulated glucose concentration profiles colored
according to parameter values of ksecksen and kcle. #α-#γ show magnified views of
highlighted regions. b The relationship between ksecksen, kcle, AC_Mean, and
AC_Var. The horizontal axis represents the ratio of ksecksen and kcle to the reported
average values for healthy individuals. cAC_Mean and AC_Var simulated from the
glucose concentrationwithGaussian white noise. AC_Mean andAC_Var calculated
in each trial and the distributions of AC_Mean and AC_Var are shown. The green is
simulated using the parameters reported as the mean values for healthy individuals.
The blue is simulated using half the mean values. The P values are for testing the
hypothesis of no difference between the two groups.
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indices comprehensively to determine the extent to which glucose handling
capacities can be characterized from CGM in the future.

The current study has several limitations. This study focused on pre-
dicting current glucose tolerance from CGM data. Future work using
longitudinal CGM data to predict long-term glycaemic outcomes may
broaden the scope and applicability of our methods. Although we analyzed
both Japanese and American datasets, CGM data may be influenced by
ethnicity and lifestyle; therefore, larger and more diverse populations are
needed. While AC_Var showed significant correlations with insulin sensi-
tivity indices in both Japanese (k4) and American (SSPG) datasets, the
American dataset did not include the DI, which is the product of insulin
sensitivity and insulin secretion. The relationship between AC_Var and DI
in the American population requires further validation.

The physiological meaning of AC_Mean and AC_Var may appear
ambiguous at first glance. However, as shown in Fig. 1a, it is hypothesized
that the autocorrelation of glucose levels decreases significantly with
increasing lag in individuals with rapid glucose fluctuations, resulting in
smaller AC_Mean and larger AC_Var values. Furthermore, as shown in
Figs. 2–4, lower AC_Mean and higher AC_Var values correspond to
decreased disposition index or insulin clearance, suggesting that the auto-
correlation function of glucose levels serves as a physiological indicator of
glucose regulatory capacity.

The robustness of AC_Mean and AC_Var to meal types could be
perceived as a positive attribute in certain scenarios. For example, in the
context of estimating glucose handling capacities, the greater robustness
means that these indices are less sensitive to variations induced by different
meal types, potentially providing more consistent or reliable insights into
estimating glucose handling capacities under different dietary conditions.
However, the assessment of whether this robustness is advantageous or
disadvantageous depends on the study objectives and practical applications,
and the effect of meal type on glucose dynamics requires further
investigation.

Although the correlation coefficients in this studymay appearmodest,
it is important to note that this dataset mainly includes individuals with
NGT, which limits variability in glucose handling capacities. Despite these
constraints, this study revealed meaningful statistically significant rela-
tionships. While the relationship between clamp DI and oral DI, an index
designed to estimate clamp DI from OGTT and reported to correlate well
with clamp DI, had an R2 of only 0.15, the relationship between clamp DI
and CGM-derived indices had an R2 of 0.18, indicating the potential of
CGM-derived indices in estimating glucose handling capacities. Further-
more, as shown in our mathematical simulations (Fig. 4), AC_Mean
decreases monotonically and AC_Var increases monotonically as the dis-
position index decreases. These relationships suggest that our findings
should be reproducible and potentiallymore significant in populations with
a wider range of glucose-handling capacities. In addition, our analysis was
limited by the use of only threedays ofCGMdata, and theCGMdevice used
in the validation set had a highermean absolute relative difference (MARD)
compared with contemporary models. Nevertheless, CGM-derived indices
showed significant correlations with insulin sensitivity or DI. Given that
mathematicalmodeling simulations suggest that longermonitoring periods
may improve the accuracy of AC_Var measurements, future studies using
longermonitoringperiods andmore advancedCGMdeviceswith improved
accuracy may provide a more accurate estimate of glucose regulatory
capacity.

Regarding test-retest reproducibility (i.e., repeated measurements in
the same individuals), we acknowledge that we do not have data from
multiple CGM measurement periods in the same individuals, which
would be required to directly assess this type of reproducibility. However,
we can speculate the robustness of these indices in several ways. First, our
results show that CGM-derived indices can predict clamp DI with
comparable or better accuracy than predictions using oral DI or con-
ventional clinical markers (FBG, HbA1c, and 2-h OGTT glucose). If the
CGM-derived indices had poor reproducibility, we would expect their
predictive performance to be inferior to these OGTT-derived measures.

Furthermore, the reproducibility of our findings across different popu-
lations provides additional confidence in these indices. The relationships
we observed between CGM-derived indices and measures of glucose
handling capacity were consistently reproduced in both Japanese and
American datasets, despite differences in ethnicity, lifestyle, and CGM
devices used.

In conclusion, the current study demonstrated that CGM-derived
indices can predict DI beyond conventional markers such as FBG and
HbA1c. CGM-derived DI (CGM DI) may serve as an alternative to the
labor-intensive measurements involved in conventional DI assessment
using OGTT (oral DI) or clamp tests (clamp DI) in screening protocols.

Data availability
The CGM data that support the findings of this study are freely available
from the GitHub repository (https://github.com/HikaruSugimoto/CGM_
AC). Previously reported CGM data14 is publicly available and can be
downloaded from https://journals.plos.org/plosbiology/article?id=10.1371/
journal.pbio.2005143. The source data for Figs. 1–4 is in https://zenodo.org/
records/1506714526. All other data are available from the corresponding
author on reasonable request.

Code availability
The code that calculates AC_Mean and AC_Var is also available from the
repository (https://github.com/HikaruSugimoto/CGM_AC)26 and the web
application (https://cgm-ac-mean-std.streamlit.app/)26.

Received: 3 April 2024; Accepted: 24 March 2025;

References
1. Lee, C. C. et al. Insulin clearance and the incidence of type 2 diabetes

in Hispanics and African Americans: the IRAS Family Study.Diabetes
Care 36, 901–907 (2013).

2. Utzschneider, K. M. et al. Oral disposition index predicts the
development of future diabetes above and beyond fasting and 2-h
glucose levels. Diabetes Care 32, 335–341 (2009).

3. Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J. & Kivimäki, M.
Prediabetes: a high-risk state for diabetes development. Lancet 379,
2279–2290 (2012).

4. Gillies, C. L. et al. Pharmacological and lifestyle interventions to
prevent or delay type 2 diabetes in people with impaired glucose
tolerance: systematic review and meta-analysis. BMJ 334, 299
(2007).

5. Alberti, K.G.M.M.Screeninganddiagnosis of prediabetes:where are
we headed? Diabetes Obes. Metab. 9, 12–16 (2007).

6. Kermode-Scott, B. Fasting plasma glucose is inadequate screening
test for prediabetes in obese youth. BMJ 337, a488 (2008).

7. Sumner, A. E. et al. Detection of abnormal glucose tolerance in
Africans is improved by combining A1C with fasting glucose: the
Africans in America Study. Diabetes Care 38, 213–219 (2015).

8. Sumner, A. E. et al. A1C Combined with glycated albumin improves
detection of prediabetes in Africans: the Africans in America Study.
Diabetes Care 39, 271–277 (2016).

9. Sacks,D.B.A1Cversusglucose testing: a comparison.DiabetesCare
34, 518–523 (2011).

10. DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: a
method for quantifying insulin secretion and resistance. Am. J.
Physiol. 237, E214–E223 (1979).

11. Rizos, E. C. et al. Difference on glucose profile from continuous
glucose monitoring in people with prediabetes vs. normoglycemic
individuals: a matched-pair analysis. J. Diabetes Sci. Technol. 18,
414–422 (2022).

12. Hanefeld,M., Sulk, S., Helbig,M., Thomas, A. &Köhler, C. Differences
in glycemic variability between normoglycemic and prediabetic
subjects. J. Diabetes Sci. Technol. 8, 286–290 (2014).

https://doi.org/10.1038/s43856-025-00819-5 Article

Communications Medicine |           (2025) 5:103 10

https://github.com/HikaruSugimoto/CGM_AC
https://github.com/HikaruSugimoto/CGM_AC
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005143
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005143
https://zenodo.org/records/15067145
https://zenodo.org/records/15067145
https://github.com/HikaruSugimoto/CGM_AC
https://cgm-ac-mean-std.streamlit.app/
www.nature.com/commsmed


13. Keshet, A. et al. CGMap: characterizing continuous glucose monitor
data in thousands of non-diabetic individuals. Cell Metab. 35,
758–769.e3 (2023).

14. Hall, H. et al. Glucotypes reveal new patterns of glucose
dysregulation. PLoS Biol. 16, e2005143 (2018).

15. Metwally, A. A. et al. Prediction of metabolic subphenotypes of type 2
diabetes via continuous glucose monitoring and machine learning.
Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01311-6
(2024).

16. Marco, A. et al. Time above range for predicting the development of
type 2 diabetes. Front Public Health 10, 1005513 (2022).

17. Miya, A. et al. Log-linear relationship between endogenous insulin
secretion and glycemic variability in patients with type 2 diabetes on
continuous glucose monitoring. Sci. Rep. 11, 9057 (2021).

18. Jin, S.-M. et al. Clinical factors associated with absolute and relative
measures of glycemic variability determined by continuous glucose
monitoring: An analysis of 480 subjects. Diabetes Res. Clin. Pract.
104, 266–272 (2014).

19. Chen, T. et al. Glycemic variability in relation to oral disposition index
in the subjects with different stages of glucose tolerance. Diabetol.
Metab. Syndr. 5, 38 (2013).

20. Li, C. et al. Decreasing complexity of glucose time series derived from
continuous glucose monitoring is correlated with deteriorating
glucose regulation. Front. Med. https://doi.org/10.1007/s11684-022-
0955-9 (2022)

21. Hill, N. R. et al. Normal reference range for mean tissue glucose and
glycemic variability derived from continuous glucose monitoring for
subjects without diabetes in different ethnic groups. Diabetes
Technol. Ther. 13, 921–928 (2011).

22. Berry, S. E. et al. Human postprandial responses to food and potential
for precision nutrition. Nat. Med. 26, 964–973 (2020).

23. Then,C. et al. Proinsulin to insulin ratio is associatedwith incident type
2 diabetes but not with vascular complications in the KORA F4/
FF4 study. BMJ Open Diabetes Res. Care 8, e001425 (2020).

24. Takahashi, I. et al. Phenotypical variety of insulin resistance in a family
with a novel mutation of the insulin receptor gene. Endocr. J. 57,
509–516 (2010).

25. Okuno, Y. et al. Postprandial serum C-peptide to plasma glucose
concentration ratio correlates with oral glucose tolerance test- and
glucose clamp-based disposition indexes.Metabolism 62,
1470–1476 (2013).

26. Sugimoto, H. Improved detection of decreased glucose handling
capacities via continuous glucose monitoring-derived indices.
Zenodo https://doi.org/10.5281/zenodo.14948269 (2025)

27. Kohnert, K. D., Heinke, P., Vogt, L., Augstein, P. & Salzsieder, E.
Declining ss-cell function is associated with the lack of long-range
negative correlation in glucose dynamics and increased glycemic
variability: a retrospective analysis in patients with type 2 diabetes. J.
Clin. Transl. Endocrinol. 1, 192–199 (2014).

28. Thomas, F. et al. A simple method to model a continuous glucose
monitoring signal. IFAC-PapersOnLine 50, 8775–8780 (2017).

29. Sugimoto, H. et al. DI/cle, a measure consisting of insulin sensitivity,
secretion, andclearance, capturesdiabetic states. J.Clin. Endocrinol.
Metab. 108, 3080–3089 (2023).

30. Ohashi, K. et al. Glucose homeostatic law: insulin clearance predicts
the progression of glucose intolerance in humans. PLoS ONE 10,
e0143880 (2015).

31. DeGaetano, A. & Arino, O.Mathematical modelling of the intravenous
glucose tolerance test. J. Math. Biol. 40, 136–168 (2000).

32. Dalla Man, C., Rizza, R. A. & Cobelli, C. Meal simulation model of the
glucose-insulin system. IEEE Trans. Biomed. Eng. 54, 1740–1749
(2007).

33. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

34. Pei, X. et al. Screening marker genes of type 2 diabetes mellitus in
mouse lacrimal gland by LASSO regression. Sci. Rep. 13, 6862
(2023).

35. Wang, C. et al. Plasma phospholipid metabolic profiling and
biomarkers of type 2 diabetes mellitus based on high-performance
liquid chromatography/electrospray mass spectrometry and
multivariate statistical analysis. Anal. Chem. 77, 4108–4116 (2005).

36. Kopitar, L., Kocbek, P., Cilar, L., Sheikh, A. &Stiglic, G. Early detection
of type 2 diabetes mellitus using machine learning-based prediction
models. Sci. Rep. 10, 11981 (2020).

37. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of
chemometrics. Chemometrics Intel. Lab. Syst. 58, 109–130 (2001).

38. Wei, H. et al. Environmental chemical exposure dynamics and
machine learning-based prediction of diabetes mellitus. Sci. Total
Environ. 806, 150674 (2022).

39. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R.
Stat. Soc. 58, 267–288 (1996).

40. Breiman, L. Random Forests.Mach. Learn. 45, 5–32 (2001).
41. Casanova, R. et al. Application of random forestsmethods to diabetic

retinopathy classification analyses. PLoS ONE 9, e98587 (2014).
42. Esmaily, H. et al. A comparison between decision tree and random

forest in determining the risk factors associated with type 2 diabetes.
J. Res. Health Sci. 18, e00412 (2018).

43. Kursa, M. B. & Rudnicki, W. R. Feature selection with the boruta
package. J. Stat. Softw. 36, 1–13 (2010).

44. Gong, Z. & Chen, H. Sequential data classification by dynamic state
warping. Knowl. Inf. Syst. 57, 545–570 (2018).

45. Hulman, A. et al. Towards precision medicine in diabetes? A critical
review of glucotypes. PLoS Biol. 19, e3000890 (2021).

46. Breschi, A., Perelman, D. & Snyder, M. P. Response to Hulman and
colleagues regarding “Glucotypes reveal new patterns of glucose
dysregulation. PLoS Biol. 19, e3001092 (2021).

47. Lorenzo, C. et al. Disposition index, glucose effectiveness, and
conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis
Study (IRAS). Diabetes Care 33, 2098–2103 (2010).

48. Takahara, M., Katakami, N., Kaneto, H., Noguchi, M. & Shimomura, I.
Distribution of the Matsuda Index in Japanese healthy subjects. J.
Diabetes Investig. 4, 369–371 (2013).

49. Kernan, W. N. et al. Pioglitazone improves insulin sensitivity among
nondiabetic patients with a recent transient ischemic attack or
ischemic stroke. Stroke 34, 1431–1436 (2003).

50. Nishiyama, A. et al. Two Japanese infants with congenital generalized
lipodystrophy due to BSCL2 mutations. Pediatr. Int. 51, 775–779
(2009).

51. Facchinetti, A., Sparacino, G. & Cobelli, C. Modeling the error of
continuous glucose monitoring sensor data: critical aspects
discussed through simulation studies. J. Diabetes Sci. Technol. 4,
4–14 (2010).

52. Matabuena, M., Petersen, A., Vidal, J. C. & Gude, F. Glucodensities: a
new representation of glucose profiles using distributional data
analysis. Stat. Methods Med. Res. 30, 1445–1464 (2021).

53. Costa, M. D., Henriques, T., Munshi, M. N., Segal, A. R. & Goldberger,
A. L. Dynamical glucometry: use of multiscale entropy analysis in
diabetes. Chaos 24, 033139 (2014).

54. Yamamoto, N. et al. Detrended fluctuation analysis is considered to
be useful as a new indicator for short-term glucose complexity.
Diabetes Technol. Ther. 12, 775–783 (2010).

55. Ogata, H. et al. Long-range negative correlation of glucose dynamics
in humans and its breakdown in diabetes mellitus. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 291, R1638–R1643 (2006).

56. Thomas, F., Signal, M. & Chase, J. G. Using continuous glucose
monitoring data and detrended fluctuation analysis to determine
patient condition: a review. J. Diabetes Sci. Technol. 9, 1327–1335
(2015).

https://doi.org/10.1038/s43856-025-00819-5 Article

Communications Medicine |           (2025) 5:103 11

https://doi.org/10.1038/s41551-024-01311-6
https://doi.org/10.1038/s41551-024-01311-6
https://doi.org/10.1007/s11684-022-0955-9
https://doi.org/10.1007/s11684-022-0955-9
https://doi.org/10.1007/s11684-022-0955-9
https://doi.org/10.5281/zenodo.14948269
https://doi.org/10.5281/zenodo.14948269
www.nature.com/commsmed


57. Klaus-Dieter, K. et al. Indices for assessment of thequality of glycemic
control and glucose dynamics from continuous glucose monitoring.
Int. J. Diabetes Clin. Res. 4, 071 (2017).

58. Crenier, L. Poincaré plot quantification for assessing glucose
variability fromcontinuousglucosemonitoring systemsandanewrisk
marker for hypoglycemia: application to type 1 diabetes patients
switching to continuous subcutaneous insulin infusion. Diabetes
Technol. Ther. 16, 247–254 (2014).

59. Rodríguez de Castro, C. et al. Glucose time series complexity as a
predictor of type2diabetes.DiabetesMetab.Res.Rev.33. https://doi.
org/10.1002/dmrr.2831. (2017)

60. Peyser, T. A., Balo, A. K., Buckingham, B. A., Hirsch, I. B. & Garcia, A.
Glycemic variability percentage: a novel method for assessing
glycemic variability from continuous glucose monitor data. Diabetes
Technol. Ther. 20, 6–16 (2018).

61. Raubertas, R. et al. Decreased complexity of glucose dynamics in
diabetes in rhesus monkeys. Sci. Rep. 9, 1438 (2019).

62. Whitelaw, B. C., Choudhary, P. & Hopkins, D. Evaluating rate of
change as an index of glycemic variability, using continuous
glucose monitoring data. Diabetes Technol. Ther. 13, 631–636
(2011).

63. Rodbard, D. Glucose variability: a review of clinical applications and
research developments. Diabetes Technol. Ther. 20, S25–S215
(2018).

Acknowledgements
The authors thank Mio Shudo and Yuka Nakamura for their assistance with
the analysis; and our laboratory members for critically reading this
manuscript. This study was supported by the Japan Society for the
Promotion of Science (JSPS) KAKENHI (JP21H04759), CREST, the Japan
Science and Technology Agency (JST) (JPMJCR2123), and The Uehara
Memorial Foundation.

Author contributions
H.S. analyzed the data. H.S., K.H., T.N., T.Y., H.M., N.O-S., M.F., Y.H., K.S.,
W.O., and S.K. wrote the manuscript. T.N., T.Y., H.M., and N.O-S.
conducted clinical examinations. W.O. and S.K. supervised the study.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43856-025-00819-5.

Correspondence and requests for materials should be addressed to
Wataru Ogawa or Shinya Kuroda.

Peer review information Communications Medicine thanks the
anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s43856-025-00819-5 Article

Communications Medicine |           (2025) 5:103 12

https://doi.org/10.1002/dmrr.2831
https://doi.org/10.1002/dmrr.2831
https://doi.org/10.1002/dmrr.2831
https://doi.org/10.1038/s43856-025-00819-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsmed

	Improved detection of decreased glucose handling capacities via continuous glucose monitoring-derived indices
	Methods
	Study design and population
	OGTT, consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps, and CGM
	Study design and population of a previously reported dataset
	CGM-derived parameters
	Calculation of clinical indices
	Mathematical model estimating insulin sensitivity, secretion, and clearance
	Mathematical model used for simulating the characteristics of ACMean and ACVar
	Statistics and reproducibility
	Reporting summary

	Results
	Characterization of glucose dynamics using autocorrelation functions
	Association between glucose dynamics autocorrelation and disposition index
	Combined use of CGM-derived indices improves prediction of glucose handling capacity
	Relationship among clinical parameters
	Prediction of glucose control abilities
	Validation of the characteristics of ACMean and ACVar using an independent dataset
	ACMean and ACVar reflect changes in glucose dynamics when DI and insulin clearance change simultaneously
	Web application for calculating CGM-derived indices

	Discussion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




