
Kobe University Repository : Kernel

PDF issue: 2025-06-19

Efficient and Privacy-Preserving Decision Tree
Inference via Homomorphic Matrix Multiplication
and Leaf Node Pruning

(Citation)
Applied Sciences,15(10):5560

(Issue Date)
2025-05-15

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
© 2025 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution (CC BY) license

(URL)
https://hdl.handle.net/20.500.14094/0100495998

Fukui, Satoshi
Wang, Lihua
Ozawa, Seiichi

Academic Editors: Grzegorz J.

Blinowski and George Drosatos

Received: 10 April 2025

Revised: 7 May 2025

Accepted: 13 May 2025

Published: 15 May 2025

Citation: Fukui, S.; Wang, L.;

Ozawa, S. Efficient and Privacy-

Preserving Decision Tree Inference via

Homomorphic Matrix Multiplication

and Leaf Node Pruning. Appl. Sci.

2025, 15, 5560. https://doi.org/

10.3390/app15105560

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Efficient and Privacy-Preserving Decision Tree Inference via
Homomorphic Matrix Multiplication and Leaf Node Pruning
Satoshi Fukui 1,†, Lihua Wang 2,*,† and Seiichi Ozawa 1,*,†

1 Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan; kobesatoshi@outlook.jp
2 Cybersecurity Research Institute, National Institute of Information and Communications Technology,

Tokyo 184-8795, Japan
* Correspondences: lh-wang@nict.go.jp (L.W.); ozawasei@kobe-u.ac.jp (S.O.);

Tel.: +81-42-327-7251 (L.W.); +81-78-803-5753 (S.O.)
† These authors contributed equally to this work.

Abstract: Cloud computing is widely used by organizations and individuals to outsource
computation and data storage. With the growing adoption of machine learning as a service
(MLaaS), machine learning models are being increasingly deployed on cloud platforms.
However, operating MLaaS on the cloud raises significant privacy concerns, particularly
regarding the leakage of sensitive personal data and proprietary machine learning models.
This paper proposes a privacy-preserving decision tree (PPDT) framework that enables
secure predictions on sensitive inputs through homomorphic matrix multiplication within
a three-party setting involving a data holder, a model holder, and an outsourced server.
Additionally, we introduce a leaf node pruning (LNP) algorithm designed to identify and
retain the most informative leaf nodes during prediction with a decision tree. Experimental
results show that our approach reduces prediction computation time by approximately
85% compared to conventional protocols, without compromising prediction accuracy.
Furthermore, the LNP algorithm alone achieves up to a 50% reduction in computation time
compared to approaches that do not employ pruning.

Keywords: data mining; decision trees; data security; privacy-preserving

1. Introduction
It has been a long time since data was referred to as “the oil of the 21st century”.

Today, many of the world’s most valuable companies thrive by collecting and monetizing
vast amounts of data. However, such data often include sensitive personal information,
making it inaccessible for public or collaborative use—not only due to commercial inter-
ests but also to mitigate privacy risks. Despite the significant potential of data sharing in
addressing pressing societal challenges such as crime prevention, public health, and elder
care, privacy concerns continue to severely limit the practical use of sensitive datasets
across institutional boundaries. To address this challenge, privacy-preserving machine learn-
ing (PPML) has emerged as a key paradigm for enabling data-driven insights without
compromising confidentiality.

One of the most prominent PPML frameworks is federated learning (FL) [1], which
allows multiple parties to collaboratively train machine learning models without sharing
their raw data. Each participant trains a local model and shares only model updates
with a central server, preserving data privacy. However, FL assumes that participants
have sufficient computational capacity for local training. In many real-world settings,

Appl. Sci. 2025, 15, 5560 https://doi.org/10.3390/app15105560

https://doi.org/10.3390/app15105560
https://doi.org/10.3390/app15105560
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7553-423X
https://orcid.org/0000-0002-0965-0064
https://doi.org/10.3390/app15105560
https://www.mdpi.com/article/10.3390/app15105560?type=check_update&version=2

Appl. Sci. 2025, 15, 5560 2 of 24

particularly for devices or institutions with limited resources, local computation must be
outsourced, raising new privacy concerns–even under semi-honest threat models.

This paper focuses on another type of PPML scenario in which a local entity securely
outsources prediction computations. In our setting, both the data and the model remain
encrypted, ensuring the confidentiality of sensitive user input and the intellectual prop-
erty of the model provider. This setup is especially effective in protecting against model
inversion attacks [2], which constitute a well-known vulnerability in machine learning-
as-a-service (MLaaS) platforms. To implement secure outsourced prediction, we employ
homomorphic encryption (HE) [3], particularly in its somewhat homomorphic variant, named
somewhat homomorphic encryption (SHE) [4], which supports a limited number of encrypted
additions and multiplications with significantly improved efficiency over fully homo-
morphic schemes. This enables practical encrypted inference in real-world scenarios.
Among the various machine learning models, decision trees are particularly attractive for
privacy-preserving inference due to their interpretability and low computational cost. As a
result, a growing body of research has focused on designing cryptographic protocols for
privacy-preserving decision tree (PPDT) inference that minimize both communication and
computational overhead while preserving privacy.

1.1. Related Work

Existing PPDT protocols can be broadly classified based on the cryptographic primi-
tives they employ.

HE-based protocols: HE supports computation over encrypted data without requiring
decryption. Akavia et al. [5] used low-degree polynomial approximations to sup-
port non-interactive inference with communication costs independent of tree depth.
Frery et al. [6], Hao et al. [7], and Shin et al. [8] adopted the TFHE, BFV, and CKKS
schemes, respectively, for efficient computation with low multiplicative depth.
Cong et al. [9] reported ciphertext size comparisons and proposed homomorphic
traversal algorithms across various commonly used HE schemes. Most existing
HE-based PPDT protocols are designed for two-party settings, similar to the linear-
function-based scheme proposed by Tai et al. [10].

Protocols based on other cryptographic primitives: Zheng et al. [11] employed additive
secret sharing in a two-server setting, ensuring that no single party gained access to
both the model and the data, while maintaining low communication overhead. MPC-
based approaches, such as those reported b Wu et al. [12], combine additive HE with
oblivious transfer (OT), offering strong privacy guarantees but often suffering from
scalability issues, particularly with deep trees. Differential privacy (DP), although more
commonly used during training [13], can complement cryptographic inference meth-
ods by adding noise to outputs to mask sensitive patterns. However, DP typically
compromises utility and operates orthogonally to encrypted inference techniques.

Within this landscape, several notable HE-based PPDT approaches stand out.
Tai et al. [10] proposed a prediction protocol using linear functions and DGK-based
integer comparison [14], reducing complexity at the cost of requiring bitwise encryp-
tion. Lu et al. [15] enhanced efficiency via the XCMP protocol, based on Ring-LWE SHE,
although it struggled with large input bit lengths and unstable ciphertexts. Saha and
Koshiba [16] addressed this with SK17, encoding integer bits as polynomial coefficients to
support larger comparisons. Wang et al. [17] further improved SK17 by introducing a faster
comparison protocol and a non-interactive variant with reduced ciphertext functionality.

Despite these advancements, existing protocols still face challenges in simultaneously
achieving high efficiency, scalability, low communication overhead, and full tree structure
confidentiality—especially under realistic semi-honest adversary models.

Appl. Sci. 2025, 15, 5560 3 of 24

1.2. Our Contributions

To overcome the above-mentioned limitations, we propose a novel three-party PPDT
inference protocol that achieves secure, structure-hiding, and communication-efficient
decision tree predictions over encrypted data and models. The key innovations of our work
are as follows:

• Homomorphic matrix multiplication-based inference: Departing from polynomial
approximation and linear path evaluation methods [10], we introduce homomorphic
matrix multiplication as the primary operation for encrypted path computation. This
novel application supports structured and scalable evaluation of encrypted inputs.

• Leaf node pruning during inference: We propose leaf node pruning at inference
time, a novel runtime optimization that reduces the number of nodes involved in
computation, significantly improving performance. Unlike traditional model pruning
during training, this technique operates during encrypted inference.

• Structure-hiding inference protocol: The decision tree structure—including internal
nodes and branching conditions—is fully hidden from both the client and the server.
By ensuring that all path computations are homomorphically encrypted, the protocol
mitigates leakage risks present in prior PPDT methods.

• Semi-interactive three-party architecture: Our protocol requires only one round of
interactive communication between the data holder (client) and the outsourced server.
No interaction is required from the model holder during inference. This design enables
low-latency, real-world deployment scenarios.

To achieve these properties, we adopt the efficient integer comparison protocol by
Wang et al. [17] and the homomorphic matrix multiplication techniques from [18,19] for en-
crypted path evaluation. By integrating homomorphic matrix multiplication, inference-time
leaf node pruning, and tree structure hiding into a semi-interactive three-party framework,
our method enables efficient, secure, and practical decision tree inference in untrusted
environments. We evaluated the proposed PPDT protocol on standard UCI datasets [20] to
demonstrate its performance and practicality.

The algorithm design is detailed in Section 3, the experimental results are presented in
Section 4, and the conclusions are provided in Section 5.

2. Preliminaries
In this section, we summarize the related approaches used in our proposal. In

Section 2.1, we first review the concept of decision tree and the approach of decision
tree classification via the linear function that was introduced by Tai et al. in [10], which was
concerned with two kinds of secure computations — comparison at each node of tree and
linear function calculation for prediction. We focus on how to improve the efficiency of the
above two operations:

• Comparison: We use Wang et al.’s protocol [17] instead of the DGK approach [14] to
improve the efficiency of secure comparison in each node.

• Prediction: We use secure inner product/matrix multiplication to replace linear func-
tion in order to outsource prediction while maintaining the tree model secret.

Therefore, we recall the secure comparison scheme proposed by Wang et al. [17]
in Section 2.2 and the secure matrix multiplication introduced by Doung et al. [18] in
Section 2.3. The two schemes are both constructed on the ring-LWE-based homomor-
phic encryption (see Appendix A for details). The notations in this paper are listed in
Notations Section.

Appl. Sci. 2025, 15, 5560 4 of 24

2.1. Existing Decision Tree Classification
2.1.1. Decision Tree

Figure 1 presents an example of a decision tree. The decision tree T : ZN → Z is a
function that takes as input the feature vector X = [X0, . . . , Xi, . . . , XN−1] and outputs the
class T (X) ∈ {cj} to which X belongs. Generally, the feature vector space is RN ; however,
in this paper, we denote it as ZN because the input is the encrypted attribute data. This
paper’s decision tree is a binary tree and consists of two types of nodes: decision nodes
and leaf nodes. The decision node Dj outputs a Boolean value bj =1l {Xλj > tj} where
λj ∈ [N] is the feature vector’s index, and tj is the threshold. A leaf node Lk holds the
output value score(Lk) ∈ C = {C0, . . . , CK−1}. In a binary tree, there are m decision nodes
and m+ 1 leaf nodes. For example, Figure 1 shows the case of K = 3, m = 3, score(L1) = C0,
score(L2) = C1, score(L3) = C0, score(L4) = C2.

Figure 1. Decision tree example.

2.1.2. Decision Tree Classification via Linear Function [10]

The Boolean output of the decision node Dj, bj = 1(0) indicates that the next node is
the left (right) child. For edges ej,0 and ej,1, respectively connecting to the left child and the
right child from the decision node Dj, we define the corresponding edge cost ec as follows:

ecj,0 := 1− bj, ecj,1 := bj. (1)

From the root node of the decision tree to each leaf node, only one path is determined.
We define the path cost pck as the sum of the edge costs in Pathk—the path from root node to
the leaf node Lk. The edge cost ecj,0 and ecj,1 are determined by bj, which is the comparison
result of decision node Dj. Thereafter, the path cost for each leaf node is defined by a linear
function of bj. For example, the following pc1, pc2, pc3, and pc4 denote the path costs for
leaf nodes L1, L2, L3, and L4 in Figure 1, respectively:

pc1 = ec1,0 = 1− b1,

pc2 = ec1,1 + ec2,0 + ec3,0 = b1 + (1− b2) + (1− b3) = 2 + b1 − b2 − b3,

pc3 = ec1,1 + ec2,0 + ec3,1 = b1 + (1− b2) + b3 = 1 + b1 − b2 + b3,

pc4 = ec1,1 + ec2,1 = b1 + b2.

(2)

The comparison results bj indicate that the edge cost to the next node is 0, while the
edge cost to the other node is 1. As a result, only the path leading to a specific leaf node
Lk has a total cost pck = 0; all other paths have non-zero costs. The classification result is

Appl. Sci. 2025, 15, 5560 5 of 24

returned if and only if pck = 0, meaning the output corresponds to the label stored in the
leaf node Lk.

This can be illustrated with a concrete example (see Bob in Figure 1): Bob’s attributes
are height < 170, weight > 60, and age > 25, which yield comparison results b1 = 0, b2 = 1,
and b3 = 1, respectively. Substituting these into Equation (2), we compute the path costs
as follows: pc1 = pc3 = pc4 = 1, and only pc2 = 0. Therefore, the output for Bob is C1,
the label held by leaf node L2.

2.2. Secure Comparison Protocol

In this subsection, we describe the protocol proposed by Wang et al. [17], which
securely computes the comparison of decision trees.

2.2.1. µ-bit Integer Comparison [14]

Assume that Alice and Bob respectively have two µ-bit integers, a and b, and consider
how to compare two integers without revealing the values of a and b between Alice and
Bob. Let us define the binary vectors for a and b as follows: ab = [a0, . . . , aµ−1] and
bb = [b0, . . . , bµ−1]. In addition, let us define the following two binary vectors abi and bbi
(1 ≤ i ≤ µ− 1) where the first i-bits are the same as those in ab and bb while the remaining
upper bits are set to zeros.

abi = [a0, . . . , ai−1, 0, . . . , 0],

bbi = [b0, . . . , bi−1, 0, . . . , 0].
(3)

To compare the two integers a and b, let us define the following di:

di = wi + vi, (4)

where

wi =
〈

abi − bbi , abi − bbi
〉
≥ 0,

vi = ai − bi + 1.
(5)

Here, wi is an inner product for calculating how many bits are different between
abi and bbi . Therefore, wi = 0 implies that the first i bits of a and b are the same
(i.e., [a0, . . . , ai−1] = [b0, . . . , bi−1]). Next, we look at the (i+ 1)-th bit of a and b when wi = 0
is satisfied. Here, vi = ai − bi + 1 could have the three values: 0, 1, or 2. If (ai, bi) = (0, 1)
(i.e., a < b), vi = 0; otherwise, vi = 1 or 2. That is, if vi = 0, a < b is satisfied under wi = 0;
otherwise, a ≥ b is satisfied. Therefore, to identify whether a < b is satisfied, we merely
need to check if di in Equation (4) is 0 for any position of i (i ∈ {0, 1, . . . , µ− 1}).

2.2.2. Packing Method

For a µ-bit length integer u whose binary vector is denoted as ub = [u0, . . . , uµ−1],
the following packing polynomials are defined:

poly1(u
b) =

µ−1

∑
i=0

uixi,

poly2(u
b) =

µ−1

∑
d=1

d−1

∑
j=0

ujxµd−j.

(6)

Appl. Sci. 2025, 15, 5560 6 of 24

Using this packing method, we have [17]

poly(d) = (poly1(ab)− poly1(b
b))(poly2(ab)− poly2(b

b) + poly1→3) + p̃oly(1), (7)

where 1 = (1, 1, . . . , 1) denotes the binary vector of the µ-bit integer 2µ − 1, and
poly1→3 = ∑

µ
i=1 x(µ−1)(i−1) and p̃oly(1) = poly1(1)poly1→3 can be computed offline in ad-

vance. The coefficient of xiµ (i = 0, . . . , µ− 1) in poly(d) is di.

2.2.3. Secure Comparison Protocol

Wang et al. proposed three enhanced secure comparison protocols in [17]. Here, we
recall the most efficient one that uses the packing method defined by Equation (6). There
are three participants in this protocol. Alice and Bob who have µ-bit integers a and b,
respectively, compare a and b without revealing the data through a server. The server
obtains the comparison result, which is the output of the protocol. The protocol is described
as follows:

1. Alice generates a secret–public key pair (sk, pk) and sends pk to Bob and the server.
2. Alice and Bob compute

[[a]]i := Enc(pk, polyi(ab)) (8)

and
[[b]]i := Enc(pk, polyi(b

b)) (9)

for i = 1, 2, respectively, and send the results to the server.
3. The server computes

[[d]] := ([[a]]1 ⊖ [[b]]1)⊗ ([[a]]2 ⊖ [[b]]2 ⊕ poly1→3)⊕ p̃oly(1). (10)

4. The server masks [[d]] in encrypted form using random polynomial γ← Zp

[[d′]] := [[d]]⊕ γ (11)

and sends [[d′]] to Alice.
5. Alice decrypts [[d′]]

d′ = Dec(sk, [[d′]]) (12)

and sends d′ back to the server.
6. The server unmasks d from d′ as follows:

d = d′ − γ =
µ−1

∑
i=0

dixiµ + other terms of degree, (13)

and then verifies whether any iµ-th term for i = 0, . . . , µ− 1 is 0. If so a < b; otherwise,
a ≥ b.

2.3. Ring-LWE-Based Secure Matrix Multiplication

Doung et al. proposed secure matrix multiplication [18] using the packing method
proposed by Yasuda et al. [19]. For an ℓ-dimension vector U = [u0, u1, . . . , uℓ−1], the
following two polynomials are defined:

Appl. Sci. 2025, 15, 5560 7 of 24

poly1(U) =
ℓ−1

∑
m=0

umxm,

polyt(U) = −
ℓ−1

∑
m=0

umxn−m.

(14)

Note that for any two vectors A = [a0, a1, . . . , aℓ−1] and B = [b0, b1, . . . , bℓ−1], using
the above packing method, we have

poly1(A)× polyt(B) = ⟨A, B⟩+ other terms of degree, (15)

where the constant term of poly1(A)× polyt(B) provides the inner product ⟨A, B⟩.
Let U be a (k, ℓ) matrix and let U1, . . . , Uk denote the row vectors of U. For matrix U,

the packing method is defined as follows:

polymat(U) = poly1(U1) + · · ·+ poly1(Uk)x(k−1)ℓ

=
k

∑
i=1

poly1(Ui)x(i−1)ℓ.
(16)

Assume that kℓ ≤ n (n: dimension of polynomial xn + 1). Letting (k, ℓ) matrix be

A =

A1
...

Ak

 (17)

and letting B denote an ℓ-dimensional vector, we have

polymat(A)× polyt(B) =
k

∑
i=1

poly1(Ai)× polyt(B)x(i−1)ℓ, (18)

where the coefficient of x(i−1)ℓ (i = 1, . . . , k) is ⟨Ai, B⟩, the inner product of vectors Ai and B.

3. PPDT Classification Model
In this section, we propose a PPDT classification model that mainly consists of the

following two processing parts:
(1) Path cost calculation and (2) secure integer comparison.
The basic idea of the path cost calculation comes from the Tai et al.’s decision tree

classification protocol via linear function [10] where a decision tree model is treated as a
plaintext under a two-party computation setting (see Section 2.1). In contrast, we extend
the Tai et al.’s protocol such that not only input data but also a decision tree model can
be encrypted to hide actual contents between a data provider and a model provider. To
actualize this, we propose a secure three-party path cost calculation by extending the PPDT
protocol proposed by Tai et al. [10] using the integer comparison protocol described in
Section 2.2 that was proposed by Wang et al. [17].

3.1. Computation Model

To address the practical considerations of deploying our proposed algorithm in real-
world cloud environments, we consider a scenario in which an organization that owns a
decision tree classification model outsources the inference task by sending encrypted data
to a cloud service provider (e.g., AWS and Google Cloud). Figure 2 illustrates the structure
of our computational model, which involves three entities: the client, who possesses the

Appl. Sci. 2025, 15, 5560 8 of 24

feature vector to be classified; the model holder, who holds the trained decision tree; and the
cloud server, which performs the encrypted computation on behalf of the model holder.

Figure 2. Our computation model.

• The client encrypts the feature vectors and sends them to the model holder, who
then encrypts the information needed to calculate the decision tree’s path cost
and threshold.

• The client’s encrypted feature vectors are sent to the server, relaying the model holder,
to conceal the information (λi) about which elements of the feature vector threshold of
the decision node should compare.

• On behalf of the model holder, the server performs the necessary calculation for the
decision tree prediction and sends the client’s encrypted classification results.

• The client decrypts the information and obtains the classification results.

Even if the organization does not maintain its own servers, decision tree classification
with privacy preservation is possible. The concrete process of the protocol is shown in
Section 3.3.

A Representative Application of Online Medical Diagnostics

Machine-learned diagnostic models developed by medical institutions represent valu-
able intellectual property that is central to their competitive advantage. These institutions
seek to offer diagnostic services without disclosing proprietary models, and cloud-based
computation provides a practical solution to scale such services while reducing local
computational costs.

However, concerns related to data confidentiality and model privacy present chal-
lenges for real-world deployment. Clients demand privacy-preserving services that do
not expose their sensitive health data, while cloud service providers typically prefer not to
manage or store sensitive information due to increased compliance and security risks.

Therefore, enabling secure and efficient inference over encrypted data and models
aligns with the interests of all stakeholders. Our approach allows computations to be carried
out on encrypted inputs and models, thereby mitigating privacy concerns and reducing
the operational burdens associated with sensitive data management on cloud platforms.

3.2. Computation of Path Cost by Matrix × Vector Operation

In our method, we encrypt the path costs described in Section 2.1 and send them to
the server to keep decision tree model secrets and allow the server to calculate the path
costs. Specifically, we transform the path cost pck = pk,0 + pk,1b1 + · · ·+ pk,mbm for a leaf

Appl. Sci. 2025, 15, 5560 9 of 24

node Lk. Therefore, we introduce two vectors, Pk and B, that can be used to calculate the
path cost:

pck =
〈
[pk,0, pk,1, · · · , pk,m], [1, b1, · · · , bm]

〉
= ⟨Pk, B⟩. (19)

Here, B is a comparison result vector while Pk is a path vector. We define path matrix
P of decision tree T as follows:

P =

P1
...

Pm+1

. (20)

Therefore, it is possible to replace the calculation of the path cost of the decision tree
by P × B. To obtain the correct multiplication result for a (k, ℓ) matrix and a vector of
length ℓ using Equation (18), the constraint kℓ ≤ n must be satisfied. Path matrix P is
an (m + 1, m + 1) matrix; thus (m + 1)2 ≤ n must be satisfied. Therefore, we divide the
unconstrained path matrix P into several rows and compute each of them. Specifically,
P is an (m + 1, m + 1) matrix; thus, m′ = ⌊n/(m + 1)⌋ rows can be computed. The path
matrix is divided into S = ⌈(m + 1)/m′⌉matrices. When S > (m + 1)/m′, we add vector
I = [1, 0, . . . , 0] for several times so that each partitioned matrix has m′ rows, which hides
the size of the decision tree. With the above operations, we obtain S (m′, m + 1) path
matrices as follows:

P1 =

P1
...

Pm′

, P2 =

Pm′+1

...
P2m′

, . . . , PS =

P(S−1)m′+1
...

Pm+1

I
...
I

. (21)

Therefore, the secure matrix × vector operation in Section 2.3 allows us to securely
compute the path cost with the encrypted path matrix.

3.3. Proposed Protocol

The protocol’s detailed procedure is illustrated in Figure 3 and Algorithm 1. It com-
prises eight steps involving data transmission and computation. Let K represent the number
of classes in the classification task C = {C0, C1, . . . , CK−1}.

Figure 3. Flowchart of the proposed protocol, where [[·]] denotes the ciphertext of “·”.

Appl. Sci. 2025, 15, 5560 10 of 24

The following provides a step-by-step description of the protocol:

Step 1 (client): The client generates a secret–public key pair (sk, pk) and sends pk to the
model holder and server.

Step 2 (client): The client encrypts each element of a feature vector by packing it using
Equation (6).

[[Xi]]1 = Enc(pk, poly1(xbi)),

[[Xi]]2 = Enc(pk, poly2(xbi)).
(22)

For i = 1, . . . , N, the client sends ciphertexts to the model holder.
Step 3 (model holder): For j = 1, . . . , m, the model holder encrypts threshold tj by packing

it using the Equation (6).

[[tj]]1 = Enc(pk, poly1(t
b
j)),

[[tj]]2 = Enc(pk, poly2(t
b
j)).

(23)

For k = 1, . . . , m + 1, the model holder generates path vector Pk multiplied by a
random number

P′k = rk · Pk, (24)

and the following classification result vector is generated:

Vk := r′k · Pk + [score(Lk), 0, . . . , 0], (25)

where score(Lk) ∈ C, rk, r′k ∈ Z∗p. As described in Section 3.2, the model holder
generates S path matrices P1, . . . , PS and S classification result matrices V1, . . . , VS.
Note that the path vector and classification result vector corresponding to the same
path should be in the same matrix row.
For s = 1, . . . , S, path matrix Ps and classification result matrix Vs are encrypted
as follows:

[[Ps]]mat = Enc(pk, polymat(Ps)),

[[Vs]]mat = Enc(pk, polymat(Vs)),
(26)

where Equation (16) is used to compute polymat. A pair of ciphertexts of the elements

of a threshold and its comparative feature vector

([[Xλj]]1, [[Xλj]]2), ([[tj]]1, [[tj]]2), (27)

and ciphertext pairs of the path matrices and classification result matrices

[[Ps]]mat, [[Vs]]mat (28)

are sent to the server for j = 1, . . . , m and s = 1, . . . , S, respectively.
Step 4 (server): The server calculates [[dj]] in Equation (10) as a = tj, b = Xλj . The server

masks [[dj]] in encrypted form using random polynomial γj ← Zp and then sends
[[d′j]] to the client.

Step 5 (client): The client decrypts [[d′j]] and obtains d′j = Dec(sk, [[d′j]]), which is then
returned to the server.

Step 6 (server): The server obtains dj from Equation (13) and the comparison result vector
B = [1, b1, . . . , bm]. If any of the iµ-th (i = 0, . . . , µ− 1) coefficients in dj is zero, then
bj = 1; otherwise, bj = 0.

Appl. Sci. 2025, 15, 5560 11 of 24

Step 7 (server): The server packs the comparison result vector B using Equation (14) to
obtain polyt(B). The server calculates

[[P̃s]] = [[P′s]]mat ⊗ polyt(B),

[[Ṽs]] = [[Vs]]mat ⊗ polyt(B)
(29)

for s = 1, . . . , S and sends ([[P̃s]], [[Ṽs]]) to the client.
Step 8 (client): The client obtains the number of path matrix S = ⌈(m + 1)/m′⌉ using

Equation (21), where m′ = ⌊n/(m + 1)⌋. Then, for s = 1, . . . , S, it decrypts [[P̃s]]

to obtain a polynomial with randomized non-zero coefficients for the path ma-
trix P̃s, in which coefficients of x(k−1)(m+1) are k-th path cost pck · rk according to
Equations (19) and (20). Since pck · rk = 0 ⇐⇒ pck = 0, then it is verified whether
any (k− 1)(m + 1)-th term for k = 1, . . . , m′ is 0, which implies the corresponding
path cost pck = 0. If so, the corresponding leaf of T is the classification result accord-
ing to Equation (25), and the client decrypts [[Ṽs]] and obtains Cout from the coefficient
of x(k−1)(m+1).

Algorithm 1 Efficient PPDT Inference via Homomorphic Matrix Multiplication

Input: X = (X1, . . . , XN): Xi denotes the i-th feature vector of data X with N features, and
T = (t1, . . . , tm): tj denotes the j-th threshold of decision tree T with m decision

nodes.
n: degree of polynomial, S: number of path matrices, µ: maximum bit length of Xi

and tj.
Output: Classification result Cout

1: Client generates a secret–public key pair (sk, pk) and sends pk to the model holder and
server.
Client encrypts each feature vector of data X (refer to Equation (22))

2: for i = 1 to N do
3: [[Xi]]1 ← Enc(pk, poly1(xbi)), [[Xi]]2 ← Enc(pk, poly2(xbi)).
4: end for
5: return [[X]] = {([[Xi]]1, [[Xi]]2)}N

i=1, sends [[X]] to Model holder.
Model holder encrypts threshold tj (refer to Equation (23))

6: for j = 1 to m do
7: [[tj]]1 ← Enc(pk, poly1(tbj)), [[tj]]2 ← Enc(pk, poly2(tbj)).
8: end for
9: return [[t]] = {[[tj]]1, [[tj]]2}

Model holder generates path matrix P and classification result matrix V (refer to
Equations (24) and (25))

10: for k = 1 to m + 1 do
11: generate Pk, select rk, r′k ∈ Z∗p,

compute P′k ← rk · Pk, Vk := r′k · Pk + [score(Lk), 0, . . . , 0].
12: end for
13: return P, V is divided into S matrices P1, . . . , PS and V1, . . . , VS, as shown in Equa-

tion (21).
The Model Holder encrypts path matrices and classification result matrices (refer to
Equations (16) and (26))

14: for s = 1 to S do
15: [[Ps]]mat ← Enc(pk, polymat(Ps)), [[Vs]]mat ← Enc(pk, polymat(Vs)).
16: end for
17: return [[P]] = {[[Ps]]}, [[V]] = {[[Vs]]}, and sends [[X]], [[t]], [[P]], [[V]] to Cloud Server.

Server calculates d via one-round communication with the Client (refer to Equation (10))

Appl. Sci. 2025, 15, 5560 12 of 24

Algorithm 1 Cont.

18: for j = 1 to S do
19: computes [[dj]]← ([[tj]]1 ⊖ [[Xλ]]1)⊗ ([[tj]]2 ⊖ [[Xλ]]2 ⊕ poly1→3)⊕ p̃oly(1).
20: selects γj ∈ Zp, computes [[d′j]]← [[dj]]⊕ γj, and sends [[d′j]] to Client.
21: end for
22: return [[d′]] = {[[d′j]]}, and sends [[d′]] to Client.
23: Client decrypts d′ ← Dec([[d′]], sk) and sends it to Server.

Server computes the comparison result vector B (refer to Equation (13))
24: for j = 1 to m do
25: for i = 0 to µ− 1 do
26: let bj = 0
27: if ∃ i-th coefficient in dj = 0 then
28: bj ← bj + 1
29: end if
30: end for
31: end for
32: return B = [1, b1, . . . , bm]

Server computes encrypted path and classification result matrices (refer to
Equations (14) and (29))

33: for s = 1 to S do
34: [[P̃s]]← [[P′s]]mat ⊗ polyt(B), [[Ṽs]]← [[Vs]]mat ⊗ polyt(B).
35: end for
36: return ([[P̃s]], [[Ṽs]]) and sends to Client.

Client decrypts and obtains the classification result (refer to Equations (19), (20) and (25))
37: The default class is Cout = ∅
38: for s = 1 to S do
39: P̃s ← Dec([[P̃s]], sk)
40: for k = 1 to m′ do
41: if ∃((k− 1)(m + 1)-th coefficients in Ps = 0) then
42: computes Ṽs ← Dec([[Ṽs]], sk).
43: Cout ← the coefficient of x(k−1)(m+1)

44: end if
45: end for
46: end for
47: return Cout

3.4. Leaf Node Pruning (LNP)

In this subsection, we describe how to reduce the number of path costs to be calculated.
Let the number of leaf nodes of decision tree T be m + 1 and the number of classes to be
classified be K = |C|. In this case, we do not calculate the path cost for one class (e.g., C0)
but only the path cost for the other K− 1 items. We compute the path cost corresponding
to K− 1 classes, and if any of them is 0, the output is the class corresponding to the path.
If none of them is 0, the output is class C0 corresponding to the uncalculated path. The
detailed procedure is illustrated in Algorithm 2.

Appl. Sci. 2025, 15, 5560 13 of 24

Algorithm 2 Efficiency-Enhanced PPDT with LNP (Algorithm 1+LNP)

Input: X = (X1, . . . , XN): Xi denotes the i-th feature vector of data X with N features, and
T = (t1, . . . , tm): tj denotes the j-th threshold of decision tree T with m nodes.
n: degree of polynomial, S: number of path matrices, µ: maximum bit length of Xi

and tj
K = |C|: number of classes C = {C0, C1, . . . , CK−1}

Output: Classification result Cout
1: Given path matrix P and classification result matrix V for T with m + 1 leaf nodes.

Model holder prunes leaf nodes that result to the default class
⇒ this process (Lines 2–9 bellow) being inserted between Line 12 and Line 13 of Algorithm 1

2: for i = 1 to m + 1 do
3: checks classification value score on leaf node Li of T ,
4: if (score(Li) = C0) then
5: deletes Pi and Vi from P and V, respectively.
6: P← P \ Pi, V ← V \Vi
7: end if
8: end for
9: return P, V

10: Given encrypted path matrix [[P̃s]] and classification result matrix [[Ṽs]] (Line 36 of
Algorithm 1)
Client decrypts and obtains classification result (refer to Equations (19), (20) and (25))
⇒ this process (Lines 11–21 bellow) replaces Lines 37–47 of Algorithm 1

11: Default class is Cout = C0
12: for s = 1 to S do
13: P̃s ← Dec([[P̃s]], sk)
14: for k = 1 to m′ do
15: if ∃((k− 1)(m + 1)-th coefficients in Ps = 0) then
16: computes Ṽs ← Dec([[Ṽs]], sk).
17: Cout ← the coefficient of x(k−1)(m+1)

18: end if
19: end for
20: end for
21: return Cout

Note that the default class C0 must be securely shared in advance between the client
and the model holder. Assigning the majority class as the default is generally more effective.
The selection of the class excluded from computation depends on the classification task,
as outlined below:

Binary classification tasks (e.g., disease detection, abnormality detection): Only the deci-
sion path for class 1 (positive or anomalous) is evaluated. If the result is 0, class 1 is
returned; otherwise, class 0 (negative or normal) is output.

Multi-class classification tasks: Only K− 1 classes are evaluated. If the dataset exhibits
class imbalance (e.g., ImageNet), the majority class is assigned as the default. In the
absence of such imbalance (e.g., MNIST), one class is randomly selected to serve as
the default (i.e., the class not evaluated).

We next use a simple example to illustrate homomorphic matrix multiplication and the
leaf node pruning process based on Figure 1 to enhance clarity and aid in reader understanding.

Example 1. Figure 1 shows a decision tree example that is for three classes C = {C0, C1, C2},
in which the majority class C0 is assigned as the default. Feature vector X := (X1, X2, X3),
where X1, X2 and X3 denote height, weight, and age, respectively. For example, client Bob, whose
feature vector X = (X1, X2, X3) = (150, 64, 32), tries to use the service to inference his health
status. Decision tree T has m = 3 nodes with threshold (t1, t2, t3) = (170, 60, 25). In this case,
the comparison result vector can be expressed as B = (1, b1, b2, b3).

Appl. Sci. 2025, 15, 5560 14 of 24

From Figure 1, it can be easily seen that Bob’s data should be classified to leaf node L2 by
Path2. In the following, we show how to perform classification inference using client Bob’s data and
the model holder’s decision tree model while keeping them encrypted. According to Equations (2)
and (19), we have

pc1 = ⟨P1, B⟩ = ⟨[1,−1, 0, 0], [1, b1, b2, b3]⟩,
pc2 = ⟨P2, B⟩ = ⟨[2, 1,−1,−1], [1, b1, b2, b3]⟩,
pc3 = ⟨P3, B⟩ = ⟨[1, 1,−1, 1], [1, b1, b2, b3]⟩,
pc4 = ⟨P4, B⟩ = ⟨[0, 1, 1, 0], [1, b1, b2, b3]⟩.

(30)

Therefore,

P =

P1

P2

P3

P4

 =

1 −1 0 0
2 1 −1 −1
1 1 −1 1
0 1 1 0

. (31)

LNP process: Pruning the leaf nodes with class C0, i.e., L1 and L3, while multiplying Pk by a
random non-zero numbers rk, r′k ∈ Z∗p(k = 2, 4), we obtain the path matrix

P′ =

[
r2P2

r4P4

]
=

[
P′1
P′2

]
=

[
2r2 r2 −r2 −r2

0 r4 r4 0

]
, (32)

and the corresponding classification result matrix

V ′ =

[
r′2P2 + [C1, 0, 0, 0]
r′4P4 + [C2, 0, 0, 0]

]
=

[
2r′2 + C1 r′2 −r′2 −r′2

C2 r′4 r′4 0

]
. (33)

Instead of using the original matrices P and V, we only need to use the pruned matrices P′ and V′

for calculation, thus saving computational cost, as shown in Figure 4.

Figure 4. Image for LNP.

The following two processes are run on encrypted statuses.
Comparison on each node: To check whether Xi > ti at node Di, let µ denote the bit length

of the two integers Xi and ti, where i = 1, 2, 3. For ease of explanation, we use X3, t3 as an example,
with a bit length of µ3 = 6.

• Bob encrypts each feature of his own data using Equations (6) and (9).

Appl. Sci. 2025, 15, 5560 15 of 24

[[X]] := {[[Xi]]1, [[Xi]]2}3
i=1 = {Enc(pk, poly1(Xi)),Enc(pk, poly2(Xi))}3

i=1, (34)

where X3 = 32 = (100000)2 in binary, poly1(32) = 1,poly2(32) = x6 + x12 + x18 + x24 + x30.
• Model holder encrypts each threshold of T using Equations (6) and (8).

[[t]] := {[[ti]]1, [[ti]]2}3
i=1 = {Enc(pk, poly1(ti)),Enc(pk, poly2(ti))}3

i=1, (35)

where t3 = 25 =(11001)2 in binary, poly1(25) = x + x2 + x5, poly2(25) = x11 + x16 +

x17 + x22 + x23 + x28 + x29.
• Server runs homomorphic operation to obtain polynomials of the comparison result and then

adds a random polynomial using Equation (10) over a polynomial ring Zq, which implies
xn = −1 mod q, as follows.

[[d]] :={[[di]]}3
i=1

={Enc
(

pk, (poly1(ti)− poly1(Xi))(poly2(ti)− poly2(Xi) + poly1→3) + p̃oly(1)
)
}3

i=1,

[[d′]] :={[[di + γ]]}3
i=1,

(36)

where γ ∈ Zq.
• Bob decrypts [[d′]] and sends d′ back to the server. After removing the random polynomial γ

from d′, the server can obtain comparison results from d = {di}3
i=1 by checking whether ∃

any coefficient of x(i−1)µ = 0. If so Xi > ti, set bi = 1; otherwise, bi = 0.
For example, d3 = 3x6 + x12 + 4x18 + 4x24 + 4x30 + otherterms, which is the coefficient of
x0 = 0, so b3 = 1. Similarly, b1 = 0, b2 = 0; therefore, B = [1, b1, b2, b3] = [1, 0, 0, 1].

Classification inference:

• The server runs a multiplication homomorphic operation for Bob using vector B and
the following encrypted path matrix [[P′]] and classification result matrix [[V ′]] based on
Equations (14), (16) and (18)

[[P′]] = Enc
(
polymat(P

′)
)

= Enc
(

2r2 + r2x− r2x2 − r2x3 + 0 · x4 + r4x5 + r4x6 + 0 · x7
)

,

[[V ′]] = Enc
(
polymat(V

′)
)

= Enc
(
(2r′2 + C1) + r′2x− r′2x2 − r′2x3 + C2x4 + r′4x5 + r′4x6

)
(37)

to obtain
Enc

(
polymat(P

′)
)
⊗ polyt(B)

= Enc
(
(2r2x0 + r2x− r2x2 − r2x3 + r4x5 + r4x6)(1− xn−3 − xn−2)

)
= Enc

(
0 · x0 + r4x4 + otherterms

)
= Enc(Fpath(x)),

Enc
(
polymat(V

′)
)
⊗ polyt(B)

= Enc
(
((2r′2 + C1) + r′2x− r′2x2 − r′2x3 + C2x4 + r′4x5 + r′4x6)(1− xn−3 − xn−2)

)
= Enc

(
C1x0 + (r4 + C2)x4 + otherterms

)
= Enc(Fclass(x)).

(38)

• Bob decrypts and obtains the polynomial corresponding to a (k, ℓ)-dimension path matrix
Fpath(x) and then checks its coefficients of x(i−1)ℓ(i = 1, . . . , k) terms. In this example,
k = 2, ℓ = 4, so whether the coefficient of x0 or x4 is zero is checked.
In fact,

Fpath(x) =
〈

P′1, B
〉
+

〈
P′2, B

〉
· x4 + otherterms,

Appl. Sci. 2025, 15, 5560 16 of 24

Fclass(x) = (
〈

P′1, B
〉
+ C1) + (

〈
P′2, B

〉
+ C2) · x4 + otherterms,

and since
〈

P′1, B
〉
= r2⟨P2, B⟩, ⟨P′2, B⟩ = r4⟨P4, B⟩,

the coefficient of x0 is zero ⇐⇒ pc2 = ⟨P2, B⟩ = 0, and
the coefficient of x4 is zero ⇐⇒ pc4 = ⟨P4, B⟩ = 0,

which links to leaf nodes L2 and L4, respectively.
As shown in Equation (38), since the coefficient of x0 in the first polynomial is zero, if and
only if pc2 = 0, which means X is classified to leaf node L2. Then, the coefficient of x0 in the
second polynomial is the classification result; that is, Cout = C1.

3.5. Complexity

The client encrypts each element of the feature vectors with two different packing
methods for comparison protocols and sends them to the model holder. The model holder
encrypts the threshold for each decision node for 2m times. In addition, the path and
classification result matrices are encrypted S = ⌈(m + 1)/m′⌉ (m′ = ⌊n/(m + 1)⌋) times,
respectively. The model holder sends the pairs of threshold and feature vector elements
and the pairs of path and classification result matrices to the server. Next, the server and
client cooperate to perform the comparison protocol for m times. In this case, the client
performs decryption m times. The server performs homomorphic multiplication of the path
and classification result matrices 2S times and sends the client results. The client obtains
the classification result by decrypting the received path and classification result matrices
2S times.

3.6. Security Analysis

For a homomorphic encryption scheme, indistinguishability under chosen-plaintext
attack (IND-CPA) is the basic security requirement. The SHE scheme used in the exper-
iments in Section 4 is proven IND-CPA secure under the Ring-LWE assumption. In our
proposed approach, as the input of the homomorphic computation consists of ciphertexts,
the corresponding IND-CPA-secure SHE schemes will not be weakened.

Consider the entities involved in the protocol one by one (see Figure 3) and assume
that they are all honest but curious and that they do not collude with one another.

• Client. The client can decrypt the ciphertext sent from the cloud server in Steps 5 and
7 using the secret key and obtain d′ related to the comparison result and the decision
tree structure. However, in Step 4, the noise from the cloud server is added for
randomization. Therefore, the client receives a polynomial with completely random
coefficients in d′. Similarly, P̃s is also a polynomial with random coefficients except
zero, which leads to the classification Cout ∈ C; that is, the coefficient corresponding
to Ṽs. Thus, the client can obtain the classification Cout without knowing the decision
tree model T

• Model holder. The model holder only obtains the ciphertext of data X in Step 2,
and IND-CPA security guarantees the privacy and security of the data.

• Cloud server. The server honestly performs homomorphic operations for the system
but is curious about the data provided by the client and the model holder. In Step 3, it
receives only encrypted inputs using an SHE scheme that satisfies IND-CPA security,
ensuring the confidentiality of both user data and model parameters. Even if the
server obtains the comparison result vector B = [1, b1, . . . , bm] from d sent in Step 5, it
cannot recover the original data X nor infer meaningful information about the decision
tree T (threshold t, path matrix P, and classification result V). This is due not only to
encryption but also to randomization of P using noise terms rk and r′k in Step 3, which
prevents linkage bi(i = 1, . . . , m) to specific nodes of T .

Appl. Sci. 2025, 15, 5560 17 of 24

Beyond technical guarantees, our approach also addresses ethical challenges inherent
to PPML in cloud environments. Specifically, it supports secure inference while protecting
sensitive user data, ensuring model confidentiality and the reducing risks of unauthorized
access or data misuse. These safeguards are especially crucial in sensitive domains such
as healthcare and finance, where balancing performance with privacy and intellectual
property protection is key to responsible AI deployment.

4. Experiments
4.1. Experimental Setup

We implemented the proposed PPDT protocol in C++ where the BFV method [21]
in SEAL 3.3 [22] was used as the encryption library. In our implementation, the two
comparison protocols were adopted: Wang et al.’s efficiency-enhanced scheme (Protocol-1
in [17]) and Lu et al.’s non-interactive private comparison (XCMP) [15]. The path cost
calculation in Section 3.2 was implemented.

Parameter Choice. First, to ensure that the above comparison methods can accurately
decrypt the comparison results, the parameters n, q, p, and σ of the two methods must
respectively satisfy the following two inequality requirements. Second, they must be
selected to meet the 128-bit security level. The following parameters were used to ensure
that the proposed model worked accurately and had 128-bit security, which is the currently
recommended security level in [23]:

• Efficiency-enhanced scheme [17]
n = 2048, log2 q = 54, p = 40,961, σ = 3.2.
These satisfy the following inequality: q > 8p2σ4n2 + 4pσn2/3.

• XCMP [15]
n = 8192, log2 q = 110, p = 8191, σ = 3.2.
These satisfy the following inequality: q > p3σ2n(σn + 1)2 + 2p2σn(σn + 1).

Note that σ = 3.2 is the default noise standard deviation used in Microsoft SEAL. The
inequalities involving n, q, p, and σ ensure the correctness of the corresponding comparison
schemes. To support a maximum input bit length of ℓ, we chose n to satisfy the conditions
from Wang et al. [17] (i.e., ℓ2 < n) and Lu et al. [15] (i.e., ℓ < log2 n). Based on these constraints,
the comparison protocols could handle 32-bit and 13-bit integers for Wang et al.’s and Lu et al.’s
schemes, respectively. This implies that the efficiency-enhanced scheme [17] supports com-
parisons of larger integers than does XCMP [15], even with a relatively smaller n. Given the
selected n, we chose q to ensure a 128-bit security level as recommended in [23] and then deter-
mined p such that it satisfied the necessary inequalities while remaining efficient to compute.

The experiments were conducted on a standard PC with the Core i7-7700K (4.20 GHz)
processor using a single thread mode. We used scikit-learn, a standard open-source machine
learning library in Python 3.7.2, to train the decision trees. In both the BFV method and
the comparison protocol by Lu et al. [15], an input value must be represented as an integer
a ∈ Zn. At every an appropriate number of times when the multiplication is performed,
the fractional part of a value must be truncated, and it should be normalized within the
range of [0, 213).

In the performance evaluations, the computational time was measured by averaging
over 10 trials for the following 8 data sets from the UCI machine learning repository [20]:
Heart Disease (HD), Spambase (SP) (which were used for the benchmark in [15]), Breast
Cancer Wisconsin (BC), Nursery (NS), Credit-Screening (CS), Shuttle (ST), EGG EYE State
(EGG), and Bank Marketing (BK). The data set information and the parameters of the
decision tree used are listed in Table 1.

Appl. Sci. 2025, 15, 5560 18 of 24

Table 1. Data set information and the size of trained decision tree.

Dataset
Dataset Model

Data # Attributes N # Classes C # Nodes m

BC 569 30 2 8
ST 43,500 9 7 24
CS 653 15 2 26
HD 720 13 5 35
NS 12,960 8 5 49
SP 4601 57 2 110

EGG 14,980 14 2 724
BK 45,211 16 2 1027

denotes the number of data, attributes, classes, and decision nodes in the table for brevity.

4.2. Performance Comparisons
4.2.1. Path Cost Calculation

We compared the computational time to obtain the path costs under the three-party
protocol when the proposed matrix multiplication in Section 3.2 and the Yasuda et al.’s
homomorphic inner product calculation [19] were used. Table 2 shows the computational
time for the path costs. We also show the computation time in parentheses when LNP was
introduced into the proposed path cost calculation.

In calculating path costs by using the naive inner product, m + 1 homomorphic multipli-
cations are required. Therefore, as the number of nodes in a tree m increases, the computation
time for path costs also increases. On the other hand, when calculating the path cost by
matrix multiplication, for the decision tree of m ≤ 35 of Table 2, the path cost computation
time was the same. The reason is that for parameter n, the entire path cost can be calculated
with one matrix in the case of m ≤ 35. Therefore, for datasets other than BK, more than one
path cost can be computed with one matrix. The computation time for the path cost was
reduced by more than 90% compared to the inner product case. However, in the case of BK,
only ⌊n/(m + 1)⌋ = ⌊2048/1028⌋ = 1 path cost could be calculated with a single matrix
multiplication. Hence, there is no difference in the computation time for matrix multiplication
and inner product when ⌊n/(m + 1)⌋ = 1.

Table 2. Computation time for path cost calculation in two methods: matrix multiplication of
Section 3.2 and the homomorphic inner product calculation of Yasuda et al. [19] that we proposed
in [24]. The computation time for the matrix multiplication with the addition of LNP is provided
in parentheses. The computation time for LNP was measured as an average of 10 trials for each
dataset class.

Dataset Accuracy
Path Cost (ms) Total Time (ms)

Matrix (+LNP) Inner Product Matrix (+LNP) Inner Product

BC 96.4% 0.25 (0.25) 3.04 44.19 (43.92) 63.58
ST 99.8% 0.25 (0.25) 6.74 66.85 (66.83) 117.51
CS 90.8% 0.25 (0.25) 7.47 77.57 (76.12) 134.64
HD 61.1% 0.25 (0.25) 9.73 98.82 (98.11) 174.34
NS 98.6% 0.50 (0.37) 11.72 130.87 (129.07) 235.04
SP 90.4% 1.72 (0.86) 13.13 321.89 (302.72) 490.04

EGG 69.8% 88.57 (46.20) 179.31 3425.44 (2516.35) 4442.00
BK 88.6% 247.63 (131.14) 252.87 6485.30 (4394.58) 6455.17

With LNP being applied, the path cost computation time remained unchanged for
decision trees (e.g., BC, ST, CS, HD) with m ≤ 35, as all path costs could be computed
within a single matrix. However, for larger trees (e.g., NS, SP, EGG, BK), LNP significantly

Appl. Sci. 2025, 15, 5560 19 of 24

reduced the computation time—by 26% for NS, 50% for SP, 48% for EGG, and 47% for
BK. The effect correlated with the number of classes: datasets with fewer classes (SP, EGG,
BK each with 2) benefited more than did NS (5 classes), as fewer classes enhance pruning
efficiency. See Table 1 and Figure 5 for dataset-specific details.

Figure 5. Comparison of computation times with and without LNP across all datasets. For each
dataset, the bar chart shows the path cost and total computation times, highlighting the reduction
achieved by applying LNP. Datasets with fewer classes (e.g., SP, EGG, BK) showed more significant
improvements due to more efficient pruning.

4.2.2. Protocol Efficiency

In this experiment, we used the XCMP of Lu et al. [15] for comparisons. We imple-
mented two protocols and measured their computation times.

1. To evaluate the efficiency of different homomorphic encryption approaches, we also
integrated the XCMP scheme into the comparison component of the three-party
protocol described in Section 3.3. The path cost computation was performed following
the procedure outlined in Steps 6–8 of Section 3.3.

2. A naive two-party protocol using XCMP by Lu et al. computed the result of two-
party comparison (see Appendix B). Then, we computed the path cost under encrypt
conditions by additive homomorphism.

Table 3 provides the measurement results.

Table 3. Computation time with XCMP [15] in the following scenarios: three-party with matrix
multiplication and LNP; two-party with homomorphic addition of XCMP results for computing the
path cost.

Dataset
Path Cost (ms) Total Time (ms)

Three-Party Two-Party Three-Party Two-Party

BC 2.17 1577.51 302.19 1958.13
ST 2.17 11,745.70 647.51 12,724.20
CS 2.18 14,905.70 736.95 16,037.90
HD 2.18 27,041.40 961.19 28,298.90
NS 2.18 51,772.50 1321.47 54,268.10
SP 2.19 255,659.00 2996.92 263,008.00

EGG 74.01 10,947,300.00 19,432.90 11,013,300.00
BK 166.74 22,027,200.00 28,821.60 22,130,500.00

In the naive two-party protocol, the path cost calculation is performed only by ho-
momorphic addition, so O(m2) addition is required. Therefore, the path cost calculation
accounted more than 80% of the total time. In contrast, when applied to the proposed
protocol, the path cost calculation time was reduced to 0.5% of the total time. As a result,
the time reduction is achieved by applying XCMP to the proposed protocol on the experi-
ments’ dataset. In particular, the reduction rate was higher for the EGG and BK datasets
with a large number of decision nodes.

Appl. Sci. 2025, 15, 5560 20 of 24

4.3. Time Complexity

To verify the computational complexity in Section 3.5, we measured the computation
time of the proposed protocol for a decision tree constructed with the number of m decision
nodes fixed between [10, 1000] using the BK dataset.

Figure 6 provides the experimental results that demonstrated that the computation
time was linear with the number of decision nodes. There were several points at which there
was a rapid increase in the number of times the model holder’s encryption was performed,
the number of times the client was compounded, and the number of times the server’s
path cost was computed. As illustrated in Section 3.5, these computation times depend on
S = ⌈(m + 1)/m′⌉, where m′ = ⌊n/(m + 1)⌋. Thus, as m increases, the computation time
increases rapidly.

Figure 6. Computation time for decision nodes.

5. Conclusions
In this paper, we proposed a privacy-preserving decision tree prediction protocol that

enables secure outsourcing using homomorphic encryption. The proposed method uses
the comparison protocol proposed by Wang et al. [17] or Lu et al. [15] to encrypt both
feature vectors of a data holder and decision tree parameters of a model holder, and the
structure of a decision tree model is hidden against both data holder and outsourced servers
by calculating the path cost using the homomorphic matrix multiplication proposed by
Dung et al. [18].

Our experimental results demonstrate that the computation time for three-party pro-
tocol using XCMP [15] is drastically reduced by more than 85% compared to the naive
two-party protocol without a reduction in the prediction accuracy. In addition, we com-
pared the method using homomorphic matrix multiplication [18] with homomorphic inner
product [19]. As a result, we confirmed that there were cases where the computation time
was reduced by more than 90%. We also proposed a leaf node pruning (LNP) algorithm to
accelerate the three-party prediction protocol. The computation time was reduced by up to
50% when the proposed LNP was applied.

However, the proposed method has certain limitations. In particular, while the com-
parison results at each decision node are revealed to the outsourced server, the server
cannot determine which specific feature each node corresponds to. This contrasts with
the protocol by Lu et al. [15], which prevents such leakage but incurs significantly higher
computational costs. This highlights a fundamental trade-off between security and com-
putational efficiency: our approach enhances scalability and performance at the cost of

Appl. Sci. 2025, 15, 5560 21 of 24

limited information leakage. In many practical scenarios, this trade-off may be acceptable;
however, minimizing data exposure remains a critical objective. In future work, we will
aim to design a more efficient protocol that preserves performance while eliminating any
information leakage, thereby strengthening both privacy and practicality.

Author Contributions: Conceptualization, S.F., L.W. and S.O.; methodology, S.F., L.W. and S.O.;
software, S.F. and S.O.; validation, S.F. and S.O.; formal analysis, S.F. and L.W.; investigation, S.F. and
L.W.; resources, S.O.; data curation, S.F.; writing—original draft preparation, S.F., L.W. and S.O.; writ-
ing—review and editing, L.W.; supervision, S.O.; project administration, S.O. and L.W.; funding ac-
quisition, S.O. and L.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by JST CREST (grant number JPMJCR21M1) and JST
AIP accelerated program (grant number JPMJCR22U5), Japan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Acknowledgments: We would like to thank Takuya Hayashi for the useful discussion.

Conflicts of Interest: The authors declare no conflicts of interest.

Notations
The following notations are used in this manuscript:
1l {·} Functions that return 1 if · is true and 0 if false
µ Maximum bit length of an integer
A = [a0, . . . aℓ−1] Vector of length ℓ

Ad = [a0, . . . , ad−1, 0, . . . , 0] d-bit subvector of A

ab = [a0, . . . , aµ−1]
µ-bit binary vector of integer a,
where aµ−1 is the least significant bit of integer a.

N Dimension of the feature vector
X = [X0, . . . , XN−1] Feature vector
Di Decision node
Lj Leaf node
λi Index of feature vectors to be compared by decision node Di

ti Threshold of decision node Di

cj Class to be output by leaf node Lj

m Number of decision nodes in the decision tree
m + 1 Number of leaf nodes in the decision tree

Parameters being used in the ring-LWE-based encryption schemes:

n
An integer of power of 2 that denotes the degree of polynomial xn + 1. Define a polynomial
ring Z := Z[x]/(xn + 1),

q
An integer composed of q = q1 × · · · × qk (qi is a prime number). Define a polynomial ring
representing a ciphertext space Zq := Zq[x]/(xn + 1),

p
Define a plaintext space Zp := Zp[x]/(xn + 1), where p and q are mutually prime natural
numbers with the relation p < q,

σ

Standard deviation of the discrete Gaussian distribution defining the secret key space Z(0,σ2).
The elements of Z(0,σ2) are polynomials on the ring Z . Each coefficient is independently
sampled from the discrete Gaussian distribution of the variance σ2.

Appendix A. Ring-LWE-Based Homomorphic Encryption
This study used the ring-LWE-based public key homomorphic encryption library

called the Simple Encrypted Arithmetic Library (SEAL) v.3.3 [22] to implement our pro-

Appl. Sci. 2025, 15, 5560 22 of 24

tocols. SEAL implements the somewhat homomorphic encryption scheme proposed by
Fan et al. [21]. Due to the additive and multiplicative homomorphism, packing plaintexts
provides an efficient homomorphic inner product and matrix multiplication calculations.
See [21,22] for details on the encryption scheme.

The somewhat homomorphic encryption scheme consists of the following four ba-
sic algorithms:

• ParamGen(1λ): input security parameter 1λ and output system parameter pp = (n, q, p, σ).
• KeyGen: input system parameter pp and output public key pk and secret key sk.
• Enc(pk, ·): input plaintext m and output ciphertext c.
• Dec(sk, ·): input ciphertext c and output plaintext m.

Homomorphic addition and multiplication algorithms are defined by Add and Mul,
and the corresponding decryption algorithms are represented by DecA and DecM, respec-
tively. Let c = Enc(pk, m) and c′ = Enc(pk, m′) denote the ciphertexts of the two plaintexts
m and m′, respectively. Then, the sum and product of m and m′ can be calculated as follows.

Add(c, c′) = cadd ∈ Zq,

DecA(sk, cadd) = m + m′ ∈ Zp;

Mul(c, c′) = cmul ∈ Zq,

DecM(sk, cmul) = mm′ ∈ Zp.

(A1)

Hereafter, we write Enc(pk, ·) := [[·]],Add(c, c′) := c⊕ c′, and Mul(c, c′) = c⊗ c′. The
difference between c and c′ can be obtained using homomorphic addition, and we define
Sub(c, c′) := c⊖ c = Add(c,−c′).

Appendix B. XCMP [15]
Assume that client and server have two ℓ-bit integer values such as a and b, respectively.

According to the algorithm in Figure A1, the server computes [[C]] to obtain the comparison
result in encrypted form. In this scheme, the comparison result is a constant term in the
polynomial C, as shown in C = 1l{a > b}+ other terms of degree. It is possible to perform
scalar multiples, additions, and subtractions on the resulting ciphertext [[C]].

Client generates key.
1. (Client) sends [[xa]] to server.
2. (Server) calculates µ̄ = 2−1 mod p, µ = −µ̄ mod p.
3. (Server) calculates T = µ + µX + · · ·+ µXn−1.
4. (Server) SampleR← Zp where R[0] = µ̄.
5. (Server) calculates x−b.
6. (Server) calculates [[C]] = [[xa]]⊗ x−b ⊗ T ⊕ R.

Figure A1. XCMP [15].

References
1. Konečný, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated Optimization: Distributed Machine Learning for On-Device

Intelligence. arXiv 2016, arXiv:1610.02527. [CrossRef]
2. Fredrikson, M.; Jha, S.; Ristenpart, T. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.

In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015; Ray, I., Li, N., Kruegel, C., Eds.; ACM: New York, NY, USA, 2015; pp. 1322–1333. [CrossRef]

3. Rivest, R.L.; Dertouzos, M.L. On Data Banks and Privacy Homomorphisms. In Foundations of Secure Computation; DeMillo, R.,
Ed.; Academic Press: Cambridge, MA, USA, 1978; Volume 4, pp. 169–180.

4. Gentry, C. A Fully Homomorphic Encryption Scheme. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2009.

http://doi.org/10.48550/arXiv.1610.02527
http://dx.doi.org/10.1145/2810103.2813677

Appl. Sci. 2025, 15, 5560 23 of 24

5. Akavia, A.; Leibovich, M.; Resheff, Y.S.; Ron, R.; Shahar, M.; Vald, M. Privacy-Preserving Decision Trees Training and Prediction.
In Proceedings of the Machine Learning and Knowledge Discovery in Databases—European Conference, ECML PKDD 2020,
Ghent, Belgium, 14–18 September 2020; Proceedings, Part I; Hutter, F., Kersting, K., Lijffijt, J., Valera, I., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12457, pp. 145–161. [CrossRef]

6. Fréry, J.; Stoian, A.; Bredehoft, R.; Montero, L.; Kherfallah, C.; Chevallier-Mames, B.; Meyre, A. Privacy-Preserving Tree-Based
Inference with TFHE. In Proceedings of the Mobile, Secure, and Programmable Networking—9th International Conference,
MSPN 2023, Paris, France, 26–27 October 2023; Revised Selected Papers; Bouzefrane, S., Banerjee, S., Mourlin, F., Boumerdassi, S.,
Renault, É., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2023; Volume 14482, pp. 139–156.
[CrossRef]

7. Hao, Y.; Qin, B.; Sun, Y. Privacy-Preserving Decision-Tree Evaluation with Low Complexity for Communication. Sensors 2023,
23, 2624. [CrossRef] [PubMed]

8. Shin, H.; Choi, J.; Lee, D.; Kim, K.; Lee, Y. Fully Homomorphic Training and Inference on Binary Decision Tree and Random
Forest. In Proceedings of the Computer Security—ESORICS 2024—29th European Symposium on Research in Computer Security,
Proceedings, Part III, Bydgoszcz, Poland, 16–20 September 2024; García-Alfaro, J., Kozik, R., Choras, M., Katsikas, S.K., Eds.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2024; Volume 14984, pp. 217–237. [CrossRef]

9. Cong, K.; Das, D.; Park, J.; Pereira, H.V.L. SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption
and Transciphering. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, 7–11 November 2022; Yin, H., Stavrou, A., Cremers, C., Shi, E., Eds.; ACM: New York, NY, USA, 2022;
pp. 563–577. [CrossRef]

10. Tai, R.K.H.; Ma, J.P.K.; Zhao, Y.; Chow, S.S.M. Privacy-Preserving Decision Trees Evaluation via Linear Functions. In Proceedings
of the Computer Security—ESORICS 2017—22nd European Symposium on Research in Computer Security, Proceedings, Part
II, Oslo, Norway, 11–15 September 2017; Foley, S.N., Gollmann, D., Snekkenes, E., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2017; Volume 10493, pp. 494–512. [CrossRef]

11. Zheng, Y.; Duan, H.; Wang, C.; Wang, R.; Nepal, S. Securely and Efficiently Outsourcing Decision Tree Inference. IEEE Trans.
Dependable Secur. Comput. 2022, 19, 1841–1855. [CrossRef]

12. Wu, D.J.; Feng, T.; Naehrig, M.; Lauter, K.E. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing
Technol. 2016, 2016, 335–355. [CrossRef]

13. Maddock, S.; Cormode, G.; Wang, T.; Maple, C.; Jha, S. Federated Boosted Decision Trees with Differential Privacy. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, 7–11
November 2022; Yin, H., Stavrou, A., Cremers, C., Shi, E., Eds.; ACM: New York, NY, USA, 2022; pp. 2249–2263. [CrossRef]

14. Damgård, I.; Geisler, M.; Krøigaard, M. A correction to ’efficient and secure comparison for on-line auctions’. Int. J. Appl. Cryptogr.
2009, 1, 323–324. [CrossRef]

15. Lu, W.; Zhou, J.; Sakuma, J. Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption. In
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, AsiaCCS 2018, Incheon, Republic of
Korea, 4–8 June 2018; Kim, J., Ahn, G., Kim, S., Kim, Y., López, J., Kim, T., Eds.; ACM: New York, NY, USA, 2018; pp. 67–74.
[CrossRef]

16. Saha, T.K.; Koshiba, T. An Efficient Privacy-Preserving Comparison Protocol. In Proceedings of the Advances in Network-Based
Information Systems, The 20th International Conference on Network-Based Information Systems, NBiS 2017, Ryerson University,
Toronto, ON, Canada, 24–26 August 2017; Barolli, L., Enokido, T., Takizawa, M., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2018; Volume 7, pp. 553–565. [CrossRef]

17. Wang, L.; Saha, T.K.; Aono, Y.; Koshiba, T.; Moriai, S. Enhanced Secure Comparison Schemes Using Homomorphic Encryption. In
Proceedings of the Advances in Networked-Based Information Systems—The 23rd International Conference on Network-Based
Information Systems, NBiS 2020, Victoria, BC, Canada, 31 August–2 September 2020; Barolli, L., Li, K.F., Enokido, T., Takizawa, M.,
Eds.; Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1264, pp. 211–224.
[CrossRef]

18. Duong, D.H.; Mishra, P.K.; Yasuda, M. Efficient Secure Matrix Multiplication Over LWE-Based Homomorphic Encryption. Tatra
Mt. Math. Publ. 2016, 67, 69–83. [CrossRef]

19. Yasuda, M.; Shimoyama, T.; Kogure, J.; Yokoyama, K.; Koshiba, T. Practical Packing Method in Somewhat Homomorphic
Encryption. In Proceedings of the Data Privacy Management and Autonomous Spontaneous Security–8th International
Workshop, DPM 2013, and 6th International Workshop, SETOP 2013, Revised Selected Papers, Egham, UK, 12–13 September
2013; García-Alfaro, J., Lioudakis, G.V., Cuppens-Boulahia, N., Foley, S.N., Fitzgerald, W.M., Eds.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8247, pp. 34–50.

20. Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu
(accessed on 31 March 2025).

http://dx.doi.org/10.1007/978-3-030-67658-2_9
http://dx.doi.org/10.1007/978-3-031-52426-4_10
http://dx.doi.org/10.3390/s23052624
http://www.ncbi.nlm.nih.gov/pubmed/36904825
http://dx.doi.org/10.1007/978-3-031-70896-1_11
http://dx.doi.org/10.1145/3548606.3560702
http://dx.doi.org/10.1007/978-3-319-66399-9_27
http://dx.doi.org/10.1109/TDSC.2020.3040012
http://dx.doi.org/10.1515/popets-2016-0043
http://dx.doi.org/10.1145/3548606.3560687
http://dx.doi.org/10.1504/IJACT.2009.028031
http://dx.doi.org/10.1145/3196494.3196503
http://dx.doi.org/10.1007/978-3-319-65521-5_48
http://dx.doi.org/10.1007/978-3-030-57811-4_20
http://dx.doi.org/10.1515/tmmp-2016-0031
https://archive.ics.uci.edu

Appl. Sci. 2025, 15, 5560 24 of 24

21. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. IACR Cryptology ePrint Archive 2012; p. 144.
Available online: https://eprint.iacr.org/2012/144 (accessed on 31 March 2025).

22. Microsoft SEAL (Release 3.3); Microsoft Research: Redmond, WA, USA, 2019. Available online: https://github.com/Microsoft/
SEAL (accessed on 31 March 2025).

23. Albrecht, M.; Chase, M.; Chen, H.; Ding, J.; Goldwasser, S.; Gorbunov, S.; Halevi, S.; Hoffstein, J.; Laine, K.; Lauter, K.; et al.
Homomorphic Encryption Security Standard; Technical report; HomomorphicEncryption.org: Toronto, ON, Canada, 2018.

24. Fukui, S.;Wang, L.; Hayashi, T.; Ozawa, S. Privacy-Preserving Decision Tree Classification Using Ring-LWE-Based Homomorphic
Encryption. In Proceedings of the Computer Sequrity Symposium 2019, Nagasaki, Japan, 21–24 October 2019; pp. 321–327.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2012/144
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Existing Decision Tree Classification
	Decision Tree
	Decision Tree Classification via Linear Function Tai2017

	Secure Comparison Protocol
	-bit Integer Comparison DGK2009
	Packing Method
	Secure Comparison Protocol

	Ring-LWE-Based Secure Matrix Multiplication

	PPDT Classification Model
	Computation Model
	Computation of Path Cost by Matrix Vector Operation
	Proposed Protocol
	Leaf Node Pruning (LNP)
	Complexity
	Security Analysis

	Experiments
	Experimental Setup
	Performance Comparisons
	Path Cost Calculation
	Protocol Efficiency

	Time Complexity

	Conclusions
	Appendix A. Ring-LWE-Based Homomorphic Encryption
	Appendix B. XCMP Lu2018
	References

