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Abstract: In this paper, we introduce waveguide Quantum Electrodynamics (wQED) for
the description of tryptophans in microtubules representing data qubits for information
storage and, possibly, information processing. We propose a Hamiltonian in wQED and
derive Heisenberg equations for qubits and photons. Using the Heisenberg equations, we
derive time-evolution equations for the probability of qubits and the distribution of photons
both at zero and finite temperature. We then demonstrate the resultant sub-radiance with
small decay rates, which is required to achieve robust data qubits for information storage
by coupling tryptophan residues containing data qubits with water molecules as Josephson
quantum filters (JQFs). We also describe an oscillation processes of qubits in a tubulin dimer
through the propagation of excitations with changing decay rates of JQFs. Data qubits are
found to retain initial values by adopting sub-radiant states involving entanglement with
water degrees of freedom.

Keywords: waveguide quantum electrodynamics; quantum biology; qubit; tryptophan;
microtubule

1. Introduction
What is the physical mechanism of memory, and where does the brain store our

memories? These are still open questions. In conventional neuroscience, the synaptic
plasticity among neurons corresponds to memories stored in a brain by strengthening
the connections involved in more frequent signal transmission resulting from specific
activities. External stimulations change synaptic signaling and enhance signal transfer
among neurons, which is called long-term potentiation. However, if synaptic plasticity is
required for storage of memory, how do we explain memory in single-cell organisms [1]?
To explain memory storage, even for single-cell organisms, we need to include molecu-
lar mechanisms involving the cytoskeleton structures inside cells whose organization of
internal degrees of freedom could serve as memory storage mechanisms, as previously
proposed by others [2]. Furthermore, it is important to briefly discuss the issue of energy
efficiency characterizing the human brain. We require, on average, 20 W of power for the
brain to function under normal circumstances, which is extremely small compared with
man-made computational technology, with a power demand as high as 250 kW (we refer
to [3]) for AlphaGo in DeepMind, where a human won one of five games, in spite of the
orders-of-magnitude difference in the respective power needs. How do we realize this
extremely high energy efficiency for information processing taking place in the brain within
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the framework of classical information processing? This is a major challenge. We propose
a different approach to resolve this issue. Our strategy is to adopt quantum information
processing and quantum information storage in the cytoskeleton.

Cellular cytoskeletons construct a network of proteins that are indispensable for the
performance of key cellular processes involving growth, molecular transport, internal
structural reorganization, cell division and motility, as shown by Lee et al. [4]. We find
microfilaments (also referred to as actin filaments), intermediate filaments and micro-
tubules as the main components of cytoskeletons. Tryptophans in microtubules can play
the role of information processors. Craddock et al. suggested that high-capacity memory
storage can be achieved in microtubules by CaMKII phosphorylation of specific residues
in its building blocks, namely tubular dimers [2]. Additionally, biophoton mechanisms
may play a role in fast intra- and inter-cellular communication, since both super-radiant
(fast decay) and sub-radiant (slow decay) states have been experimentally determined to
emerge for tryptophan excitations, as shown in [5–7]. Moreover, Babcock et al. investigated
tryptophan mega-networks in microtubules, where super-radiant processes can emerge,
even under thermal equilibrium conditions [8]. Super-radiant photon emission can lead to
quantum information transfer, as two separate quantum dots conduct photonic information
processing, as shown in an experimental study [9]. Super-radiance realizes long-range
atom–atom interactions under conditions where atoms are confined to one spatial dimen-
sion [10]. Furthermore, since microtubules are surrounded by mitochondria, the production
of reactive oxygen species (ROS) by mitochondria (as a byproduct of ATP-based energy
production) can generate ultra-weak photon emission within cells [11]. Since microtubules
have been shown to absorb these photons, store them for a period of time and release
them into the environment by de-excitation, microtubule networks may act to transfer
and, perhaps, process ROS-generated photons that may contain quantum information
(qubits). Zapata et al. suggested ultra-weak photon emission due to oxidative stress [12].
Shirmovsky studied quantum entanglement in microtubule tryptophan systems [13,14].
Moreover, circadian clock activity might be explained by photo-reduction mediated by
tryptophan [15].

Additionally, water degrees of freedom might play a role, due to their dipole moments,
by extending local events occurring in microtubules to diffused, non-local events in distal
regions of the brain. In fact, quantum brain dynamics, which is a Quantum Field Theory
(QFT) of water electric dipoles and photon degrees of freedom, represents a mathematically
developed hypothesis of memory formation in such a system. It originated with the work
reported in [16–18]. The QFT approach to biological systems was also further elaborated
on in the 1980s in a series of seminal papers [19–23]. Water and photon degrees of freedom
were explicitly introduced in QBD by Jibu and Yasue [24]. These degrees of freedom might
amplify the effects of polarization of dipoles in biological systems, namely tryptophan
residues abundantly present in microtubules, and may extend local events taking place
in tubulin’s tryptophans to non-local information diffused in the whole brain. Then,
information contained in the local events might be converted to non-local holographic
information. The holographic approach was first proposed by Pribram [25,26], who was
a collaborator of Jibu and Yasue. We described holography within the framework in
QBD in our earlier work [27–29], where rotational degrees of freedom of water molecules
were adopted. Super-radiant photon emission might be viewed as coherent light for
interference patterns (for holography) of reference waves and object waves irradiated on
microtubules [30–32]. We consider tryptophans in microtubules as candidates for local
memory in the brain. As shown in Figure 1, we find that six (of eight) tryptophans in a
tubulin dimer form a one-dimensional waveguide; then, we can adopt waveguide quantum
electrodynamics, where qubits with two energy levels are coupled with photon modes
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in one spatial dimension. Tryptophans might also be entangled with surrounding water
molecules. Here, we can adopt properties of water molecules for absorption and emission
in a large variety of wavelengths, especially with the same frequency of absorption for
water molecules (electronically resonant mode) as that of tryptophans. Finally, a recent
paper indicated an important role of membrane dipoles in neutrons as participants in
holographic image formation in the brain [33].

Figure 1. Tryptophans in a tubulin dimer in a microtubule. The 3 filaments are depicted in the left
figure. The 6 of 8 tryptophans encircled by a rectangle are on the 1-dimensional waveguide in the
right figure.

In this paper, we consider tryptophan residues in a microtubule lattice as data qubits
entangled with surrounding water molecules that can be utilized for memory storage in a
brain. Typically, a microtubule consists of 13 protofilaments involving tubulin dimers as
their building blocks. We consider a protofilament as a potential waveguide for propagating
photons among qubits aligned in one dimension. We aim to investigate the robustness
of tryptophan data qubits entangled with water molecules as Josephson quantum filters
adopting sub-radiance. We first introduce a Hamiltonian within the framework of waveg-
uide quantum electrodynamics involving qubits coupled with several photon modes. Next,
we adopt Heisenberg equations for operators and derive time-evolution equations for
probability coefficients in both zero- and finite-temperature cases. Using the time-evolution
equations, we show the robustness of data qubits coupled with Josephson quantum filters
that correspond to water molecules in our numerical simulations. Sub-radiance is found to
be a key concept for the resultant robustness.

This paper is organized as follows. In Section 2, we show time-evolution equations
using Heisenberg equations derived using the Hamiltonian of waveguide QED. In Section 3,
we show numerical results illustrating the robustness of data qubits. In Section 4, we discuss
our results. In Section 5, we provide concluding remarks and future perspectives. In this



Dynamics 2025, 5, 7 4 of 24

paper, we use the natural units where the speed of light, the Planck constant (h̄) and the
Boltzmann constant are all set to unity.

2. Time-Evolution Equations at Zero and Finite Temperature
In this section, we provide time-evolution equations in waveguide QED [34] at

zero and finite temperature. The degrees of freedom are qubits involving the ground
state (|0⟩) and an excited state (|1⟩), as well as photons coupled with qubits arranged in
1 + 1 dimensions.

We begin with the Hamiltonian,

H = ∑
j

ωjσ
†
j σj +

∫ ∞

0
dkkc†

k ck + ∑
j

∫ ∞

0
dk
[
ξ jkσ†

j ck + ξ∗jkc†
k σj

]
, (1)

where we introduce

σ†
j =

(
0 1
0 0

)
, σj =

(
0 0
1 0

)
for jth qubit, (2)

as well as creation and annihilation operators for photons with momentum (k) by c†
k and

ck. The integration in
∫

dk is set from −∞ to ∞ or from 0 to ∞. We introduce coupling (ξ j)
between qubits and photons as follows:

ξ jk =

√
γj

π
cos(krj + θ), (3)

where γj represents the decay rate of the jth qubit in position rj in one spatial dimension and
θ represents the boundary condition for the coupling. We find the commutation relations
for these operators as follows:

[σj, σ†
l ] = δjl(1 − 2σ†

j σj), (4)

[cp, c†
q ] = δ(p − q). (5)

The commutations between two creation operators and between two annihilation
operators are zero.

In the Heisenberg representation, we find Heisenberg equations and the corresponding
Hermitian conjugates as follows:

i
dσj(t)

dt
= [σj(t), H(t)]

= ωj

(
1 − 2σ†

j (t)σj(t)
)

σj(t) +
∫ ∞

0
dkξ jkck(t)

(
1 − 2σ†

j (t)σj(t)
)

, (6)

i
dck(t)

dt
= [ck(t), H(t)]

= kck(t) + ∑
j

ξ∗jkσj(t). (7)

We then investigate relaxation processes at zero temperature. The initial state involving
excitation present only in the first qubit including |1⟩1 is given by

|ψ(0)⟩ = σ†
1 (0)|v⟩, (8)
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with the ground state being |v⟩ = ∏j |0⟩j ⊗ |vac⟩photons with σj(0)|v⟩ = 0, cp(0)|v⟩ = 0.
Due to the Schrödinger equation, we can write

|ψ(t)⟩ = e−iHt|ψ(0)⟩

= ∑
j

αj(t)σ†
j (0)|v⟩+

∫
dkF(k, t)c†

k(0)|v⟩. (9)

We then find

αj(t) = ⟨v|σj(0)|ψ(t)⟩
= ⟨v|σj(0)e−iHtσ†

1 (0)|v⟩
= ⟨v|e−iHteiHtσj(0)e−iHtσ†

1 (0)|v⟩
= ⟨v|σj(t)σ†

1 (0)|v⟩, (10)

with ⟨v|H = 0. Similarly, we find

F(k, t) = ⟨v|ck(0)|ψ(t)⟩
= ⟨v|ck(t)σ†

1 (0)|v⟩. (11)

Using Heisenberg Equations (6) and (7), we then derive the following relationship:

i
dαj(t)

dt
= ⟨v|i

dσj(t)
dt

σ†
1 (0)|v⟩

= ⟨v|
(

ωjσj(t)σ†
1 (0) +

∫
dkξ jkck(t)

(
1 − 2σ†

j (t)σj(t)
)

σ†
1 (0)

)
|v⟩

= ωjαj(t) +
∫

dkξ jkF(k, t), (12)

i
dF(k, t)

dt
= ⟨v|i dck(t)

dt
σ†

1 (0)|v⟩

= ⟨v|
(

kck(t) + ∑
j

ξ∗jkσj(t)

)
σ†

1 (0)|v⟩

= kF(k, t) + ∑
j

ξ∗jkαj(t). (13)

In the above equations, we obtain the conservation law for excitation numbers as follows:

d
dt

[
∑

j

(
α∗j (t)αj(t)

)
+
∫

dkF∗(k, t)F∗(k, t)

]
= 0, (14)

where α∗j (t)αj(t) represents the occupation probability of state |1⟩j and F∗(k, t)F(k, t) is
related to the distribution of photons with momentum (k) at time t.

The solution of F(k, t) in Equation (13) is

F(k, t) = −i ∑
j

√
γj

π
cos(krj + θ)

∫ t

0
dt′αj(t′)e−ik(t−t′). (15)

Setting the lower bound of k from zero to −∞ and using the solution of F(k, t), we
then expand Equation (12) as
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i
dαj(t)

dt
= ωjαj(t)− i

∫ ∞

−∞
dk
√

γj

π
cos(krj + θ)∑

l

√
γl
π

cos(krl + θ)
∫ t

0
dt′αl(t′)e−ik(t−t′)

= ωjαj(t)− i ∑
l

√
γjγl

2

∫ t

0
dt′αl(t′)

×
[
δ(rj + rl − (t − t′))e2iθ + δ(rj − rl − (t − t′))

+δ(−rj + rl − (t − t′)) + δ(−rj − rl − (t − t′))e−2iθ
]

= ωjαj(t)− i ∑
l

√
γjγl

2

[
Θrj+rl∈(0,t)αl(t − (rj + rl))e2iθ

+Θrl−rj∈(0,t)αl(t − (rl − rj)) + Θrj−rl∈(0,t)αl(t − (rj − rl))

+Θ−rj−rl∈(0,t)αl(t + (rj + rl))e−2iθ

]
, (16)

If the limits of integration over k are from 0 to ∞, we require the 1
2 factor to be

multiplied by the second term on the right-hand side of the above equation. The first term
on the right-hand side represents the frequency term, while the second term involves the
decay factors (√γjγl). The damping oscillation for the excitation of a qubit is found to
emerge in time evolution.

We now extend our approach to quantum dynamics at finite temperature. The initial
density matrix (ρ(0)) is represented by

ρ(0) = σ†
1 (0)ρeqσ1(0), ρeq =

e−βHph ⊗ |va⟩⟨va|
tr
(

e−βHph ⊗ |va⟩⟨va|
) , (17)

with Hph =
∫

dk kc†
k ck and the ground state of qubits (|va⟩). We consider a heat bath of

photons with a temperature of T = β−1. Since unitary evolution emerges for the density
matrix, we write

ρ(t) = e−iHtσ†
1 (0)ρeqσ1(0)eiHt

=

(
∑

j
αj(t)σ†

j (0) +
∫ ∞

0
dkF(k, t)c†

k(0)

)
ρeq

(
∑
m

α∗m(t)σm(0) +
∫ ∞

0
dk′F∗(k′, t)ck′(0)

)
. (18)

Here,
(

∑j αj(t)σ†
j (0) +

∫ ∞
0 dkF(k, t)c†

k(0)
)

represents the projection onto the state in-
volving one excitation, which is the approximation adopted in our approach. The excitation
numbers for the density matrix are written as

trρ(t) = ∑
j
|αj(t)|2 +

∫
dkdk′F(k, t)F∗(k′, t)

(
δ(k − k′) + tr(c†

k(0)ck′(0)ρeq)
)

= ∑
j
|αj(t)|2 +

∫
dk|F(k, t)|2(1 + nk), (19)

with the Bose–Einstein distribution (nk =
1

eβk−1
) for temperature (T = β−1).

We can also introduce the other elements of the density matrix as
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tr
(

σj(0)ρ(t)σ†
m(0)

)
= tr

((
e−iHteiHt

)
σj(0)

(
e−iHtσ†

1 (0)ρeqσ1(0)eiHt
)

σ†
m(0)

(
e−iHteiHt

))
= tr

(
σj(t)σ†

1 (0)ρeqσ1(0)σ†
m(t)

)
= αj(t)α∗m(t), (20)

tr
(

cp(0)ρ(t)σ†
m(0)

)
= tr

(
cp(t)σ†

1 (0)ρeqσ1(0)σ†
m(t)

)
= F(p, t)(1 + np)α

∗
m(t), (21)

tr
(

σj(0)ρ(t)c†
q(0)

)
= tr

(
σj(t)σ†

1 (0)ρeqσ1(0)c†
q(t)

)
= αj(t)F∗(q, t)(1 + nq), (22)

tr
(

cp(0)ρ(t)c†
q(0)

)
= tr

(
cp(t)σ†

1 (0)ρeqσ1(0)cq(t)
)

= ∑
j
|αj(t)|2δ(p − q)np + F(p, t)F∗(q, t)(1 + np + nq)

+O(n2
p or flucutuations of np × FF∗), (23)

Using Heisenberg Equations (6) and (7), we arrive at

i
d
dt
(
αj(t)α∗m(t)

)
=

(
ωj − ωm

)(
αj(t)α∗m(t)

)
+
∫ ∞

0
dkξ jkF(k, t)(1 + nk)α

∗
m(t)

−
∫ ∞

0
dkξ∗mkαj(t)F∗(k, t)(1 + nk), (24)

i
d
dt
(

F(p, t)(1 + np)α
∗
m(t)

)
= (p − ωm)F(p, t)(1 + np)α

∗
m(t) + 2ξ∗mp|αm(t)|2np

+∑
j

ξ∗jpαj(t)α∗m(t)

−
∫ ∞

0
dkξ∗mktr(cp(t)σ†

1 (0)ρeqσ1(0)c†
k(t)), (25)

i
d
dt
(
αj(t)F∗(q, t)(1 + nq)

)
= (ωj − q)αj(t)F∗(q, t)(1 + nq)− 2ξ jq|αj(t)|2nq

−∑
m

ξmqαj(t)α∗m(t)

+
∫ ∞

0
dkξ jktr(ck(t)σ†

1 (0)ρeqσ1(0)c†
q(t)), (26)

i
d
dt

(
tr
(

cp(t)σ†
1 (0)ρeqσ1(0)c†

q(t)
))

= (p − q)
(

tr
(

cp(t)σ†
1 (0)ρeqσ1(0)c†

q(t)
))

+∑
j

ξ∗jpαj(t)F∗(q, t)(1 + nq)

−∑
m

ξmqF(p, t)(1 + np)α
∗
m(t). (27)

The variables we should trace are αj(t)α∗m(t), F(p, t)(1+ np)α∗m(t), αj(t)F∗(q, t)(1+ nq)

and tr
(

cp(t)σ†
1 (0)ρeqσ1(0)c†

q(t)
)

. Here, we can represent the conservation law as

d
dt

[
∑

j
|αj(t)|2 +

∫ ∞

0
dp tr

(
cp(t)σ†

1 (0)ρeqσ1(0)c†
p(t)

)]
= 0. (28)

The value of the bracket in the above equation using Equation (23) deviates from the
excitation numbers represented by trρ(t) in Equation (19) at a finite temperature. This is
because of the projection in Equation (18). Although the conservation law is modified at a
finite temperature, the conserved quantity is still present in our approach.
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We also solve the following case:

i
d
dt

(
tr
(

cp(t)σ†
1 (0)ρeqσ1(0)c†

q(t)
))

= (p − q)
(

tr
(

cp(t)σ†
1 (0)ρeqσ1(0)c†

q(t)
))

+∑
j

ξ∗jpαj(t)F∗(q, t)(1 + nq)

−∑
m

ξmqF(p, t)(1 + np)α
∗
m(t)

−iΓ

(
tr
(

cp(t)σ†
1 (0)ρeqσ1(0)c†

q(t)
)

−tr
(

cp(0)σ†
1 (0)ρeqσ1(0)c†

q(0)
))

, (29)

where we introduce the damping term to the initial thermal equilibrium state with the
damping parameter (Γ) to describe the internal loss representing the absorption of photons
by the environment.

3. Numerical Simulations
In this section, we show time evolution of excitations of data qubits (DQs) representing

tryptophans in a microtubule and qubits for Josephson quantum filters (JQFs) representing
water molecules at a physiological temperature.

We set ωi = ω to (ω = 4.463 eV = 36 000 cm−1) for both data qubits and JQFs. We re-
fer to the parameters in [8] and consider the resonant frequency for water molecules.
To represent the momenta for photon modes, we set p = 2πl

2Nsas
with Ns = 60 and

l = 1, 2, · · · , Ns in the ξ jp and set p =
√

p2 = 2
as

sin
(

πl
2Ns

)
and q =

√
q2 for (p − ωm)

in the first term and np in the second term on the right-hand side in Equation (25), for
(ωj − q) in the first term and nq in the second term on the right-hand side in Equation (26)
and for (p − q) in Equation (27). We set

∫ ∞
0 dp · = ∑Ns

l=1
π

Nsas
·. Here, we set asω = 1.0.

We set the temperature of T = 310 K to T/ω = 0.005686. For the decay rate (γi), we
set γi = γ with γ = 3.385 × 10−7 eV = 0.002 73 cm−1 [8], representing 1/γ = 1.9 ns
(γ/ω = 7.584 × 10−8) for DQs, and set γi = γ, 10γ, and 100γ for JQFs. For positions
of DQs and JQFs in the one-dimensional waveguide, we set rj = 1.333 nm × (j − 1) with
1.333 nm × ω = 0.03016 for j-th DQ and j-th JQF, where we divide the size of tubulin
(8 nm) by six tryptophans that participate in the quantum interaction transfer. We set
θ = 0 in ξ jk. We consider cases for damping rates of Γ/ω = 0 and Γ/ω = 1.0 × 10−5,
representing 1/Γ = 15 ps. (Here, since the size of a tubulin dimer is 8 nm and the mean
velocity of water molecules is 600 m · s−1 in liquid water, the time scale of internal loss of
photons coupled with water is set to be on the order of 8 nm/600 m · s−1 = 13 ps.) The time
step is set to be at/as = 0.1. We adopt the fourth-order Runge–Kutta method in solving
Equations (24)–(26) and (29).

We set the initial condition as

|αj(0)|2 = 1, for DQ1, (30)

|αj(0)|2 = 0, for other qubits, (31)

αj(0)α∗m(0) = 0, for j ̸= m. (32)

F(p, 0) = F∗(q, 0) = 0, (33)

and
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tr
(

cp(0)σ†
1 (0)ρeqσ1(0)c†

q(0)
)
× ω = δpqnp

Nsasω

π
, (34)

where we use the Bose–Einstein distribution (np = 1
ep/T−1

) and the Kronecker delta (δpq).

3.1. One Data Qubit and One Josephson Quantum Filter

In this section, we investigate the case of two qubits representing one DQ and one JQF.
In Figure 2, we show the time evolution of |αj|2, where the ratio of decay rates (γi)

between DQ1 and JQF1 is 1 and the damping rates are Γ/ω = 0 and Γ/ω = 1.0 × 10−5,
representing ‘damping’ (wd) for photon modes. In the case of Γ/ω = 0, represented by
solid lines, |αj|2 oscillates around 0.5 with an amplitude 0.5, which represents the energy
interchange between DQ1 and JQF1. In the case of Γ/ω = 1.0 × 10−5, represented by
dotted lines, |αj|2 tends to decrease at early times (t < 50 ps ) with oscillating around 0.25
with an amplitude of 0.5 at later times (t > 100 ps). The steady states at later times for the
cases of Γ/ω = 0 and Γ/ω = 1.0 × 10−5 seem to be achieved at 100 ps < t < 300 ps. The
frequencies for the case of Γ/ω = 1.0 × 10−5 appear to be the same as those for the case of
Γ/ω = 0. The difference between cases of Γ/ω = 0 and Γ/ω = 1.0 × 10−5 is the average
of oscillations. The amplitudes of oscillations do not seem to change with a change in the
damping rates (Γ).
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Figure 2. Time evolution of |αj|2 with the ratio of decay rates 1 for Γ/ω = 0 and Γ/ω = 1.0 × 10−5

(labeled by wd).

Figure 3 represents time evolution of |αj|2 with the ratio of γi’s set to 10 for damping
rates of Γ/ω = 0 and Γ/ω = 1.0 × 10−5. When the |αj|2 for DQ1 decreases (and increases),
the |αj|2 for JQF1 increases (and decreases). For DQ1, |αj|2 oscillates between 0.66 and 1.0 in
time evolution, and its amplitude gradually decreases as time passes. There is no difference
between the time evolution of |αj|2 for DQ1 for Γ/ω = 0 (black solid line) and that of
Γ/ω = 1.0 × 10−5 (black dotted line). On the other hand, the difference between JQF1 for
Γ/ω = 0 (red solid line) and that of Γ/ω = 1.0 × 10−5 (red dotted line) is the average of
oscillations. No difference in the frequencies and amplitudes of oscillations is observed.

In Figure 4, we show time evolution of |αj|2 at the ratio 100 for cases of Γ/ω = 0 and
Γ/ω = 1.0 × 10−5 (labeled by wd). We find that |αj|2 for DQ1 oscillates around 0.98. The
amplitudes for |αj|2 gradually decrease at times of 0 ps < t < 120 ps), while they increase
at times times of t > 130 ps and start to decrease at times of t > 250 ps. The |αj|2 for
JQF1 oscillates around 0.02. When the |αj|2 for DQ1 decreases (and increases), the |αj|2
for JQF1 increases (and decreases), representing an energy interplay between DQ1 and
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JQF1. Comparing Figures 2–4, we find that the averages of |αj|2’s for DQ1 approach 1,
corresponding to that initial value, as the ratios of decay rates between DQ1 and JQF1
increase from 1 to 10 and 100.
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Figure 3. Time evolution of |αj|2 with the ratio of decay rates 10 for Γ/ω = 0 and Γ/ω = 1.0 × 10−5

(labeled by wd).
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Figure 4. Time evolution of |αj|2 with the ratio of decay rates 100 for Γ/ω = 0 and Γ/ω = 1.0 × 10−5

(labeled by wd).

In Figure 5, we depict the distribution of DST = tr(cp(t)σ†
1 (0)ρeqσ1(0)c†

p(t))× ω for

photon modes of p =
√

p2 = 2
as

sin
(

πl
2Ns

)
with l = 1, 2, · · · , Ns at t = 294.76 ps for the

ratio 100 and damping rates of Γ/ω = 0 and Γ/ω = 1 × 10−5. We set the Bose–Einstein
distribution as the initial condition for the distribution represented by the black dotted line.
The steep peak at around p/ω = 1 appears for Γ/ω = 0, while the peak disappears for
Γ/ω = 1 × 10−5. The distribution does not seem to change over time, except at around
p/ω = 1. This means that the contributions of photon modes to qubits are almost at
resonant modes (p = ω) corresponding to l = 20.

Next, we analyze the time evolution of DST = tr(cp(t)σ†
1 (0)ρeqσ1(0)c†

p(t))× ω for

the peak of l = 20 (at p/ω = 1 ) for photon modes (p =
√

p2 = 2
as

sin
(

πl
2Ns

)
) in Figure 6.

We find oscillations between 0 and 10 for ratio 1 represented by a purple solid line. The
amplitudes of oscillations do not seem to change during time evolution. When we set
Γ/ω = 1 × 10−5 with 1/Γ = 15 ps, we find damping oscillations for DST represented by
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the purple dotted line and a convergence to the initial value. Oscillations between 0 and 1.7
for a ratio 10 without damping (Γ/ω = 0), represented by a green solid line, appear in the
time evolution. We find oscillations around zero for the ratio represented by a blue solid
line. As we increase the ratios from 1 to 10 and 100, the averages of DST decreases. This is
because |αj|2 for DQ1 tends to remain at the initial value of 1 as the ratios increase.

 0
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 0  0.2  0.4  0.6  0.8  1  1.2

ratio 100
Initial

ratio 100, wd

D
S

T

p/ω

Figure 5. Distribution of photon modes at t = 294.76 ps for the ratio of decay rates 100 with Γ/ω = 0
(blue solid line) and Γ/ω = 1 × 10−5 (green dotted line) with the initial distribution (black dotted

line), where p =
√

p2 = 2
as

sin
(

πl
2Ns

)
with l = 1, 2, · · · , Ns.
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Figure 6. Time evolution of the distribution for the peak of photon modes for ratios of decay rates 1,
10 and 100 with Γ/ω = 0 and for the ratio of decay rates 1 with Γ/ω = 1 × 10−5 (labeled by wd).

We now check the conservation of probability, as shown in Figure 7. We set
Prob(qubits) = ∑j |αj(t)|2, Prob(photons) =

∫ ∞
0 dp tr

(
cp(t)σ†

1 (0)ρeqσ1(0)c†
p(t)

)
and to-

tal Prob = Prob(qubits) + Prob(photons). For the case of Γ/ω = 0 and the ratio 1, the
Prob(qubits) are represented by a black solid line, which starts from 1 and oscillates be-
tween 0.5 and 1, while Prob(photons) are represented by a red solid line starting from
0.000159 and oscillating around 0.25 with an amplitude of 0.25. When Prob(qubits) de-
creases (and increases), Prob(photons) increases (and decreases). We then find the proba-
bilities for qubits and photons. The total probability, represented by the solid blue line, is
conserved, and its deviation from its initial value is less than 10−6%. We also draw attention
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to the dotted lines representing the case of Γ/ω = 1 × 10−5. We find damped oscillations
for Prob(qubits) (black dotted line) and Prob(photons) (red dotted line). The Prob(qubits)
converges to 0.5, while the Prob(photons) takes negative values during oscillations and
converges to approximately zero. Since Prob(photons) decreases with oscillation and DST
converges to its initial value, the total probability converges to approximately 0.5.
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Figure 7. Time evolution of probability of qubits and photons for the ratio of decay rates 1 with
Γ/ω = 0 and Γ/ω = 1 × 10−5 (labeled by wd).

3.2. Two Data Qubits and Two Josephson Quantum Filters

We now investigate two data qubits and two Josephson quantum filters.
In Figure 8, we show the time evolution of |αj|2 with the ratio 1 between the decay

rates of DQs and JQFs for damping rates of Γ/ω = 0 and Γ/ω = 1.0 × 10−5. For DQ1, we
find that the |αj|2 oscillates between 0.25 and 1 over the course of its time evolution, while
for DQ2, JQF1 and JQF2, the |αj|2 oscillates between 0 and 0.25 over the time evolution.
The |αj|2 for DQ2 and JQF2 has the same value over the course of the time evolution
due to a ratio 1 with the same distance of rj = 1.333 nm. Even if we change Γ/ω = 0 to
Γ/ω = 1.0 × 10−5, it appears that little changes occur for a frequency of |αj|2. Comparing
the cases of Γ/ω = 0 and Γ/ω = 1.0 × 10−5 (represented by wd), a slight change in the
range of oscillations appears for |αj|2.
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Figure 8. Time evolution of |αj|2 with the ratio of decay rates 1 for Γ/ω = 0 and Γ/ω = 1.0 × 10−5

(labeled by wd).
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In Figure 9, we depict the time evolution of |αj|2 with the ratio 10 for Γ/ω = 0 and
Γ/ω = 1.0 × 10−5. The |αj|2 for DQ1 oscillates around 0.92, and its amplitude decreases
gradually in time evolution. The |αj|2 for DQ2 is around zero, while the |αj|2 for JQF1 and
JQF2 oscillates around 0.04, and their amplitudes gradually decrease. When we change
Γ/ω = 0 to Γ/ω = 1.0 × 10−5, we find little change for DQ1 and DQ2. For the case of
Γ/ω = 1.0 × 10−5, the |αj|2 for JQF1 and JQF2 oscillates around 0.04, with negative values
around the minima in the course of the oscillations.

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

DQ1
JQF1
DQ2

JQF2
DQ1, wd

JQF1, wd

DQ2, wd
JQF2, wd

|α
j|2

t [ps]

Figure 9. Time evolution of |αj|2 with the ratio of decay rates 10 for Γ/ω = 0 and Γ/ω = 1.0 × 10−5

(labeled by wd).

In Figure 10, we show the time evolution of |αj|2 with the ratio of decay rates 100 for
Γ/ω = 0 and Γ/ω = 1.0× 10−5. The |αj|2 for DQ1 is near 1 and oscillates between 0.98 and
1, with only a little change in the |αj|2 between cases of Γ/ω = 0 and Γ/ω = 1.0× 10−5. We
also find that the |αj|2 is approximately zero and that little change occurs in the |αj|2 between
the cases of Γ/ω = 0 and Γ/ω = 1.0 × 10−5. Both DQ1 and the DQ2 approximately retain
their initial values. We show the result for longer time scales in Figure A1 in Appendix A.
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Figure 10. Time evolution of |αj|2 with the ratio of decay rates 100 for Γ/ω = 0 and Γ/ω = 1.0× 10−5

(labeled by wd).

Figure 11 represents the time evolution of Re (αjα
∗
m), where j = DQ1 and m = DQ2

for ratios of decay rates 1, 10 and 100 with Γ/ω = 0. The Re (αjα
∗
m) has negative values
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and oscillates between −0.25 and 0 for the ratio of decay rates 1 in its time evolution. Its
average is about −0.12. As the ratio increases, the absolute values decrease. The Re (αjα

∗
m)

for the ratio of decay rates 10 has values between −0.08 and 0, and its amplitude gradually
decreases. The Re (αjα

∗
m) for the ratio 100 oscillates around −0.01, and its amplitude

repeatedly increases and decreases.
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Figure 11. Time evolution of the distribution for Re (αjα
∗
m) with j = DQ1 and m = DQ2 for ratios of

decay rates 1, 10 and 100 with Γ/ω = 0.

Figure 12 represents the time evolution of the distribution (DST) for the peak of the
photon mode at p/ω = 1 for ratios of decay rates 1, 10 and 100 with Γ/ω = 0, and for
ratio 1 with Γ/ω = 1 × 10−5 representing 1/Γ = 15 ps. The maximum values of DST are
4.8 for the ratio of decay rates 1, 0.8 for the ratio of decay rates 10 and approximately 0.09
for the ratio of decay rates 100. The maximum values tend to be smaller than those in
Figure 6. As we increase the ratios, the frequencies increase. When we change Γ/ω = 0
to Γ/ω = 1.0 × 10−5 for the ratio of decay rates 1, we find the damping of oscillations,
converging to the initial value of approximately 0.
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Figure 12. Time evolution of the distribution for the peak of photon modes for ratios of decay rates 1,
10 and 100 with Γ/ω = 0 and the ratio of decay rates 1 with Γ/ω = 1 × 10−5 (labeled by wd).

In Figure 13, we depict the time evolution of the probability of four qubits and photons
with a ratio 1 with Γ/ω = 0 and Γ/ω = 1× 10−5. In the case of Γ/ω = 0, when Prob(qubits)
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decreases (and increases), Prob(photons) increases (and decreases). As a result, the total
probability is conserved. Its deviation from the initial value is less than 10−6%. When
we set Γ/ω = 1.0 × 10−5, we find that the damping oscillations for Prob(qubits) and
Prob(photons) emerge and, with convergence to minimum values for the case of Γ/ω = 0,
since the contributions of photons disappear in the course of time evolution.
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Figure 13. Time evolution of the probability of 4 qubits and photons for the ratio of decay rates 1
with Γ/ω = 0 and Γ/ω = 1 × 10−5 (labeled by wd).

3.3. 12 Data Qubits and 12 Josephson Quantum Filters

We subsequently investigate 12 data qubits and 12 Josephson quantum filters, corre-
sponding to 12 tryptophans in the waveguide in 2 tubulin dimers.

Figure 14 represents the time evolution of |αj|2 with a ratio 1 for decay rates (γj)
between DQs and JQFs of Γ/ω = 0 and Γ/ω = 1.0 × 10−5. We depict |αj|2 for DQ1,
DQ2, DQ12, JQF1, JQF2, JQF12, DQ1 with damping and JQF1 with damping. The |αj|2
for DQ1 with Γ/ω = 0 (black solid line) oscillates between 0.83 and 1, and its amplitude
tends to decrease in the course of its time evolution. Even if we change Γ/ω = 0 to
Γ/ω = 1.0 × 10−5, little change in time evolution appears. The |αj|2 for DQ2 oscillates
between 0 and 0.0075, and its amplitude gradually decreases in the course of its time
evolution. The |αj|2 for DQ12 oscillates between 0 and 0.0067, and the amplitude tends to
decrease in the course of its time evolution. There is no difference between DQ2 and JQF2
or DQ12 and JQF12, since the ratio of decay rates of DQ and JQF is 1.
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Figure 14. Time evolution of |αj|2 with the ratio of decay rates 1 for Γ/ω = 0 and Γ/ω = 1.0 × 10−5

(labeled by wd).
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Figure 15 represents the time evolution of |αj|2 with the ratio of decay rates 10 with
Γ/ω = 0 and Γ/ω = 1.0× 10−5. The |αj|2 for DQ1 with Γ/ω = 0 (black solid line) oscillates
around 0.99, and its amplitude repeatedly decreases and increases. Even if we change Γ/ω = 0
to Γ/ω = 1.0× 10−5, little change emerges in its time evolution. The |αj|2 for DQ2 oscillates
between 0 and 0.00025, and its amplitude decreases for t < 130 ps and increases for t > 130 ps
in time evolution. The |αj|2 for DQ12 oscillates between 0 and 0.0062, and the amplitude tends
to decrease for t < 140 ps and increase for t > 140 ps in its time evolution. The |αj|2 for JQF12 is
approximately 10 times that for QF12, since the ratio of decay rates of DQ and JQF is 10.
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Figure 15. Time evolution of |αj|2 with the ratio of decay rates 10 for Γ/ω = 0 and Γ/ω = 1.0 × 10−5

(labeled by wd).

In Figure 16, we depict the time evolution of |αj|2 with the ratio of decay rates 100
with Γ/ω = 0 and Γ/ω = 1.0 × 10−5. The |αj|2 for DQ1 oscillates around 0.998, and its
amplitude repeatedly increases and decreases. Little change emerges even if we change
Γ/ω = 0 to Γ/ω = 1.0× 10−5. The |αj|2 for DQ2 and DQ12 is approximately zero, retaining
the initial value. The |αj|2 for JQF2 is approximately 100 times of that of QF2, since we set
the ratio of decay rates (γj) between DQs and JQFs to 100. The |αj|2 for JQF12 oscillates
around 0.00013, which is 100 times that of QF12. The time evolutions for longer time scales
are shown in Figure A2 in Appendix A.
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Figure 16. Time evolution of |αj|2 with the ratio of decay rates 100 for Γ/ω = 0 and Γ/ω = 1.0× 10−5

(labeled by wd).
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In Figure 17, we show the time evolution of the distribution (DST) for the peak of
the photon mode at p/ω = 1 for ratios of decay rates 1, 10 and 100 with Γ/ω = 0 and
Γ/ω = 1 × 10−5. The maximum values of DST are approximately 0.8 for the ratio of decay
rates 1, 0.1 for the ratio of decay rates 10 and 0.02 for the ratio of decay rates 100. The
maximum values tend to be smaller than those in Figures 6 and 12. As we increase the
ratio, we find smaller values of DST, since the |αj|2 for DQ1 approaches 1 in Figure 14 as
we increase the ratio. As we increase the ratios, the frequencies of DST increase. When we
change Γ/ω = 0 to Γ/ω = 1.0 × 10−5 for a ratio 1, the oscillations dampen, converging to
the initial value of approximately 0.
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Figure 17. Time evolution of the distribution of the peak of photon mode for ratios of decay rates 1,
10 and 100 with Γ/ω = 0 and for the ratio of decay rates 1 with Γ/ω = 1 × 10−5 (labeled by wd).

4. Discussion
In this paper, we introduced the Hamiltonian of waveguide quantum electrodynamics

(wQED) and Heisenberg equations for qubits and photons and applied this formalism to
quantum information processes in microtubules. We introduced time-evolution equations
for the expectation values of the product of creation and annihilation operators of qubits
and photons with a density matrix at finite temperature within the framework of wQED
and subsequently solved the system’s time evolution using numerical simulations. We
determined the robustness of data qubits representing tryptophans as data qubits (DQs)
entangled with qubits for Josephson quantum filters (JQFs) representing water molecules in
numerical simulations by increasing the decay rate of qubits for JQF. We also demonstrated
that sub-radiant states represent a key concept for robustness, as discussed below in
this section.

The potential energy (V) between water and tryptophan dipoles [7] is shown in
Figure 18 for

V(r) =
3γ̃

4

[(
−cos(kr)

kr
+

sin(kr)
(kr)2 +

cos(kr)
(kr)3

)
µ̂Trp · µ̂water

−
(
−cos(kr)

(kr)
+ 3

sin(kr)
(kr)2 + 3

cos(kr)
(kr)3

)
(µ̂Trp · r̂)(µ̂water · r̂), (35)

where r represents the distance between water and tryptophan (Trp) molecules;
k = ω = 4.463 eV represents the energy difference between the ground state and the
first excited state; 2π

k = 280 nm, µ̂Trp and µ̂water represent normalized dipole moment
vectors for Trp µ⃗Trp and water molecule µ⃗water, respectively; r̂ represents the normalized
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relative coordinate between Trp and water given by r⃗; and γ̃ is γ̃ = 4
3

k3

ϵr
|⃗µTrp||⃗µwater| (with

relative permittivity ϵr) representing γ̃ = 3 × 10−7 eV. We show cases of an up–down
configuration and an aligned configuration for Trp and water dipoles in Figure 18. As
shown in Figure 18, we find a large decrease in potential energy for both up–down and
aligned configurations, representing large attractive forces between dipoles. For r < 80 nm,
the potential energy for the aligned configuration is lower than that for the up–down con-
figuration. As r increases, potential energy gradually approaches zero with a wavelength
of 280 nm but still showing long-range interaction (∼ 1

r ). Long-range interaction might
play the role of collective behaviors of Trp and water systems for large scales of micro-
tubules. Trapped water molecules for Trp have been studied in several experimental and
theoretical studies. Tryptophans with trapped protonated water molecules (TrpH+(H2O)3

and TrpH+(H2O)5) were investigated using cold-ion spectroscopy [35]. The dielectric
property of water molecules trapped in tryptophan residue depending on pH was shown
in fluorescence emission spectra [36]. Trapped water molecules around tryptophans are key
factors of protein fluorescence, since the intrinsic fluorescence of tryptophans is sensitive
to the environment surrounding solvents or amino acids [37,38]. In cases in which Trp
molecules attract surrounding water molecules and their distances are at atomic scales
or extremely small compared with a wavelength of 280 nm, quantum effects, such as en-
tanglement, superposition and so on, might emerge. Microtubules involving tryptophans
have been shown to be effective light harvesters [5,6]. Aromatic residues, such as trypto-
phans and tyrosines, might be adopted for information processing roles. Therefore, we
need quantum models to describe the fluorescence of tryptophans with surrounding water
molecules. Such models might be applied to describe the quantum information processing
of tryptophans.

Figure 18. Interaction energy between water and tryptophan dipoles with a distance of r in up–
down (red line) and aligned (black line) configurations. Inset shows familiar dipole-dipole coupling
interactions in short-range region [7].

We consider super-radiant and sub-radiant states for two qubits (j = 1, 2) with a decay
rate of γj. We investigate the following decay matrix (G) appearing on the right-hand side
in Equation (16) as follows:

G =

(
γ1

√
γ1γ2√

γ1γ2 γ2

)
. (36)
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We then find two eigenstates as follows:

G

( √
γ1√
γ2

)
= (γ1 + γ2)

( √
γ1√
γ2

)
, (37)

G

( √
γ2

−√
γ1

)
= 0 ·

( √
γ2

−√
γ1

)
. (38)

The eigenstate expressed as (
√

γ1,
√

γ2)
t ∼

√
γ1σ†

1 |v⟩+
√

γ2σ†
2 |v⟩√

γ1+γ2
represents a super-

radiant state with a large decay rate (γ1 + γ2). On the other hand, the eigenstate expressed

as (
√

γ2,−√
γ1)

t ∼
√

γ2σ†
1 |v⟩−

√
γ1σ†

2 |v⟩√
γ1+γ2

represents a sub-radiant state with a decay rate of 0.

In the case of γ1 = γ2, this sub-radiant state corresponds to (|10⟩ − |01⟩)/
√

2, representing
a spin-0 state of two spin particles (1/2). The sub-radiant state is decoupled from spin-1
states, namely |11⟩, (|10⟩+ |01⟩)/

√
2 and |00⟩, corresponding to intermediate states in

a decaying processes for super-radiant states. Let us now increase the ratio γ2/γ1 from

1. In the case of γ2/γ1 ≫ 1, the sub-radiant state (
√

γ2σ†
1 |v⟩−

√
γ1σ†

2 |v⟩√
γ1+γ2

) is approximately

σ†
1 |v⟩ = |10⟩. As a result, the state of |10⟩ for qubit 1 coupled with qubit 2 with an extremely

large decay rate of γ2/γ1 ≫ 1 is stable over the course of time evolution. We propose the
adoption of sub-radiance to achieve robustness of data qubits of tryptophans entangled
with JQFs of water molecules. Our approach to maintain quantum information is distin-
guished from making use of quantum Zeno effects involving continuous measurement
procedures [39]. We adopt the time evolution of expectation values of operators based on
Heisenberg equations. Then no measurement procedures are necessary. We prepare two
qubits with decay rates of γ1 and γ2. Quantum entanglement between two qubits then
suggests a super-radiant state with a decay rate of γ1 + γ2 and sub-radiant state with a
vanishing decay rate in a Heisenberg equation with a total decay rate of γ1 + γ2 remaining.
We can then use sub-radiance with a vanishing decay rate for data qubits.

Sub-radiance emerging with an increasing ratio is shown in Section 3.1, where we
introduced two qubits (one DQ and one JQF) in the same position (rj = 0). For the ratio of
the decay rates (γJQF/γDQ = 1) in Figure 2, we find an interplay of probability between
DQ and JQF. There is no distinction between DQ and JQF. In the case of a ratio 10, as shown
in Figure 3, the average values of |αj|2 for DQ and JQF are 0.83 and 0.17, respectively. Here,
determine the ratio to be 0.83/0.17 = 4.9. Since the ratio of the decay rates is 10, the ratio
4.9 is roughly one half of 10. This is because part of the excitation of DQ is transferred to
photon modes. In the case of a ratio 100, as shown in Figure 4, the average values of |αj|2
for DQ and JQF are 0.98 and 0.02, respectively. We find a ratio 0.98/0.02 = 49 and that the
order is half of 100 due to contributions of the excitation of photons. As we increase the
ratio of decay rates for DQ and JQF, the |αj|2 for DQ remains around the initial value of
1. For a ratio 100, the corresponding time scales are 1/γDQ = 1.9 ns and 1/γJQF = 19 ps,
which might correspond to the time scales of internal losses and are 20 times larger than
thermalization time scales (∼1 ps) for water–photon systems where we set the mean free
path of water molecules to 0.13 nm and the mean velocity of water molecules to 600 m · s−1,
finding 4 × 0.13 nm/600 m · s−1 = 1 ps with four collision processes.

The other type of sub-radiance for a ratio 1 involving 4 and 24 qubits is shown in
Figures 8 and 14. Even if the ratio is 1, we find that |αj|2 for DQ1 oscillates between
0.25 and 1, as shown in Figure 8. We infer that the other type of the sub-radiant state
(3σ†

DQ1|v⟩ − σ†
DQ2|v⟩ − ∑JQF2

j=JQF1 σ†
j |v⟩) appears since Re αjα

∗
m with j = DQ1 and m = DQ2

has negative values between −0.25 and 0, as shown in Figure 11. The ratio of coefficients
for DQ1 and DQ2 is 32/12 = 9, while the ratio of the average of |αj|2 for DQ1 and
|αj|2 for DQ2 is 0.62/0.12 = 5.2, which is smaller than 9 because excitations of qubits
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are transferred to photon excitations. Similarly, we also infer that the sub-radiant state
(23σ†

DQ1|v⟩ − ∑DQ12
j=DQ2 σ†

j |v⟩ − ∑JQF12
j=JQF1 σ†

j |v⟩) appears. The ratio of the coefficients for DQ1

and other qubits is 232 = 529, while the ratio of the averages of |αj|2 for DQ1 and |αj|2 for
DQ2 is 0.92/0.0075 = 123. The ratio of |αj|2 for DQ1 and |αj|2 for DQ12 is 0.92/0.0067 = 137,
approaching the order of 529. The initial state of DQ1 is protected by other surrounding
qubits under this type of sub-radiance. However, comparing it with the sub-radiance in
making use of the different decay rates for DQ and JQF, the deviation of |αj|2 for DQ1 from
its initial value 1 is dependent on the number of surrounding qubits, which means that we
should use more surrounding qubits for the stability of data. This represents the waste of
resources in terms of qubits. Making use of surrounding water molecules with larger decay
rates than JQFs might be more advantageous in protecting data contained in a microtubule.

The temperature dependence is extremely low in the course of the time evolution of
qubits. This is because ω = 4.463 eV for tryptophan is extremely large compared with
a temperature of T = 310 K = 27 meV. Although we investigated several temperatures
(200 K, 310 K and 400 K) for a total of two qubits, when the ratio of decay rates of DQ and
JQF is 10, there are minimal changes in |αj|2 for DQ1. As the temperature approaches the
order of ω, the amplitudes of oscillations of |αj|2 gradually increase.

In this paper, we adopted wQED with several photon modes. As shown in Figure 5, the
contribution of photon modes is almost only the resonant mode (p/ω = 1) at a temperature
of 310 K. As we increase the number of DQs in Figures 6, 12 and 17, the maximum values in
the distribution of the peak of photon modes (DST) decrease in the course of time evolution.
We also find that as we increase the ratio of the decay rates, the maximum values of DST
decrease, with smaller leakage to the excitations of photons, which reflects the merit of
adopting sub-radiance with robust states of qubits.

We can compare |αj|2 with the ratio 100 for 1 DQ in Figure 4, for 2 DQs in Figure 10
and for 12 DQs in Figure 16. As the number of DQs increases, the |αj|2 for DQ1 tends to
approach the initial value of 1 in the course of time evolution, with an average of 0.98 in
Figure 4, 0.99 in Figure 10 and 0.998 in Figure 16. In addition, the average of |αj|2 for JQF1
in Figure 4 is 0.02, that of JQF2 in Figure 10 is 0.005 and that of JQF12 in Figure 16 is 0.00013.
The ratios of the averages of |αj|2 for DQ1 and JQF are

0.98
0.02

:
0.99

0.005
:

0.998
0.00013

= 50 : 200 : 7700 = 1 : 4 : 150. (39)

We can conclude that sub-radiant states are realized as √γJQFσ†
DQ1|v⟩ −

√
γDQσ†

JQF1|v⟩
for the case of 1 DQ, 2√γJQFσ†

DQ1|v⟩ −
√

γDQ ∑JQF2
j=JQF1 σ†

j |v⟩ for the case of 2 DQs and

12√γJQFσ†
DQ1|v⟩ −

√
γDQ ∑JQF12

j=JQF1 σ†
j |v⟩ for the case of 12 DQs. We now calculate the ratio

of |αj|2 for DQ1 and JQF. We find

(√
γJQF√
γDQ

)2

:

(
2√γJQF√

γDQ

)2

:

(
12√γJQF√

γDQ

)2

= 1 : 4 : 144, (40)

for the cases of 1 DQ, 2 DQs and 12 DQs, respectively. The numerical results shown in
Equation (39) correspond to those for the sub-radiant states in Equation (40).

We have described the damping processes of photon modes in Equation (29) by
changing Γ/ω = 0 to Γ/ω = 1 × 10−5. We find that the damping affects the average of
|αj|2 in the cases of a ratio 1 in Figures 2 and 8. We also find convergence to the initial
values for photon modes in Figures 6 and 12. As we increase the ratio of the decay rate
(γJQF/γDQ) to 10, then to 100 in Figures 3 and 4, respectively, the effects of damping tend
to disappear over time evolution. This is because |αj|2 for DQ1 is nearly equal to 1, and
the absolute values of the distribution of photon modes cease to increase, as shown in
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Figures 6 and 12. Adopting the sub-radiant states, little changes occur due to the damping
of photon modes that appear in time evolution.

We should also discuss the extension of our model to three-dimensional cases. In this
paper, we considered a one-dimensional waveguide QED for the model of tryptophans in
tubulin dimers. To extend this to a three-dimensional case, we extend ξ jk in Equation (3) to

ξ jk =
√

γj
π cos

(
k · rj + θ

)
with three-dimensional momenta k for the photon modes and

position rj for the jth qubit. Even if we extend our model to a thee-dimensional case, since
we can estimate k · rj ∼ ω|rj| ∼ 4.463 eV × 1.333 nm × 11 ∼ 0.03016 × 11 < π

2 for 12 DQs
in two tubulin dimers, little change is expected to appear in the course of time evolution.

Longer simulations are shown in Appendix A. In the case of two DQs and two JQFs
in Figure A1, little decay for |αj|2 appears for DQ1 at t < 1.3 ns. On the other hand, in the
case of 12 DQs and 12 JQFs in Figure A2, we find a slight decay of fitting exp

(
− t

τ

)
with

τ = 200 ns, although the decrease seems to be moderate at t ∼ 1 ns. We can consider
the size of the system to discuss the decay. In the case of 2 DQs and 2 JQFs, the size of
the system is 8/6 × 2 ∼ 3 nm, while the size is 16 nm in the case of 12 DQs and 12 JQFs.
The diffusion length of excitation energy transport in a microtubule was estimated an the
experimental study as the order of 6.6 nm [5]. As the size of the system in our simulations
increases gradually from 6.6 nm, the effects of diffusion might gradually emerge. Although
we encounter diffusion effects in maintaining data qubits for larger simulations, quantum
entanglement might disappear for distant qubits in microtubules. Since the systems for
distant qubits behave independently, the dynamics of the DQs and JQFs might be described
by near qubits, as in the case of two DQs and two JQFs. Our experimental study suggests
that the fluorescence lifetime of tryptophan is a few ns. Our simulation reported in this
paper describes nanosecond scales comparable with the fluorescence lifetime. If we assume
a larger decay rate (γJQF) for JQFs representing water molecules (with a ratio larger than
100), the robustness of data qubits is reinforced. A balance of diffusion and robustness of
sub-radiant states is significant.

Maintaining quantum coherence at high temperatures is a demanding task in bio-
logical systems. Our strategy is to regard biological systems, especially brains, as open
systems. Life is a flow of energy and matter. To maintain biological systems, we prepared
three systems, namely an energy supply, physical system and heat bath. We provided
continuous energy flow from the energy supply, through the physical system to the heat
bath for dissipation of energy. The Fröhlich condensate represents an example suggested
in the flow of these three systems, with Bose–Einstein condensate proposed in biological
systems [40–42]. Self-organization and error corrections due to energy supply represent key
concepts for life. We investigated the brain as an open system achieving biological order. In
particular, microtubules have an energy source supplied by surrounding mitochondria and
heat baths in cells [43,44]. In the case of error corrections by the energy supply to overcome
decoherence, quantum coherence might be maintained.

5. Concluding Remarks and Perspectives
The use of waveguide QED for tryptophans in tubulin dimers forming a microtubule

as data qubits was the focus of our investigations in this paper. We considered tryptophans
to be entangled with water molecules localized in the neighboring positions to those
of tryptophan residues in tubular dimers. The use of data qubits for tryptophans has
been shown to retain initial states by adopting sub-radiant states entangled with water
molecules. Using the robustness of data qubits, we demonstrated the feasibility of quantum
information processing that can be performed by tryptophans in a microtubule as local
events. If these local events are amplified to non-local events by holographic information
processing, the memory localized in a microtubule is diffused throughout the whole
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brain, and the interplay between data qubits in microtubules and water–photon degrees
of freedom in QBD are expected. Our paper presents a formal quantum field theoretic
model and its consequences for previously hypothesized processes implicated in quantum
mechanisms of cognition at the level of sub-cellular substrates [45–47].
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Appendix A. Probability in Data Qubits in Longer-Time Simulations
In this section, we show the probability of data qubits in longer-time simulations.
Figure A1 represents the time evolution of |αj|2 for DQ1 with a ratio 100 for Γ/ω = 0

in the case of two DQs and two JQFs for longer time scales. We determine oscillation to
between 0.98 to 1 for |αj|2 at t < 1.3 ns. Little decay of |αj|2 appears in time evolution.

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

DQ1

|α
j|2
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Figure A1. Time evolution of |αj|2 for DQ1 with the ratio of decay rates 100 for Γ/ω = 0.

We show the time evolution of |αj|2 for DQ1 in longer time scales in the case of 12 DQs
and 12 JQFs in Figure A2. The |αj|2 oscillates and gradually decreases in time evolution at
t < 1 ns. The decrease seems to be moderate at t > 1 ns, and the average of |αj|2 for DQ1 in
Figure A2 is still larger than that in Figure A1. The fitting line represents exp

(
− t

τ

)
with

τ = 200 ns.
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Figure A2. Time evolution of |αj|2 for DQ1 with the ratio of decay rates 100 for Γ/ω = 0.
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