
Kobe University Repository : Kernel

PDF issue: 2025-08-11

Visualization Method for Open Source Software
Risk Related to Vulnerability and Developmental
Status Considering Dependencies

(Citation)
Journal of Information Processing,32:767-778

(Issue Date)
2024

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
© 2024 by the Information Processing Society of Japan
The copyright of this material is retained by the Information Processing Society of
Japan (IPSJ). This material is published on this web site with the agreement of the
author (s) and the IPSJ. Please be complied with Copyright Law of Japan and the Code…
of Ethics of the IPSJ if any users wish to reproduce, make derivative work, distribute
or make available to the public any part or whole thereof. All Rights Reserved,
Copyright (C) Information Processing Society of Japan. Comments are welcome. Mail to
address editj＠ipsj.or.jp, please.

(URL)
https://hdl.handle.net/20.500.14094/0100495954

Yano, Tomohiko
Kuzuno, Hiroki

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

[DOI: 10.2197/ipsjjip.32.767]

Regular Paper

Visualization Method for Open Source Software Risk
Related to Vulnerability and Developmental Status

Considering Dependencies

Tomohiko Yano1,a) Hiroki Kuzuno2,b)

Received: December 6, 2023, Accepted: June 10, 2024

Abstract: In recent years, Open-source software (OSS) has become a mainstream technology essential to information
systems. However, its secure application requires a comprehensive understanding of its various security risks. One of
them is vulnerability risk. A vulnerability risk involves the discovery of a new vulnerability in the OSS in use, which
must be immediately addressed by security administrators, such as software updates. On the other hand, developmental
risks involve OSS that are not in active development. If the development of an OSS is stalled, an alternative OSS should
be considered because newly identified vulnerabilities may not be fixed. Therefore, a specialized method is required to
analyze vulnerability and developmental risks of OSS, while accounting for their dependencies. This paper proposes
a method that identifies such security risks of OSS by extracting, linking, and visualizing the vulnerabilities, develop-
ment status, and dependency information. The proposed method enables security administrators to check visualization
results, identify OSS with security risks, and consider appropriate countermeasures. We experimentally evaluate the
adequacy of the visualizations for the purpose of the identification of security risks, and calculate the processing time
required to visualize the risks.

Keywords: open-source software, vulnerability management, visualization

1. Introduction
The utilization of Open-Source Software (OSS) has become

increasingly popular in information systems, with many organi-
zations already using OSS in their commercial products and ser-
vices. According to a report by Synopsys Inc., 96% of audited
codebases contain OSS [2].

However, the secure use of OSS requires a comprehensive un-
derstanding of their security risks. The use of vulnerable OSS
compromises the integrity, confidentiality, and availability of con-
fidential assets owing to security flaws. To protect OSS against
vulnerability attacks, their vulnerability and developmental risks
must be analyzed in detail.
(1) Vulnerability risks: These involve publicly disclosed vul-

nerabilities that can be exploited to compromise the secu-
rity of information systems. To prevent such risks, publicly
disclosed vulnerabilities must be assessed and appropriate
countermeasures, such as updating the software.

(2) Developmental risks: These are potential risks in OSS
whose development has stagnated. If the development of an
OSS is stalled, newly identified vulnerabilities may not be
fixed. To prevent such risks, the development status of each
OSS should be checked and alternative OSS should be used,

1 Intelligent Systems Laboratory, SECOM CO., LTD., Mitaka, Tokyo
181–8528, Japan

2 Graduate School of Engineering, Kobe University, Kobe, Hyogo 657–
8501, Japan

a) tomo-yano@secom.co.jp
b) kuzuno@port.kobe-u.ac.jp

if necessary.
Moreover, besides the OSS directly in use, its dependent OSS

should also be considered. For example, Apache Log4j, in which
CVE2021-44228 [3] is an easily exploitable risk, is often used in
the back-end of other software packages. Even if you are not us-
ing Apache Log4j directly, you may be using it within an OSS
dependency used by your organization.

Thus, vulnerability, developmental, and dependency infor-
mation have to be analyzed comprehensively to identify risks dur-
ing OSS utilization.

However, existing studies address only a few of these factors
such as the analysis and management of vulnerabilities [4], [5],
[6], proposal of risk indicators for repositories [7], and develop-
ment of tools for the visualization of dependencies [8].

In addition, to enable security administrators to take immediate
action based on the linked information, a representing method is
also important. This highlights the need for visualizing vulnera-
bility, developmental, and dependency information in an appro-
priate format.

The aforementioned considerations lead us to the central re-
search problem considered in this study:
Research problem: The secure use of OSS requires a thorough

understanding of their vulnerability and developmental risks,
considering their dependencies. However, existing studies
have not considered these factors simultaneously.

This paper is an extended version of a paper published in the Eleventh
International Symposium on Computing and Networking (CANDAR
2023) [1]

© 2024 Information Processing Society of Japan 767

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Therefore, a visualization method is required to aid security
administrators to rapidly process such types of information.

In this paper, we propose a method to link and visualize vul-
nerability, development, and dependency information. First, the
proposed method obtains the Common Vulnerability Exposure
(CVE) as vulnerable information, the status of GitHub repository
as developmental information, and the package management sys-
tem as dependency information. It also calculates a development
score representing developmental risks based on the repository
information. Then, it links this information by extracting vulner-
ability, development, and dependency information related to the
OSS names. Finally, the information is visualized as a directed
graph.

The proposed method visualizes OSS that a particular OSS de-
pends on (depend-OSS) and those that depends on it (revdepend-
OSS) in the form of a directed graph, using vulnerabilities and
OSS as keys. If an OSS exhibits vulnerabilities or a high de-
velopment score, the corresponding information is also linked to
them.

The output visualization can be used by security administra-
tors to highlight potentially affected OSS when a vulnerability is
disclosed, or to identify vulnerability and developmental risks in
dependencies associated to a given OSS during regular operation.
Therefore, it helps security administrators identify OSS with se-
curity risks and formulate suitable responses.

The major contributions of this study are as follows:
(1) Visualization of information: The proposed method en-

ables the visualization of vulnerability, developmental, and
dependency information. This enables security administra-
tors to check the visualized results and decide on appropriate
action to protect against OSS with vulnerability and devel-
opmental risks, considering dependencies.

(2) Evaluation of visualized results: The proposed method is
evaluated in terms of output visualizations by adding new
vulnerabilities and changing the development score. The
proposed method is also evaluated in terms of processing
time to ensure practical applicability.

The remainder of this paper is structured as follows. The back-
ground knowledge required to understand the rest of this paper is
discussed in Section 2, and the assumptions regarding the com-
ponents and considered scenarios of the proposed method are de-
scribed in Section 3. In Section 4, the proposed method is intro-
duced in detail, and it is evaluated in Section 5. The evaluation
results are analyzed and the limitations of the proposed method
are discussed in Section 6, and related work is overviewed in Sec-
tion 7. Finally, the study is concluded in Section 8.

2. Background
2.1 Vulnerability Information

Vulnerabilities are technical flaws in any software that can be
exploited for attacks [9]. Well-known software vulnerabilities are
indexed as Common Vulnerabilities and Exposures (CVE) by
MITRE, a non-profit organization, and each vulnerability is as-
signed a unique ID.

CVE information is provided on MITRE [10], National Vul-
nerability Database (NVD) [11], and OS vendor websites. For

Table 1 Vulnerability information of Debian Security Bug Tracker [12].

Field Description
description The description of the vulnerability
debianbug Related ID in the Debian Bug report logs
scope Scope of impact of vulnerability exploitation
repositories Current version in Debian
status Status of fixed vulnerabilities
fixed version Fixed version in Debian
urgency Urgency of the vulnerability

{

"apache-log4j2": {

"CVE-2021-44228": {

"description": "Apache Log4j2 2.0-beta9

through 2.15.0 (excluding security

releases 2.12.2, 2.12.3, and 2.3.1)

JNDI features used in configuration ,

log messages , and parameters do not

protect against attacker controlled

LDAP and other JNDI related endpoints.

...",

"debianbug": 1001478,

"scope": "local",

"releases": {

"bookworm": {

"status": "resolved",

"repositories": {

"bookworm": "2.19.0-2"

},

"fixed_version": "2.15.0-1",

"urgency": "not yet assigned"

},

"bullseye": {

"status": "resolved",

"repositories": {

"bullseye": "2.17.1-1˜deb11u1",

"bullseye -security": "2.17.0-1˜

deb11u1"

},

"fixed_version": "2.15.0-1˜deb11u1",

"urgency": "not yet assigned"

},

...

}

},

...

},

...

}

Listing 1 Example of vulnerability information from Debian Security Bug
Tracker [12]

example, the Debian Security Bug Tracker [12] provides vulner-
ability information in the JavaScript Object Notation (JSON) for-
mat. The information provided is presented in Table 1. An exam-
ple of JSON format provided by the Debian Security Bug Tracker
is presented in Listing 1.

2.2 Developmental Information
Because the source code of an OSS is publicly available, its

repository information, such as commits, issues, and release in-
formation, can be obtained using the GitHub REST API [13].

The proposed method uses the Criticality Score (CS) [14] pro-
posed by Open-Source Security Foundation (OpenSSF), which
quantitatively represents the importance of the OSS. It is defined
as follows (Eq. (1)).

Cpro ject =
1∑
i αi

∑
i

αi
log(1 + S i)

log(1 +max(S i,Ti))
(1)

CS comprises ten parameters, S 0 − S 9. These parameters are

© 2024 Information Processing Society of Japan 768

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Table 2 OpenSSF Criticality Score [14].

Parameter (S i) Description
created since Time since the project was created (in months)
updated since Time since the project was last updated (in months)
contributor count Count of project contributors (with commits)
org count Count of distinct organizations that contributors belong to
commit frequency Average number of commits per week in the last year
recent releases count Number of releases in the last year
closed issues count Number of issues closed in the last 90 days
updated issues count Number of issues updated in the last 90 days
comment frequency Average number of comments per issue in the last 90 days
dependents count Number of project mentions in the commit messages

Table 3 Control information [19].

Field Description
Source This field identifies the source package name
Maintainer The package maintainer’s name and email address
Version The version number of a package
Section An application area into which the package has been classified
Priority How important it is that the user has the package installed
Homepage The URL of the website for this package
Package The name of the package
Architecture Debian machine architecture
Depends It requires certain binary packages
Description A description of the binary package

$ apt-cache show dkms

Package: dkms

Version: 2.8.4-3

Installed -Size: 295

Maintainer: Dynamic Kernel Modules Support Team <

dkms@packages.debian.org>

Architecture: all

Provides: dh-sequence-dkms

Depends: kmod | kldutils, gcc | c-compiler , dpkg-dev,

make | build-essential , coreutils (>= 7.4), patch,

dctrl-tools

Pre-Depends: lsb-release

Recommends: fakeroot , sudo, linux-headers -686-pae |

linux-headers-amd64 | linux-headers-generic | linux

-headers

Suggests: menu, e2fsprogs

Description -en: Dynamic Kernel Module Support Framework

DKMS is a framework designed to allow individual kernel

modules to be upgraded

without changing the whole kernel. It is also very easy

to rebuild modules as

you upgrade kernels.

Description -md5: b7b6bb6a6b083b2245e0648e7752a459

Multi-Arch: foreign

Homepage: https://github.com/dell-oss/dkms

Tag: admin::kernel, devel::buildtools , devel::lang:c,

devel::library,

devel::packaging , implemented -in::c, implemented -in::

shell,

interface::commandline , role::devel-lib, role::program,

scope::utility,

suite::debian, works-with::software:source

Section: kernel

Priority: optional

Filename: pool/main/d/dkms/dkms_2.8.4-3_all.deb

Size: 78240

MD5sum: a89a700dd0c1758a86713ebb7be5fea1

SHA256: 34

f45872c4c164e838092ddfb098b800d9fd38c25aaf7a2624

81d6c8b87dffdf

Listing 2 Example of control from apt-cache command

described in Table 2. Each S i is assigned a threshold, Ti, and
a weight, αi. Collectively, they are indicative of the develop-
ment status of the OSS. The proposed method uses the criticality
score as the development score by adjusting αi such that Cpro ject

is higher for OSS with less active development.

2.3 Dependency Information
The proposed method uses the package management system to

obtain dependency information. Package management system is
used in OSs and programming languages to automate the man-
agement of programs and libraries installed on computers and
resolve dependencies. As programming languages and package
management system, pip is used for Python [15], and gem is used
for Ruby [16]. On the other hand, dpkg and apt are used as OS
package management system for Debian Linux [17], and rpm is
used for RedHat Linux [18]. In Debian Linux, OSS is managed
in the form of deb packages, and package information is recorded
in a control file (Control). Control includes the fields listed in
Table 3. An example of Control is presented in Listing 2.

3. Assumption
3.1 Components

This section describes the component, including the target
computer to which the proposed method can be applied, and the
flow of information. The proposed method comprises the follow-
ing components (Fig. 1):

Target computer: The computer to be analyzed and infor-
mation about the OSS (package), including dependencies, is ex-
tracted. The OS is Debian GNU/Linux, and the OSS is managed
by the package management system.

Package information: The package information can be ob-
tained from Control. The dependency information can be ob-
tained from the “Depends” field and the repository URL can be
obtained from the “Homepage” field.

Vulnerability information: CVE information is available on
the OSS (e.g., the Debian Security Bug Tracker [12]).

Repository information: Repository information can be ob-
tained from GitHub repository using GitHub API.

Analysis computer: The analysis computer accepts the pack-
age, vulnerability and repository information as input, analyzes
them, and outputs the directed graph.

© 2024 Information Processing Society of Japan 769

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Administrator: The administrators take action based on the
output directed graphs. Specific scenarios are described in the
scenarios (Section 3.2).

3.2 Considered Scenarios
This section describes considered scenarios. Security adminis-

trators can respond to OSS security risks during the regular oper-
ation and during disclosure of new vulnerabilities. Therefore, the
following describes the scenarios for each response.
(1) Security administrator during regular operation: Secu-

rity administrators regularly output directed graphs describ-
ing dependencies with the OSS as a key. If an unaddressed
vulnerability exists within the dependencies, appropriate ac-
tion is taken, e.g., the OSS is updated. If an OSS exhibits a
high development score, its use is terminated and alternative
OSS is considered.

(2) Security administrator during disclosure of new vulnera-
bilities: When a new vulnerability is disclosed, security ad-
ministrators output graphs describing the dependencies with
the vulnerability as a key. The output directed graph indi-
cates the affected OSS, and the administrator takes appro-
priate actions based on the graph. For example, if an OSS
that is widely used in the organization is listed as one of the
dependencies, the administrator updates the vulnerable OSS
immediately; otherwise, the action is addressed later, such
as during scheduled maintenance.

Fig. 1 Components: Components consist of a target computer that is as-
sessed, an analysis computer that analyzes the obtained information
and outputs a directed graph, and a monitor that displays the directed
graph. The administrator checks the results displayed to the monitor.

Fig. 2 Overview of the proposed method: The proposed method consists of gathering information (Sec-
tion 4.4.1), linking information (Section 4.4.2), and constructing directed graph (Section 4.4.3).

4. Methods
4.1 Requirements

The proposed method enables security administrators to iden-
tify vulnerabilities and OSS with high developmental risk easily
within dependencies. We aimed to satisfy the following require-
ments:
Requirements: The proposed method requires visualization of

depend-OSS or revdepend-OSS with vulnerability and devel-
opment score information. Therefore, obtaining and linking
vulnerability, developmental, and dependency information is
essential.

4.2 Overview
An overview of the proposed method is presented in Fig. 2.
The proposed method can be subdivided into three stages

—gathering information, linking information, and constructing
the directed graph. In the first stage, CVE information is obtained
as vulnerability information, repository information as develop-
mental information, and package information as dependency in-
formation. In the second stage, vulnerability, developmental, and
dependency information are extracted and linked based on the
obtained information, using the OSS name. Dependency infor-
mation extracts both depend-OSS and revdepend-OSS. Finally, a
directed graph is constructed based on the linked information.

4.3 Definition of Directed Graph
The output directed graph is represented by G = (V; E), where

V denotes the set of vertices, vi; and E ⊂ V × V is the set of
edges, ei j = (vi; v j). V represents OSS information oi ∈ O, vul-
nerabilities ci ∈ C, and development scores si ∈ S . E represents
dependencies, dependoio j , and additional information on vulner-
abilities, vulnoic j , and development score, scoreoi s j . dependoio j is
represented by oi, depending on o j.

An example of a directed graph is depicted in Fig. 3. Its edges
indicate the dependencies of the OSS. For example, OSS A in
Fig, 3 depends on OSS B, whereas OSS C depends on OSS A.
Thus, in the case of OSS A, the “depend-OSS” is OSS B, and
the “revdepend-OSS” is OSS C. A high vulnerability score and

© 2024 Information Processing Society of Japan 770

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Fig. 3 The example of a directed graph (depend-OSS).

Fig. 4 The example of a directed graph (revdepend-OSS).

a high development score are also observed in the figure. The
directed graph depicts not only the depend-OSS of a particular
OSS, as depicted in Fig. 3, but also its revdepend-OSS with re-
spect to vulnerabilities, as depicted in Fig. 4. In Scenario 1 (Sec-
tion 3.2), the security administrator highlights the depend-OSS,
as depicted in Fig. 3, and in Scenario 2, the revdepend-OSS is
highlighted, as depicted in Fig. 4.

4.4 Proposed Method
4.4.1 Gathering Information

First, the proposed method obtains the vulnerability infor-
mation from the vulnerability database (Debian Security Bug
Tracker [12]), and the package information using the package
management system (Control). The vulnerability information
c ∈ C contains the OSS name, c.ossname, and the package
information contains the OSS name, p.ossname; dependency,
p.DEPEND; and repository URL, p.url. Note that the depen-
dency information only contains depend-OSS information, not
revdepend-OSS information.

Moreover, the proposed method obtains the repository infor-
mation s ∈ S from the repository URL, p.url, using GitHub
API and calculates the development score using repository in-
formation. The repository information, s contains the OSS name,
s.ossname and the development score, s.score.
4.4.2 Linking Information

The proposed method links all information based on OSS
names. Algorithm 1 presents the proposed linkage method. First,
the OSS information o ∈ O is obtained corresponding to the OSS
name, ossname; vulnerability information, C; package informa-
tion, P; and repository information, S .
(1) Vulnerability linkage: The proposed method links all vulner-

ability information by searching for it and enumerating the
CVE-related OSS names.

(2) Development linkage: The proposed method links the devel-
opment scores by searching for repository information re-
lated to the OSS name.

Algorithm 1 Linking information based on OSS name
Input: ossname ▷ Input OSS name
C ▷ Vulnerability information
P ▷ Package information
S ▷ Repository information
Output: o ▷ OSS information

1: o⇐ ϕ
2: for each c ∈ C do ▷ (1)
3: if c.ossname = n then
4: o.CVE.APPEND(c)
5: end if
6: end for
7: for each s ∈ S do ▷ (2)
8: if s.ossname = n then
9: o.score⇐ s

10: end if
11: end for
12: o.REVDEPEND⇐ ϕ
13: for each p ∈ P do
14: if p.ossname = n then ▷ (3)
15: o.DEPEND⇐ p.DEPEND
16: end if
17: for each d ∈ p.DEPEND do ▷ (4)
18: if d = p.ossname then
19: o.REVDEPEND.APPEND(d)
20: end if
21: end for
22: end for

(3) depend-OSS linkage: The proposed method links depen-
dency information by searching for package information re-
lated to the OSS name.

(4) revdepend-OSS linkage: The proposed method links all de-
pendency information by searching all package dependen-
cies and enumerating the packages with related OSS names
in the dependency information.

Finally, OSS oi ∈ O links the vulnerability, oi.CVE; the de-
velopment oi.score; depend-OSS oi.DEPEND, and revdepend-
OSS oi.REVDEPEND information based on the OSS name,
oi.ossname.
4.4.3 Constructing the Directed Graph

Algorithm 2 describes the construction of the directed graph.
Based on the input, comprising target OSS information oinit ∈ O,
OSS list O, and development score threshold th, a directed graph
G is defined using the set of vertices, V , and the set of edges,
E. The directed graph aids the enumeration of depend-OSS and
revdepend-OSS. The enumeration of depend-OSS is described
below. The case of revdepend-OSS can also be enumerated simi-
larly.
(1) Add the target OSS to the set of vertices.
(2) Enumerate the dependencies of the target OSS, add the enu-

merated OSS to the set of vertices, and add each dependency
to the set of edges.

(3) For each new depend-OSS, enumerate the dependencies of
the OSS. If the enumerated OSS has not yet been included
in the set of vertices, add the enumerated OSS to the set of
vertices and add the dependency to the set of edges.

(4) Repeat step (3) until no additional OSS is added to the set
of vertices.

(5) For each OSS stored in the set of vertices, corresponding
CVEs are added to the set of vertices, and the association

© 2024 Information Processing Society of Japan 771

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Table 4 List of installed package.

Category Package name
essential build-essential, openssh-server, openssl, ca-certificates, curl, gnupg, lsb-release
programming language python3, python3-pip, golang, ruby-full, default-jdk, rubygems, php-common, libapache2-mod-php, php-cli
build linux kernel libncurses-dev, bison, flex, openssl, libssl-dev, libelf-dev, git, bc
docker docker-ce, docker-ce-cli, containerd.io, docker-compose-plugin, docker-compose
kubernetes kubectl
database mysql-common, postgresql, mongodb-org, influxdb

Algorithm 2 Constructing a directed graph
Input: oinit ▷ Initial OSS
O ▷ OSS information list
th ▷ Threshold of development score
Output: G = (V, E)

1: V.APPEND(oinit) ▷ (1)
2: for od ∈ oinit.DEPEND do ▷ (2)
3: V.APPEND(od)
4: E.APPEND((oinit, od))
5: end for
6: Oprevadd ⇐ oinit.DEPEND
7: repeat
8: Onewadd ⇐ ϕ
9: for each oprevadd ∈ Oprevadd do ▷ (3)

10: for each od ∈ oprevadd .DEPEND do
11: if od < V then
12: Onewadd .APPEND(od)
13: V.APPEND(od)
14: E.APPEND((oprevadd , od))
15: end if
16: end for
17: end for
18: Oprevadd ⇐ Onewadd
19: until Onewadd = ϕ ▷ (4)
20: for each o ∈ V do
21: for each cve ∈ o.CVE do ▷ (5)
22: V.APPEND(cve)
23: E.APPEND((o, cve))
24: end for
25: if o.score ≧ th then ▷ (6)
26: V.APPEND(score)
27: E.APPEND((o, o.score))
28: end if
29: end for

with the OSS is added to the set of edges.
(6) For each OSS stored in the set of vertices, if the development

score exceeds a predefined threshold, it is added to the set of
vertices, and the association with the OSS is added to the set
of edges.

5. Evaluation
In this section, the proposed method is implemented and eval-

uated. We evaluate the following terms experimentally by visu-
alizing depend-OSS and revdepend-OSS based on the scenario
described in Section 3.2.
(1) Evaluation in terms of visualization quality: This assesses

if the considered scenarios could be understood adequately
using the proposed method.

(2) Evaluation in terms of calculation time: This measures
the processing time required by the proposed method, and
evaluates its practical applicability in this regard.

5.1 Implementation and Visualization
The JSON file in Debian Security Bug Tracker is used as the

Fig. 5 The example of visualization: The visualization results are displayed
in the web browser. When a new vulnerability or a development
score exceeding the threshold is added, a pop-up notification appears
in the lower right corner of the display, and the corresponding vertex
is highlighted in red.

source for vulnerability information, the apt-cache command for
package information, and GitHub API for repository information.
Information is obtained and linked, and the directed graph is con-
structed and visualized using Python.

An example of a visualization is depicted in Fig. 5. The re-
sult is illustrated in web browser. The black circles represent
packages, red squares represent vulnerabilities, and red trian-
gles represent development scores. If a new vulnerability or
over-threshold development score is added, a pop-up notifica-
tion is displayed at the bottom-right corner of the screen, and
the corresponding vertex is highlighted in red. The web browser
is reloaded regularly and the results are reflected when various
pieces of information are updated.

5.2 Environment
Evaluation is conducted using two virtual machines running

on a single-host PC. The specifications of the host PC and virtual
machines are as follows:
• Host PC: Windows 11 Pro with Intel(R) Core(TM) i7-1255U

(1.70 GHz, x86-64, 10 cores), 32 GB DDR4 RAM.
• Virtual machine: Debian GNU/Linux 11 (Bullseye) with

four CPU cores and 8 GB of memory. One virtual machine
is used as the target computer and the other as the analysis
computer.

The packages listed in Table 4 and the dependent packages are
installed on a virtual machine of the target computer. In addition
to the aforementioned packages, a dummy package with a devel-
opment score of 0.1 is added. The development score threshold
for visualization is set to 0.6. All values of Ci and Ti are calcu-
lated using default values.

5.3 Experimental Scenarios
5.3.1 Scenario 1

This experimental scenario focuses on Python3.9 and assumes
that a depend-OSS of python3.9 is visualized. First, a dummy
vulnerability (CVE-YYYY-XXXX) is added to the dummy pack-

© 2024 Information Processing Society of Japan 772

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Fig. 6 Evaluation result related to scenario 1: This is the result of visualizing depend-OSS in python3.9.
The figure shows when vulnerabilities and high development scores are added (I) and pop-ups
appear (II).

age. This is in assumption of vulnerabilities, such as Apache
Log4j CVE-2021-44228, in the dependencies of OSS. Then, the
development score is changed to 0.8. The security administrator
confirms the added CVE and the higher score and takes action.
5.3.2 Scenario 2

This experimental scenario assumes the visualization of
revdepend-OSS that may be affected by three CVEs (refer to Sec-
tion 5.4.1). The security administrator confirms the revdepend-
OSS and takes appropriate action.

5.4 Evaluation
5.4.1 Evaluation 1
(1) We executed scenario 1 and confirmed that the addition of

CVE and changes in scores are visualized in the visualiza-
tion results using Python3.9 [23].

(2) We executed scenario 2 and confirmed the packages that
may be affected by the vulnerability. We used CVE-2022-
42919 [20] which is a vulnerability of Python, CVE-2022-
3602 [21] which is a vulnerability of OpenSSL, and CVE-
2023-38545 [22] which is a vulnerability of Curl.

5.4.2 Evaluation 2
We executed and the execution times were measured for the

following tasks:
(1) Obtain package information: Time to obtain package in-

formation installed on the target computer.
(2) Obtain vulnerability information: Time to obtain all

vulnerability information stored in Debian Security Bug
Tracker in JSON format.

(3) Obtain repository information: Time to obtain repository
information for packages with identified repository URL in-
stalled on the target computer.

(4) Construct directed graph: Time to construct directed
graph based on the package, vulnerability and repository in-
formation.

(5) Visualization: Time to draw the created directed graph.
The “Construct directed graph” and “Visualization” items were
measured to assess the depend-OSS and revdepend-OSS of
Python3.9 [23], OpenSSL 1.1.1n [24], and Curl 7.74.0 [25].

5.5 Result
Evaluation 1: The visualizations for the result of executing

scenario 1 for Python3.9 before and after the addition of vulner-
abilities and development score changes are depicted in Fig. 6,
alongside the OSS dependencies, vulnerabilities, and develop-
ment score. The differences between the results are presented
in the lower left of Fig. 6. The results before adding vulnerabili-
ties and development score changes are presented on the left, and
those after the changes are presented on the right. Additionally,
there are two pop-up notifications about vulnerability and devel-
opment score as shown in the lower right of Fig. 6.

The visualization for the results of executing scenario 2 for
CVE-2022-42919, CVE-2022-3602, and CVE-2023-38545 is de-
picted in Fig. 7. As in Fig. 6, the OSS dependencies, vulnerabili-
ties, and development scores are shown. However, it is visualized
the revdepend-OSS.

Evaluation 2: The processing time of the proposed method to

© 2024 Information Processing Society of Japan 773

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Fig. 7 Experimental results for scenario 2: These are the results of visualizing the revdepend-OSS of
CVE-2022-42919, which is a vulnerability of Python, CVE-2022-3602, which is a vulnerability
of OpenSSL, and CVE-2023-38545, which is a vulnerability of Curl.

© 2024 Information Processing Society of Japan 774

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Table 5 Process time (Obtain information).

Contents Process time(s)
Obtain package information 34.0
Obtain vulnerability information 23.0
Obtain repository information 11150.7

Table 6 Process time (Construction and visualization).

Contents Package Depend Process time(s)

Construct directed graph

Python3.9 depend-OSS 2.36
revdepend-OSS 3.51

OpenSSL depend-OSS 0.43
revdepend-OSS 2.12

Curl depend-OSS 1.64
revdepend-OSS 0.33

Visualization

Python3.9 depend-OSS 0.34
revdepend-OSS 0.55

OpenSSL depend-OSS 0.22
revdepend-OSS 0.30

Curl depend-OSS 0.27
revdepend-OSS 0.21

acquire and visualize the information is presented in Table 5 and
Table 6. According to Table 5 and Table 6, most contents were
completed in a matter of seconds. On the other hand, obtaining
repository information requires as much as 3 hours.

6. Discussion
6.1 Visualization Results

Figure 6 shows that it is possible to inform the security admin-
istrators based on color changes and pop-up notifications when
vulnerabilities are added or when the development scores are
changed. The results are deemed to be adequate for security ad-
ministrators to identify vulnerability and developmental risks of
OSS, enabling them to avoid using OSS with high risk scores or
adopt countermeasures against newly added vulnerabilities.

Figure 7 shows that it is possible to show security administra-
tors the OSS that are potentially affected with the vulnerability
by displaying revdepend-OSS. For example, Fig. 7 (b) shows that
CVE-2022-3602, which is a vulnerability in OpenSSL, affects
many OSS, including Python, OpenJDK, Ruby, and PostgreSQL.
Therefore, it is necessary to take immediate action such as up-
dating the vulnerable OSS. On the other hand, Fig. 7 (a) shows
that CVE-2022-42919, which is a vulnerability in Python affects
almost only packages related to python, and Fig. 7 (c) shows that
CVE-2023-38545, which is a vulnerability in Curl, affects only
InfluxDB. Therefore, when Python related packages in the case
of CVE-2022-42919 and Curl and InfluxDB in the case of CVE-
2023-38545 are not used in critical systems, immediate action is
not necessary. The results are deemed to be adequate for security
administrators to measure the impact of the vulnerability on the
organization and to determine the vulnerability response, such as
responding immediately or at the next scheduled maintenance.

6.2 Processing Time Consideration
By Table 5, the acquisition of repository information requires

more time than the acquisition of package information, vulner-
ability information, construction of directed graphs, and visual-
ization. This may be attributed to the limitations of the GitHub
API in obtaining various types of information about the reposi-
tory. However, the risk score does not change significantly within
a day, and information is retrieved only once a week. Therefore,

this approach is considered practical.

6.3 Emulation of the Time Required for a Security Admin-
istrator to Execute a Scenario

The following procedure is required to execute Scenarios 1 and
2 without the proposed method.
Scenario 1
(1) Extract the depend-OSS of the package using apt-cache

command.
(2) Execute the script [14] to calculate the development score for

the extracted depend-OSS.
(3) Check for vulnerabilities in the extracted depend-OSS by us-

ing websites.
(4) Examine dependencies of the extracted depend-OSS.
(5) Repeat steps 1–4 until there are no more packages to be in-

vestigated.
Scenario 2
Revdepend-OSS of the package is extracted using apt-cache com-
mand. However, apt-cache command does not include the depen-
dencies of the package. Therefore, it is necessary to extract the
depend-OSS information for all installed packages.

In this case, the time S c1 and S c2 required to execute each sce-
nario are Eq. (2) and Eq. (3).

S c1 = (sd + ss + sv)N (2)

S c2 = sdNP (3)

Where sd is the time to enumerate depend-OSS by executing apt-
cache command, ss is the time to calculate development score, sv
is the time to check vulnerability of packages, N is the number of
packages to extract in the whole process, and P is the number of
packages installed on the target computer.

In contrast, the proposed method can execute scenarios simply
by accessing it with a browser.

6.4 Portability Limitations
6.4.1 Supported OS

The proposed method only supports Debian due to the use of
Debian Security Bug Tracker. To support other OSs, the follow-
ing methods are required:
(1) A method to link the package name of package information

with the package name of vulnerability information.
(2) If the OS manages its own version of the package, a method

to link the version of the vulnerable package to the version
of the original package managed by the OS.

If the OS does not manage its own version control, NVD can be
used for CVE information. However, if NVD is used, the OSS
name in the vulnerability information obtained from the NVD
may not agree with the OSS information, such as package infor-
mation. This problem can be resolved by using Common Plat-
form Enumeration (CPE). On the other hand, if the OS has its
own version control, it is necessary for each OS to have informa-
tion linking the vulnerabilities to the version of the target pack-
age, similar to the information provided by the Debian Security
Bug Tracker.
6.4.2 Identification of Repository URL

The proposed method obtains the repository URL from the

© 2024 Information Processing Society of Japan 775

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Fig. 8 The example of indication flow for multiple computers.

Homepage field of Control. However, not all packages contain
repository information in Control. Therefore, in this case, it is
necessary to estimate the repository from other information. Fur-
ther, some OSS projects do not use the GitHub repository. Thus,
a suitable method is required to obtain information about such
OSS projects.
6.4.3 Obtaining Dependencies

The dependencies included in the control can be obtained only
based on the dependencies between the deb packages. Therefore,
dependencies, such as the libraries included in the building pro-
cess, must also be obtained. In future work, we intend to consider
obtaining dependencies from other sources, such as software bills
of materials (SBOM) [26].

6.5 Capability Limitations
6.5.1 Number of Target Computers

In this paper, we evaluated a single target computer. However,
in practice, organizations involve multiple computers —thus, an
appropriate visualization method is necessary. Therefore, as de-
picted in Fig. 8, computers and their alerts should be displayed in
the form of table, and security administrators may choose to dis-
play directed graphs of different computers. The computational
complexity of this process is O(N) because each computer con-
structs the graph independently.
6.5.2 The Capability of Real-time Processing

The proposed method can visualize the collected information
in a few seconds or tens of seconds. Although it takes time to
collect repository information, this is not an issue currently be-
cause the development score does not change significantly over
this time period. However, a calculation method is used for the
development score that causes significant score fluctuations in a
short time, this issue could become problematic. Therefore, an
appropriate method is required to minimize the time taken for the
collection of repository information.
6.5.3 Capability of Finding Zero-day Vulnerabilities

The proposed method can also apply to zero-day vulnerabil-
ities after a CVE has been issued. Zero-day vulnerabilities are
displayed in the visualization results in the same manner as other
CVE-issued vulnerabilities. However, if the visualization results
can include the information that security patches have not yet
been released, security administrators can determine the priority
of response.

6.6 Visualization Limitations
6.6.1 Displayed OSS within Dependencies

The proposed method displays all OSS within dependencies.
However, some OSS may have a large number of dependencies.

Therefore, they should be visualized by displaying only the por-
tions containing the alerts.
6.6.2 The Validity of the Visualization Format

The proposed method uses a directed graph for the purpose of
visualization. This is considered to be a suitable format for dis-
playing dependencies. On the other hand, it is not sufficient for
visualization of time-series changes, such as that of the develop-
ment score. In such cases, other formats should be used for visu-
alization. For example, as illustrated in Fig. 8, functions display
fluctuations in the development score in time series by clicking
on the development score in the directed graph.

6.7 Evaluation of Operational Efficiency
The user study and quantitative evaluation are important to vi-

sualization approach. These evaluations of the proposed method
can indicate improvements of the operational cost of a security
incident response for each OSS package’s vulnerability. More-
over, these evaluations of the proposed method with related works
and human analysis can highlight the efficiency of the proposed
method.

To understand the feasibility of the proposed method, user
studies should be conducted to compare the efficiency of exe-
cuting each scenario with and without the proposed method on
multiple users. Evaluation via user studies remains a challenge.

7. Related Work
Vulnerability information: Several types of studies have been

conducted on vulnerabilities, e.g., on the analysis [4] and visual-
ization [27] of vulnerability information stored on databases. Ad-
ditionally, determining the severity of vulnerabilities is impor-
tant to adopt appropriate vulnerability responses. The Common
Vulnerability Scoring System (CVSS) [28] has been widely used
as an indicator of vulnerability severity [29]. Improved scoring
methods [5] and frameworks that include decision-making [30]
have also been proposed. Further, studies have been conducted
to estimate the priority of vulnerability responses [6].

Developmental information: Information about repositories
is essential to address the security risks of OSS. However, in
general, evaluation indicators for OSS repositories are related to
the maturity [31] and importance [14] of OSS, and are used for
their selection and evaluation. Some evaluation indicators related
to security risk have been proposed, e.g., the OSS Scorecard [7],
which is calculated in terms of software security from the per-
spective of OSS repositories. In addition, a study was conducted
on the potential risks of OSS vulnerable to supply chain attacks
on npm packages [32]. We intend to consider this in the scoring
index in future works.

© 2024 Information Processing Society of Japan 776

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

Table 7 Comparison with related work.
3: Supported

Vulnerability
risks

Development
risks Dependency

EPSS [5] 3
OpenSSF Scorecard [7] 3
Dependency-Check [33] 3 3
Our proposed method 3 3 3

Dependency information: Several tools are available for an-
alyzing software dependencies [8]. Additionally, tools such as
dependency-check [33] and Snyk [34] are available to analyze
vulnerabilities in dependencies and improvement methods [35].
Further, vulnerabilities in dependencies have been analyzed on a
large scale [36]. In the proposed method, these dependencies are
described using package management systems.

7.1 Comparison with Related Work
Table 7 compares the related works, [5], [7], and [33]. The

Exploit Prediction Scoring System (EPSS) [5] was designed to
evaluate and predict the likelihood of vulnerabilities being ex-
ploited. It assigns scores based on factors such as severity of vul-
nerabilities, the availability of the exploiting code, and the ease
of exploitation. OpenSSF Scorecard [7] is a framework for as-
sessing the security of open-source projects. It is based on ele-
ments such as security best practices, secure development, risk
management, community participation, security documentation,
and software composition analysis. A dependency check [33] is
a software tool that assists the identification of vulnerabilities in
the dependencies of applications or projects. It scans dependen-
cies, such as libraries and frameworks, and compares them to a
vulnerability database.

However, EPSS, OpenSSF Scorecard, and the dependency
check do not cover all aspects of vulnerability risks, developmen-
tal risks, and dependencies. Each factor of OSS security risk was
individually considered, and the main focus was on the accuracy
of each factor. Although individual indicators of vulnerability,
development status, and dependencies can be obtained, it is diffi-
cult to automatically link them due to differences in OSS names
and versions. While the proposed method is limited to Debian,
all information is linked based on data managed by the Debian
project.

The novelty of the proposed method is that it enables the un-
derstanding of vulnerability risk and developmental risk, consid-
ering their dependencies, which have been separately considered
in related work, and enables rapid and wider understanding of the
security risk of OSS. Additionally, we evaluated validity through
visualization based on scenarios.

On the other hand, it is difficult to compare the cost of anal-
ysis times because each method differs in terms of the range of
support and format of the output, such as numerical values and
visualizations. The computational complexity of the OSS anal-
ysis should be calculated to promote fair comparisons. EPSS is
a score mainly related to software vulnerability risk, OpenSSF
Scorecard is a score related to OSS repositories, Dependency-
Check is the result of an analysis of software dependencies and
vulnerabilities, and the proposed method is a visualization of vul-

nerability and developmental risks, considering their dependen-
cies on OSS. Since the output of each method is different, it
is necessary to calculate the time complexity of each output for
each software. In this case, the time complexity of all methods is
O(N). However, as shown in Section 6.3, the proposed method is
capable of processing within a practical time.

8. Conclusion
In this paper, we proposed a method to link and visualize vul-

nerability, developmental, and dependency information of OSS.
The proposed method extracts and links vulnerability, develop-
mental status, and dependency information of OSS based on vul-
nerability databases, GitHub repositories, and package manage-
ment systems. Finally, it visualizes them using directed graphs.
This enables security administrators to check the visualization re-
sults, identify OSS with security risks, and formulate appropriate
countermeasures. In future works, research should be conducted
on obtaining dependencies from SBOM, supporting for other OS,
and improving the method in terms of calculating scores that rep-
resent development status.

Acknowledgments This work was partially supported by the
Japan Society for the Promotion of Science (JSPS) KAKENHI
Grant Number JP23K16882, and ROIS NII Open Collaborative
Research 2022 (22S0302)/2023 (23S0301).

References
[1] Yano, T. and Kuzuno, H.: Security Risk Visualization for Open-

Source Software based on Vulnerabilities, Repositories, and Depen-
dencies, The 11th International Symposium on Computing and Net-
working (CANDAR 2023) (2023).

[2] Synopsys, Inc.: Open source Security and Risk Analysis Report
(2023).

[3] National Institute of Standards and Technology: CVE-2021-44228
(online), available from ⟨https://nvd.nist.gov/vuln/detail/CVE-2021-
44228⟩ (accessed 2023-12-04).

[4] Williams, M.A., Dey, S., Barranco, R.C., Naim, S.M., Hos-
sain, M.S. and Akbar, M.: Analyzing evolving trends of vul-
nerabilities in national vulnerability database, 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pp.3011–3020 (online),
DOI:10.1109/BigData.2018.8622299 (2018).

[5] Jacobs, J., Romanosky, S., Edwards, B., Adjerid, I. and Roytman, M.:
Exploit prediction scoring system (EPSS), Digital Threats: Research
and Practice, Vol.2, No.3, pp.1–17 (online), DOI:10.1145/3436242
(2021).

[6] Walkowski, M., Krakowiak, M., Jaroszewski, M., Oko, J. and Sujecki,
S.: Automatic CVSS-based vulnerability prioritization and response
with context information, 2021 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), pp.1–6 (on-
line), DOI:10.23919/SoftCOM52868.2021.9559094 (2021).

[7] Open Source Security Foundation (OpenSSF): Security Scorecards
(online), available from ⟨https://github.com/ossf/scorecard⟩ (accessed
2023-12-04).

[8] Trail of Bits: It-Depends (online), available from ⟨https://github.
com/trailofbits/it-depends⟩ (accessed 2023-12-04).

[9] de Zafra, D.E., Pitcher, S.I., Tressler, J.D. and Ippolito, J.B.: In-
formation technology security training requirements: A role-and
performance-based model, NIST Special Publication, vol.800, No.16,
pp.800–816 (online), DOI:10.6028/NIST.SP.800-16 (1998).

© 2024 Information Processing Society of Japan 777

Journal of Information Processing Vol.32 767–778 (Sep. 2024)

[10] Mitre Corporation: CVE (online), available from ⟨https://cve.mitre.
org/⟩ (accessed 2023-12-04).

[11] National Institute of Standards and Technology: NATIONAL VUL-
NERABILITY DATABASE (online), available from ⟨https://nvd.
nist.gov/⟩ (accessed 2023-12-04).

[12] Debian Project: Security Bug Tracker (online), available from
⟨https://security-tracker.debian.org/tracker/⟩ (accessed 2023-12-04).

[13] GitHub, Inc.: GitHub REST API (online), available from ⟨https://
docs.github.com/rest⟩ (accessed 2023-12-04).

[14] The Open Source Security Foundation: Open Source Project Crit-
icality Score (Beta) (online), available from ⟨https://github.com/
ossf/criticality score⟩ (accessed 2023-12-04).

[15] Python Software Foundation: PyPI - The Python Package Index (on-
line), available from ⟨https://pypi.org/⟩ (accessed 2023-12-04).

[16] rubygems.org: RubyGems.org — your community gem host (online),
available from ⟨https://rubygems.org/⟩ (accessed 2023-12-04).

[17] dpkg.org: Dpkg — Debian Package Manager (online), available from
⟨https://www.dpkg.org/⟩ (accessed 2023-12-04).

[18] RPM.ORG: RPM Package Manager (online), available from
⟨https://rpm.org/⟩ (accessed 2023-12-04).

[19] Debian Project: 5. Control files and their fields (online), available from
⟨https://www.debian.org/doc/debian-policy/ch-controlfields.html⟩
(accessed 2023-12-04).

[20] National Institute of Standards and Technology: CVE-2022-42919
(online), available from ⟨https://nvd.nist.gov/vuln/detail/CVE-2022-
42919⟩ (accessed 2024-04-01).

[21] National Institute of Standards and Technology: CVE-2022-3602
(online), available from ⟨https://nvd.nist.gov/vuln/detail/CVE-2022-
3602⟩ (accessed 2024-04-01).

[22] National Institute of Standards and Technology: CVE-2023-38545
(online), available from ⟨https://nvd.nist.gov/vuln/detail/CVE-2023-
38545⟩ (accessed 2024-04-01).

[23] Debian Project: Package: python3.9 (online), available from
⟨https://packages.debian.org/en/bullseye/python3.9⟩ (accessed 2024-
04-01).

[24] Debian Project: Package: openssl (online), available from ⟨https://
packages.debian.org/en/bullseye/openssl⟩ (accessed 2024-04-01).

[25] Debian Project: Package: curl (online), available from ⟨https://
packages.debian.org/en/bullseye/curl⟩ (accessed 2024-04-01).

[26] National Telecommunications and Information Administration: Soft-
ware Bill of Materials (online), available from ⟨https://www.ntia.
gov/sbom⟩ (accessed 2023-12-04).

[27] Pham, V. and Dang, T.: Cvexplorer: Multidimensional visualiza-
tion for common vulnerabilities and exposures, 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pp.1296–1301 (online),
DOI:10.1109/BigData.2018.8622092 (2018).

[28] Mell, P., Scarfone, K. and Romanosky, S.: Common vulnerability
scoring system, IEEE Security & Privacy, Vol.4, No.6, pp.85–89 (on-
line), DOI:10.1109/MSP.2006.145 (2006).

[29] Johnson, P., Lagerström, R., Ekstedt, M. and Franke, U.: Can the
common vulnerability scoring system be trusted? a bayesian analy-
sis, IEEE Trans. Dependable and Secure Computing, Vol.15, No.6,
pp.1002–1015 (online), DOI: 10.1109/TDSC.2016.2644614 (2016).

[30] Spring, J.M., Householder, A., Hatleback, E., Manion, A.: Prioritizing
Vulnerability Response: A Stakeholder-Specific Vulnerability Catego-
rization (Version 2.0), CARNEGIE-MELLON UNIV PITTSBURGH
PA (2021).

[31] Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L. and Morasca, S.: Open
source software evaluation, selection, and adoption: A systematic
literature review, 2020 46th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA), pp.437–444 (online),
DOI:10.1109/SEAA51224.2020.00076 (2020).

[32] Zahan, N., Zimmermann, T., Godefroid, P., Murphy, B., Mad-
dila, C. and Williams, L.: What are weak links in the npm sup-
ply chain?, Proc. 44th International Conference on Software En-
gineering: Software Engineering in Practice, pp.331–340 (online),
DOI:10.1145/3510457.3513044, (2022).

[33] OWASP Foundation: OWASP Dependency-Check (online), available
from ⟨https://owasp.org/www-project-dependency-check/⟩ (accessed
2023-12-04).

[34] Snyk Ltd.: Snyk (online), available from ⟨https://snyk.io/⟩ (accessed
2023-12-04).

[35] Ponta, S.E., Plate, H. and Sabetta, A.: Detection, assessment and
mitigation of vulnerabilities in open source dependencies, Empir-
ical Software Engineering, Vol.25, No.5, pp.3175–3215 (online),
DOI:10.1007/s10664-020-09830-x (2020).

[36] Liu, C., Chen, S., Fan, L., Chen, B., Liu, Y. and Peng, X.: De-
mystifying the vulnerability propagation and its evolution via depen-
dency trees in the npm ecosystem, Proc. 44th International Confer-
ence on Software Engineering, pp.672–684 (online), DOI:10.1145/
3510003.3510142 (2022).

Tomohiko Yano received an M.E. degree
in Informatics from the Kyoto Univer-
sity, Kyoto, Japan in 2015. Since joining
SECOM in 2015, he has been engaged in
research field of cyber security. He is now
the researcher of the Cyber-Physical Sys-
tems Security Group at the SECOM Intel-
ligent Systems Laboratory. He is a mem-

ber of IEICE.

Hiroki Kuzuno received an M.E. degree
in Information Science from Nara Insti-
tute of Science and Technology, Japan, in
2007, and a Ph.D. in Computer Science
from Okayama University, Japan in 2020.
In 2007 he became a Research Engineer
at SECOM Intelligent Systems laboratory.
Currently, he is an Assistant Professor at

Kobe University, Japan. His research focuses on computer se-
curity specifically on operating systems and networks. He is a
member of IEICE and IPSJ.

© 2024 Information Processing Society of Japan 778

