神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100495817
このアイテムのアクセス数:
15
件
(
2025-05-10
14:03 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100495817 (fulltext)
pdf
1.51 MB
4
メタデータ
ファイル出力
メタデータID
0100495817
アクセス権
open access
出版タイプ
Version of Record
タイトル
Improved Image Quality of Virtual Monochromatic Images with Deep Learning Image Reconstruction Algorithm on Dual-Energy CT in Patients with Pancreatic Ductal Adenocarcinoma
著者
Sofue, Keitaro ; Ueshima, Eisuke ; Ueno, Yoshiko ; Yamaguchi, Takeru ; Hori, Masatoshi ; Murakami, Takamichi
著者ID
A1469
研究者ID
1000090622027
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=f7fcd4a60d373990520e17560c007669
著者名
Sofue, Keitaro
祖父江, 慶太郎
ソフエ, ケイタロウ
所属機関名
医学部附属病院
著者ID
A1505
研究者ID
1000040645561
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=27f5782f098b3c4a520e17560c007669
著者名
Ueshima, Eisuke
上嶋, 英介
ウエシマ, エイスケ
所属機関名
医学研究科
著者ID
A1480
研究者ID
1000050625134
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=516af1c99142505f520e17560c007669
著者名
Ueno, Yoshiko
上野, 嘉子
ウエノ, ヨシコ
所属機関名
医学部附属病院
著者ID
A3451
研究者ID
1000090852418
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=a445c5ae03c40419520e17560c007669
著者名
Yamaguchi, Takeru
山口, 尊
ヤマグチ, タケル
所属機関名
医学部附属病院
著者ID
A2735
研究者ID
1000000346206
著者名
Hori, Masatoshi
堀, 雅敏
ホリ, マサトシ
所属機関名
医学研究科
著者ID
A2302
研究者ID
1000020252653
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=4d5c2d2510f6d3a2520e17560c007669
著者名
Murakami, Takamichi
村上, 卓道
ムラカミ, タカミチ
所属機関名
医学研究科
言語
English (英語)
収録物名
Journal of Imaging Informatics in Medicine
出版者
Springer Nature
刊行日
2025-04-30
公開日
2025-05-08
注記
Published online: 30 April 2025
抄録
This study aimed to evaluate the image quality of virtual monochromatic images (VMIs) reconstructed with deep learning image reconstruction (DLIR) using dual-energy CT (DECT) to diagnose pancreatic ductal adenocarcinoma (PDAC). Fifty patients with histologically confirmed PDAC who underwent multiphasic contrast-enhanced DECT between 2019 and 2022 were retrospectively analyzed. VMIs at 40–100 keV were reconstructed using hybrid iterative reconstruction (ASiR-V 30% and ASiR-V 50%) and DLIR (TFI-M) algorithms. Quantitative analyses included contrast-to-noise ratios (CNR) of the major abdominal vessels, liver, pancreas, and the PDAC. Qualitative image quality assessments included image noise, soft-tissue sharpness, vessel contrast, and PDAC conspicuity. Noise power spectrum (NPS) analysis was performed to examine the variance and spatial frequency characteristics of image noise using a phantom. TFI-M significantly improved image quality compared to ASiR-V 30% and ASiR-V 50%, especially at lower keV levels. VMIs with TFI-M showed reduced image noise and higher pancreas-to-tumor CNR at 40 keV. Qualitative evaluations confirmed DLIR's superiority in noise reduction, tissue sharpness, and vessel conspicuity, with substantial interobserver agreement (κ = 0.61–0.78). NPS analysis demonstrated effective noise reduction across spatial frequencies. DLIR significantly improved the image quality of VMIs on DECT by reducing image noise and increasing CNR, particularly at lower keV levels. These improvements may improve PDAC detection and assessment, making it a valuable tool for pancreatic cancer imaging.
キーワード
Dual-energy CT
Virtual monochromatic images
Deep learning image reconstruction
Pancreatic ductal adenocarcinoma
カテゴリ
医学研究科
医学部附属病院
学術雑誌論文
権利
© The Author(s) 2025
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
関連情報
DOI
https://doi.org/10.1007/s10278-025-01514-6
PMID
40307592
詳細を表示
資源タイプ
journal article
eISSN
2948-2933
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る