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CERTIFIED Σ1-SENTENCES

TAISHI KURAHASHI AND ALBERT VISSER

Abstract. In this paper, we study the employment of Σ1-sentences with certificates, i.e., Σ1-sentences
where a number of principles is added to ensure that the witness is sufficiently number-like. We develop
certificates in some detail and illustrate their use by reproving some classical results and proving some new
ones. An example of such a classical result is Vaught’s theorem of the strong effective inseparability of R0.

We also develop the new idea of a theory being R0p-sourced. Using this notion, we can transfer a number
of salient results from R0 to a variety of other theories.

§1. Introduction. In this paper, we study certificates. These are theories-of-a-
number with a free parameter for the number in question, or, more precisely, for
the number-like object. In other words, certificates specify a property of a number.
This property is roughly that the object specified is sufficiently like a number. A
salient property of theories-of-a-number is that they have finite models.

The main focus of this paper is on certificates as a tool to metamathematical
results. Thus, the paper can be viewed as a study of certificates as a method. We
develop one specific certificate and provide the necessary lemmas for its employment.
We apply the certificate to, possibly non-standard, witnesses of Σ0

1-sentences. This
use of the certificate is in constant interaction with the salient theories R0 and R.
Our presentation provides more detail than previous presentations, so that many
subtleties of what is going on become clearly visible here for the first time.

We extend the classical results obtained by the use of certificates by defining
a wider class of theories, the R0p-sourced theories. These theories behave in some
important respects like the salient theory R0.

The paper presents a number of applications of the use of certificates, which are
important in themselves, but also serve to illustrate the use of the method well. These
are:

• Certain theorems by Cobham and Vaught, the contents of which are explained
in Section 2 below. We introduce these results in our preparatory Section 2. The
detailed treatment then will be in Section 7. Our version of the second Vaught
theorem is a generalization to the R0p-sourced case.

• A variety of results concerning degree structures of interpretability. These
results are in Section 8.
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2 TAISHI KURAHASHI AND ALBERT VISSER

Theories-of-a-number have counterparts for various other data-types, like sets,
multi-sets, sequences, and strings. The alternative that is developed and used is
theories-of-a-finite-set. Here is a list of examples of uses of theories-of-a-number
and their kin that we noted. We do not have any pretence of completeness here.

• In [2], Harvey Friedman uses theories-of-a-number to prove the density of
the interpretability degrees of finitely axiomatized theories. This result was
proved earlier, by another method, in [10]. We present a version of the result
in Theorem 8.9 and Corollary 8.11.

• In [20], Albert Visser uses theories-of-a-number to reprove (and improve)
Vaught’s result [18] that every c.e. Vaught theory is axiomatizable by a scheme.

• In [11], Fedor Pakhomov uses theories-of-a-finite-set to construct an R-like set
theory that proves its own consistency.

• In [12], Fedor Pakhomov and Albert Visser show the following. Consider
a finitely axiomatised extension A of c.e. theory U in a possibly extended
signature. Suppose A is conservative over U. Then, there is a conservative
extension B of U in the signature of A, such that A � B and B � A. They use
theories-of-a-finite-set to prove this result.

1.1. Plan of the paper. The plan of the paper is as follows. In Section 2, we give a
first presentation of both certain results by Cobham and Vaught and a preliminary
explanation of the use of certificates. Section 3 fixes some basic definitions and
provides pointers to relevant literature. In Section 4, we develop the basic facts about
certificates of a Σ0

1-witness and the theories R0 and R. In Section 5, we generalize
the results of Section 4 by replacing R0 by theories from a class that has R0 as its
source. We provide examples to illustrate that many salient theories are in that class.
Section 6 provides basic facts about witness comparison, which is an important tool
that we use in the subsequent sections. The section is needed since the interaction
between certificates and witness comparisons is somewhat delicate. In Section 7, we
apply the methods developed in the previous sections to prove two theorems due to
Vaught. Finally, in Section 8, we apply these methods to prove various results about
degrees of interpretability. Sections 7 and 8 can be read independently of each other.

1.2. History of the paper. The present paper succeeds and replaces Taishi
Kurahashi’s earlier preprint Incompleteness and undecidability of theories consistent
with R. The materials of the preprint are contained in the present paper.

§2. Theorems of Cobham and Vaught. In this section, we give a presentation of
current status of certain theorems of Cobham and Vaught. After some preparatory
work, we take up this thread again in Section 7.

Let La be the signature {0, s,+,×,�} of first-order arithmetic. Let � denote the
set of all natural numbers. For each n ∈ �, the numeral s ... s0 (n applications of
s) for n is denoted by n. A central object of study in this paper is the La-theory R
introduced by Tarski, Mostowski, and Robinson in [15].

Definition 2.1 (The theory R). The theory R is axiomatized by the following
sentences: For m, n ∈ �,
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CERTIFIED Σ1-SENTENCES 3

R1. m + n = m + n
R2. m × n = m × n
R3. m �= n (if m �= n)
R4. ∀x

(
x � n →

∨
i�n x = i

)
R5. ∀x (x � n ∨ n � x).

It was proved in [15] that the original R is essentially undecidable, that is, every
consistent extension ofR is undecidable. Here, we comment on the difference between
our formulation and the original one of the theory R. The signature adopted in
[15] does not contain the symbol � and the formula x � y is introduced as the
abbreviation for ∃z z + x = y. Our signature La contains � as a primitive symbol
and our version ofR does not prove the equivalence between the formulas x � y and
∃z z + x = y. So, our R is strictly weaker than the original. Jones and Shepherdson
[6] pointed out that the essential undecidability of R also holds without using the
equivalence x � y ↔ ∃z z + x = y.

The La-theory R0 is obtained from R by replacing the axiom R5 with the following
R5′:

R5′: m � n (if m � n) .
Alternatively, we can axiomatize R0 by dropping R5 altogether and replacing R4 by:

R4′: ∀x
(
x � n ↔

∨
i�n x = i

)
.

We make R1-4 plus R5′ our official axiomatization.

Remark 2.2. Our definitions of R and R0 correspond to those in Švejdar’s paper
[14]. Vaught’s definition of R0 in [17] is in the same spirit as ours, but still differs.
He presents the theory in a relational format without identity. There is a mistake
in Vaught’s statement of the axioms. The theory as given in the paper clearly has a
decidable extension. As possible repairs, one could add the axioms for the totality
of the functions or replace, both in Axiom I and II, the second occurrence of → by
↔. Jones and Shepherdson in [6] discuss both the version of R with and without a
defined relation �. They use R′

0 for our R0.

It is easy to see that R0 is a proper subtheory of R. We note that all the axioms
of R0 can be rewritten as Δ0-formulas. This leads to a nice observation by Vı́tězslav
Švejdar.

Theorem 2.3 (Cf. Švejdar [14]). An La-theory T is Σ1-complete if and only if
T � R0.

Cobham observed that R is interpretable in R0, and that, hence, R0 is essentially
undecidable (see Vaught [17] and Jones and Shepherdson [6]).1 We give Cobham’s
interpretation in Section 7.

In the formulation of R0, if x � y is defined by ∃z z + x = y as in [15], rather
than primitive as in the present paper, then the axiom R5′ is redundant since it can
be derived from R1. On the other hand, note that, in our signature La, the theory
obtained from R0 by removing R5′ has a complete consistent decidable extension
(see Jones and Shepherdson [6]).

1It is also easy to prove the essential undecidability of R0 directly.
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4 TAISHI KURAHASHI AND ALBERT VISSER

We say that a theory T is essentially hereditarily undecidable if every La-
theory consistent with T is undecidable (cf. [26]). It is shown in [15] that every
finitely axiomatized essentially undecidable theory is also essentially hereditarily
undecidable. Here, since the theory R0 is not finitely axiomatizable, it is nontrivial
whether R0 is essentially hereditarily undecidable. In fact, there exists a computably
axiomatized essentially undecidable theory having a decidable subtheory (cf.
Ehrenfeucht [1] and Putnam [13]). Then, Cobham proved the following interesting
theorem.

Theorem 2.4 (Cobham, see Vaught [17, Theorem 1.5]). The theory R0 is
essentially hereditarily undecidable.

A proof of Cobham’s theorem was presented in Vaught [17]. Vaught also showed
two strengthenings of Cobham’s theorem.

For each i ∈ �, let Wi denote the c.e. set with the index i. We say that a pair (X,Y )
of disjoint c.e. sets is effectively inseparable if for any i, j ∈ �, if X ⊆ Wi , Y ⊆ Wj ,
and Wi ∩Wj = ∅, then we can effectively find an element x such that x /∈ Wi ∪Wj .
For each theory T, let Tp and Tr be the set of all theorems of T and the set of all
sentences refutable in T, respectively. We say that a consistent theory T is strongly
effectively inseparable if the pair (Tp, ∅r) is effectively inseparable (cf. [9]). The first
strengthening is the following.

Theorem 2.5 (Vaught [17, Theorem 5.2]). The theory R0 is strongly effectively
inseparable.

In fact, Cobham’s theorem follows easily from Theorem 2.5. The second one is
the following theorem that immediately implies Cobham’s theorem, but no proof
was presented in Vaught’s paper.

Theorem 2.6 (Vaught [17, Theorem 7.1]). For any c.e. La-theory U, if R0 +U is
consistent, then there exists a finitely axiomatized La-theory S extending R0 such that
S +U is also consistent.

Recently, a more comprehensible proof of Cobham’s theorem (Theorem 2.4) was
also given in Visser [22].

Definition 2.7 (Pure Δ0- and Σ1-formulas). Let ϕ be an La-formula.

• We say that ϕ is a pure Δ0-formula if ϕ is Δ0 and satisfies the following
conditions:

1. For any atomic formula of the form t1 � t2 contained in ϕ, terms t1 and
t2 are both variables;

2. Every atomic formula of the form t1 = t2 contained in ϕ is of one of the
forms x0 = x1, 0 = x0, sx0 = x1, x0 + x1 = x2, and x0 × x1 = x2, where
x0, x1, and x2 are variables.

• We say that ϕ is a pure Σ1-formula if ϕ is of the form ∃ �x ϕ0( �x), where ϕ0( �x) is
a pure Δ0-formula. Here, the block �x of quantifiers is allowed to be empty.

Our version of predicate logic does not contain the logical constants � and ⊥ as
primitive symbols. It is then shown that every pure Δ0-formula contains at least one
free variable. An effective procedure to obtain an equivalent pure Σ1-formula for
each Σ1-formula is presented in [22].
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CERTIFIED Σ1-SENTENCES 5

Proposition 2.8 (Visser [22]). For any Σ1-formula ϕ( �x), a pure Σ1-formula ϕ◦( �x)
satisfying the following conditions is effectively found:

1. N |= ∀ �x (ϕ( �x) ↔ ϕ◦( �x)),
2. ∀ �x (ϕ◦( �x) → ϕ( �x)) is logically valid.

Here, we outline the proof of Cobham’s theorem presented in [22]. At first, the
finite La-theory TN (the theory of a number) is introduced. Then, for each pure
Σ1-sentence of the form ∃ �x �0( �x), where �0( �x) is a pure Δ0-formula, let [�] be the
finite La-theory

TN + ∃v ∃ �x < v �0( �x).

Let �� be an La-sentence saying that there exists the least number n such that the
finite La-structure {0, 1, ... , n} is a model of [�]. Then, the following three clauses
hold for each pure Σ1-sentence �:

1. If N |= �, then R0 � ��.
2. If N |= ¬ �, then [�] � R0.
3. (R0 + ��) � [�].

Here, T � T ′ means that T ′ is interpretable in T (see Section 3 for the definition).
Let U be any La-theory such that R0 +U is consistent. We would like to show that
U is undecidable. We may assume that U is a c.e. theory. Then, the set X := {� | �
is a pure Σ1 sentence and R0 + �� +U is consistent} is Π1-definable. Since the set
Y := {� | � is a true pure Σ1-sentence} is not Π1-definable, we have X �= Y . By the
first clause above, we have Y � X , and hence X � Y . Then, we get a false pure
Σ1-sentence � such that R0 + �� +U is consistent. By the second clause, we have
[�] � R0, and thus the theory [�] is essentially undecidable. Since [�] is finite and
(R0 + ��) � [�] by the third clause, there exists a finite subtheory S of R0 + �� such
that S � [�]. Then, S is essentially undecidable and S +U is consistent. Since S is
finite, we conclude that U is undecidable.

However, it seems that the proof by Visser cannot be used to prove Vaught’s
theorems (Theorems 2.5 and 2.6) as it is, because the notion of interpretability
between theories is used in it.

In this paper, we prove the following theorem using a modification of Visser’s
strategy.

Theorem 2.9 (Certified extension theorem). For each Σ1-sentence �, we can
effectively find a sentence [�] satisfying the following conditions:

1. [�] � �.
2. If N |= �, then R0 � [�].
3. If N |= ¬ �, then [�] � R0.

We call such sentences [�] certified Σ1-sentences for R0.

We note that Visser’s [�] does give us the analogs of (1) and (3) of Theorem 2.9.
However the analog of (2) fails. We only get: if N |= �, then R0 � [�].

§3. Basic definitions. We only present a brief outline of the basic notions. For
more detail, we refer the reader to, e.g., [22, Appendix A].
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6 TAISHI KURAHASHI AND ALBERT VISSER

A theory U in this paper is a theory of predicate logic of finite signature �. A
theory U is given by a finite signature � and a set of axioms X of the signature �.

Definition 3.1. The conjunction of the finitely many axioms for identity of U is
id� or idU . The axioms of identity are officially part of the logic but at times we will
treat them as if they were part of the axioms of the theory.

Let us fix an infinite sequence of variables v0, v1, ... . Suppose � is a relational
signature. A one-dimensional parameter-free translation � : � → � specifies a domain
predicate 	� , with at most v0 free, and, for an n-ary predicate symbol R of � a � -
formulaR� , such that the free variables ofR� are among v0, ... , vn–1. We treat identity
as if it were a predicate from the signature rather than a logical predicate. We lift the
translation to the full �-signature as follows:

• (R( �x))� := R�[�v := �x]. Here we assume an automatic mechanism of renaming
variables in case of clashes.

• (·)� commutes with the propositional connectives.
• (∀x
)� := ∀x (	�[v0 := x] → 
�).
• (∃x
)� := ∃x (	�[v0 := x] ∧ 
�).

If � is a set of �-sentences, we write �� for {φ� | φ ∈ �}.
We can extend translations to m-dimensional ones by translating a variable from

the �-signature to a sequence of variables of length m of the � -signature. We can
also allow parameters in our interpretations.

We can define the identity translation and composition of translations in the
obvious way.

An interpretation K of U in V is a triple (U, �, V ), where � is a translation from the
signature ΘU of U to the signature ΘV of V. We demand that, for every U-sentence
φ such that U � φ, we have V � φ� . We write K : U � V or K : V �U for K is
an interpretation of U in V. We write U � V or V �U for: there is a K such that
K : U � V .

We have also the notion of local interpretability. The theory V locally interprets
the theory U, or V �loc U , iff for each finitely axiomatized subtheory U0 of U, we
have V �U0.

We will make use of the following operations on theories. Consider theories U
and V.

• The theoryU � V is defined as follows. The signature ofU � V is the disjoint
sum of the signatures of U and V and, in addition, a fresh 0-ary predicate
P. The axioms of U � V are all P → φ, where φ is an axiom of U, plus all
¬P → 
, where 
 is an axiom of V.

• The theoryU � V is defined as follows. The signature ofU � V is the disjoint
sum of the signatures of U and V and, in addition, a fresh 1-ary predicate �.
The axioms of U � V are the relativizations φ� of all axioms of φ of U w.r.t.
�, plus the relativizations 
¬� of all axioms of 
 of V with respect to the
complement of �, plus axioms saying that neither � nor its complement are
empty.

We have the following important properties.
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CERTIFIED Σ1-SENTENCES 7

Theorem 3.2.

a. (U � V ) �W iff U �W and V �W .
b. W � (U � V ) iffW �U andW � V .

Thus, U � V is (an implementation of) the infimum of U and V in the degrees
of interpretability and U � V is (an implementation of) the supremum of U and V
in the degrees of interpretability. There is something notationally awkward about
representing an infimum by � and a supremum by �. This awkwardness is due
to a legacy problem. In the boolean intuition the most informative element is the
bottom, where in the interpretation-ordering the most informative element is the
top. We follow the boolean intuition here, treating � as a kind of disjunction of
theories and � as a kind of conjunction.

§4. Certified extension. We prove Theorem 2.9. Our proof is based on the ideas
from [22], but we exclude from the proof the use of �� and interpretability.

Letx < y be an abbreviation ofx � y ∧ x �= y. We define certain special elements
as follows.

Definition 4.1 (Certification). An element v is certified, or cert(v), if it satisfies
the following formulas. These formulas together form the certificate.

A1. 0 � v
A2. ∀x < v sx � v
A3. ∀x (x � 0 ↔ x = 0)
A4. ∀x < v ∀y (y � sx ↔ (y � x ∨ y = sx))
A5. ∀x, y, z � v s((x × y) + z) �= 0
A6. ∀x, y, z, w � v s((x × y) + z) = sw → (x × y) + z = w
A7. ∀x, y � v (x × y) + 0 = x × y
A8. ∀x, y, z � v (x × y) + sz = s((x × y) + z)
A9. ∀x � v x × 0 = 0
A10. ∀x, y � v x × sy = (x × y) + x

We note that of the properties defining certification, only A3 and A4 are not prima
facie Δ0. However, we can rewrite A3 as ∀x � 0 x = 0 ∧ 0 � 0 and we can rewrite
A4 as

∀x < v (∀y � sx (y � x ∨ y = sx) ∧ ∀y � x y � sx ∧ sx � sx).

So, modulo equivalence in predicate logic, certification is Δ0.
The properties A5–A8 look a bit different from the usual axioms in certificates.

Their specific form is needed to prove Lemma 4.8, which in its turn is needed to
prove the negative atomic cases of Lemma 4.11.

Remark 4.2. We aimed to keep our definition of certification reasonably simple.
This has the advantage that it made clear that we can use a fairly light property. As
we will see in Example 5.9, it is possible to add all kinds of convenient properties to
certification that preserve our intended application. An example of such a property
is linearity of � below v.
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8 TAISHI KURAHASHI AND ALBERT VISSER

We say that � is a pure 1-Σ1-sentence if it is of the form ∃x �0(x), where �0(x) is
a pure Δ0-formula.

We strengthen Proposition 2.8 as follows.

Proposition 4.3. For any Σ1-sentence 
, a pure 1-Σ1-sentence 
• satisfying the
following conditions can be effectively found:

1. N |= 
↔ 
•,
2. 
• → 
 is logically valid.

Proof. Consider any Σ1-formula 
. By Proposition 2.8, we can effectively find a
pure Σ1-formula 
◦ such that N |= 
↔ 
◦ and � 
◦ → 
. Suppose that 
◦ is of the
form∃�v 
0(�v) for some pure Δ0-formula 
0(�v). Define 
• to be the pure 1-Σ1-sentence
∃x ∃�v � x 
0(�v). Then, 
• satisfies the conditions (1) and (2). �

We are now ready to define certified Σ1-sentences.

Definition 4.4. Let � be a pure 1-Σ1-sentence of the form ∃x �0(x). We define:

�cert := ∃x
(
cert(x) ∧ �0(x)

)
.

The following theorem is the heart of the technical part of our results.

Theorem 4.5. Let � be a pure 1-Σ1-sentence. Then:

1. �cert � �.
2. If N |= �, then R0 � �cert.
3. If N |= ¬ �, then �cert � R0.

For each Σ1-sentence 
, we may define [
] to be the sentence (
•)cert. Then,
Theorem 2.9 immediately follows from Theorem 4.5 and Proposition 4.3.

Before proving Theorem 4.5, we investigate an La-model M. We assume that
(†): v is a designated certified element and k is a natural number such that, for all

m < k, we have M |= m �= v.
Our first lemma is concerned with successor.

Lemma 4.6 (†). For each m � k, we have M |= m � v.

Proof. We prove the lemma by induction on m � k. For m = 0, we have M |=
0 � v by A1. Suppose that the lemma holds for m withm + 1 � k. Then, M |= m �
v by the induction hypothesis. Since m < k and, hence, by Assumption (†), M |=
m �= v, we find M |= m < v. So, by A2, we may conclude that M |= m + 1 � v. �

In the proofs of the following lemmas, we will use Lemma 4.6 without any
reference.

Lemma 4.7 (†). For any m � k, we have M |= ∀y
(
y � m ↔

∨
l�m
y = l

)
.

Proof. We prove our lemma by induction onm � k. The casem = 0 is precisely
A3. Suppose we have our equivalence for m with m + 1 � k. We note that m < k,
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CERTIFIED Σ1-SENTENCES 9

and hence M |= m < v. Thus, we have, by A4:

M |= y � m + 1 ↔ y � sm

↔ y � m ∨ y = sm

↔
∨
l�m
y = l ∨ y = m + 1

↔
∨
l�m+1

y = l .

�

Lemma 4.8 (†). For any m, n, p � k, we have M |= (m × n) + p = (m × n) + p.

Proof. We prove the lemma by induction on n. For n = 0, we prove that
M|= (m×0)+p=p by induction on p. For p= 0, we see M|= (m×0)+0 =m×0
holds by A7. Since M |= m × 0 = 0 by A9, we obtain M |= (m × 0) + 0 = 0.

Suppose that the statement holds for p with p + 1 � k. Then, by A8 and the
induction hypothesis for p, we get

M |= (m × 0) + (p + 1) = (m × 0) + sp = s((m × 0) + p) = sp = p + 1.

We have proved that the lemma holds for n = 0.
Suppose that the lemma holds for n with n + 1 � k. We prove that

M |= (m × (n + 1)) + p = (m × (n + 1)) + p by induction on p. For p = 0, by
A7, A10, and the induction hypothesis for n, using that m � k,

M |= (m × (n + 1)) + 0 = m × sn

= (m × n) +m

= (m × n) +m

= (m × (n + 1)) + 0.

Assume that the statement holds for p with p + 1 � k. By A8 and the induction
hypothesis for p,

M |= (m × (n + 1)) + (p + 1) = (m × (n + 1)) + sp

= s((m × (n + 1)) + p)

= s((m × (n + 1)) + p)

= (m × (n + 1)) + (p + 1).

�

Lemma 4.9 (†). Let m, n � k.

1. M |= m × n = m × n,
2. M |= m + n = m + n.

Proof. 1. By Lemma 4.8, we get M |= (m × n) + 0 = m × n. By A7, we obtain
M |= m × n = m × n.

2. If k = 0, then m = n = 0. By A7, M |= (0 × 0) + 0 = 0 × 0. Since M |= 0 ×
0 = 0 by A9, we obtain M |= 0 + 0 = 0.
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If k ≥ 1, then by Lemma 4.8 and Clause 1, we obtain

M |= m + n = (m × 1) + n = m + n.

�

Lemma 4.10 (†). Suppose m � k2 + k and l � k and m �= l . Then, M |= m �= l .

Proof. We prove our result by induction on l � k. We will use the fact that (‡)
every m � k2 + k, can be written as (k ×m0) +m1 for some m0, m1 � k.

For the base case, suppose l = 0, m � k2 + k, and m �= l . We have m = m′ + 1,
so m = sm′. So we are done by A5 in combination with (‡) and Lemma 4.8.

We treat the successor case. Suppose l = l ′ + 1 and we have the desired result
for l ′. Suppose also m � k2 + k, and m �= l . In case m = 0, we are done by A5
in combination with (‡) and Lemma 4.8. Suppose, m = ((k ×m0) +m1) + 1,
where m0, m1 � k. Suppose M |= m = l . Then, by Lemma 4.8, we find
M |= s((k ×m0) +m1) = sl ′. By A6, we may conclude M |= (k ×m0) +m1 = l ′.
But this contradicts the induction hypothesis. �

Lemma 4.11 (†). For any pure Δ0-formula ϕ(x0, ... , xi), and n0, ... , ni � k, if
N |= ϕ(n0, ... , ni), then M |= ϕ(n0, ... , ni).

Proof. For any pure Δ0-formula ϕ(x0, ... , xi), and n0, ... , ni � k, we simultane-
ously prove the following two clauses by induction on the construction of ϕ:

1. if N |= ϕ(n0, ... , ni), then M |= ϕ(n0, ... , ni),
2. if N |= ¬ϕ(n0, ... , ni), then M |= ¬ϕ(n0, ... , ni).

Firstly, we prove that the statement holds for atomic formulas. We distinguish the
following cases.

• ϕ is of the form x0 = x1.
1. If N |= n0 = n1, then n0 = n1, and hence M |= n0 = n1.
2. If N |= n0 �= n1, then n0 �= n1. By Lemma 4.10, M |= n0 �= n1 because
n0, n1 � k.

• ϕ is of the form 0 = x0.
1. If N |= 0 = n0, then 0 = n0, and hence M |= 0 = n0.
2. If N |= 0 �= n0, then 0 �= n0. By Lemma 4.10, M |= 0 �= n0 because n0 � k.

• ϕ is of the form sx0 = x1.
1. If N |= sn0 = n1, then n0 + 1 = n1, and M |= n0 + 1 = n1. This means
M |= sn0 = n1.
2. If N |= sn0 �= n1, then n0 + 1 �= n1. If k = 0, then n0 = n1 = 0. By A5, we
get M |= s((0 × 0) + 0) �= 0. By Lemma 4.8, M |= (0 × 0) + 0 = 0, and hence
M |= 1 �= 0. This means M |= sn0 �= n1. If k ≥ 1, then n0 + 1 � k2 + k. By
Lemma 4.10, we have M |= sn0 �= n1.

• ϕ is of the form x0 + x1 = x2.
1. If N |= n0 + n1 = n2, then n0 + n1 = n2, and M |= n0 + n1 = n2. By Lemma
4.9, M |= n0 + n1 = n2 because n0, n1 � k.
2. If N |= n0 + n1 �= n2, then n0 + n1 �= n2. Since n0 + n1 � k2 + k and n2 � k,
by Lemma 4.10, we have M |= n0 + n1 �= n2. By Lemma 4.9, we have
M |= n0 + n1 �= n2.
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• ϕ is of the form x0 × x1 = x2.
1. If N |= n0 × n1 = n2, then n0 × n1 = n2, and M |= n0 × n1 = n2. By Lemma
4.9, M |= n0 × n1 = n2 because n0, n1 � k.
2. IfN |= n0 × n1 �= n2, then n0 × n1 �= n2. By Lemma 4.10,M |= n0 × n1 �= n2

because n0 × n1 � k2 + k and n2 � k. By Lemma 4.9, M |= n0 × n1 �= n2.
• ϕ is of the form x0 � x1.

1. If N |= n0 � n1, then n0 � n1. Since M |=
∨
l�n1
n0 = l , we have, by Lemma

4.7, M |= n0 � n1 because n1 � k.
2. If N |= n0 �� n1, then n1 < n0. For each l � n1, we have n0 �= l . We have
M |= n0 �= l by Lemma 4.10 because n0, l ≤ k. Then, M |=

∧
l�n1
n0 �= l .

Since n1 � k, by Lemma 4.7, we have M |= n0 �� n1.

Secondly, we prove the induction steps. The case that ϕ is one of the forms ¬ϕ0

and ϕ0 ∗ ϕ1 for ∗ ∈ {∧,∨,→} is easily shown by the induction hypothesis. It suffices
to show the case thatϕ is of the form ∃y � xj ϕ0(x0, ... , xi , y), where the claim holds
for ϕ0. The case that ϕ is of the form ∀y � xj ϕ0(x0, ... , xi , y) is proved similarly.

1. Suppose N |= ∃y � nj ϕ0(n0, ... , ni , y). Then, there exists an ni+1 such
that ni+1 ≤ nj ≤ k and N |= ϕ0(n0, ... , ni , ni+1). By the induction hypothesis,
M |= ϕ0(n0, ... , ni , ni+1). Also, we have already proved M |= ni+1 � nj . Therefore,
we obtain M |= ∃y � nj ϕ0(n0, ... , ni , y).

2. Suppose we have N |= ¬∃y � nj ϕ0(n0, ... , ni , y), or, equivalently, we have
N |= ∀y � nj ¬ϕ0(n0, ... , ni , y). Then, we have N |= ¬ϕ0(n0, ... , ni , l), for each
l � nj . By the induction hypothesis, we haveM |= ¬ϕ0(n0, ... , ni , l) for each l � nj .
Thus,

M |= ∀y
( ∨
l�nj
y = l → ¬ϕ0(n0, ... , ni , y)

)
.

By Lemma 4.7, we obtain M |= ∀y � nj ¬ϕ0(n0, ... , ni , y), and, hence, M |=
¬∃y � nj ϕ0(n0, ... , ni , y). �

We have finished our investigation of the model M. We prove one further lemma
as a bridge between the conditions on M of the preceding lemmas and a false
Σ1-sentence and, then, we are ready for the proof of Theorem 4.5.

Lemma 4.12. Let � be a pure 1-Σ1-sentence of the form ∃x �0(x), where �0(x) is a
pure Δ0-formula. Suppose N |= ¬ �. Let N be an La-model and v ∈ N be a witness of
�cert in N , that is, N |= cert(v) ∧ �0(v). Then N |= m < v, for every m ∈ �.

Proof. Suppose N |= ¬ � and N |= cert(v) ∧ �0(v).
We first show that, for every m ∈ �, we have N |= m �= v. Suppose N |= m = v,

for some m ∈ �. Let m� be the least such m. Then, the condition (†) holds for N ,
v, and m�. Since N |= ¬ �0(m�), we have, by Lemma 4.11, N |= ¬ �0(m�). But this
is impossible.

Since, for every m, we have M |= m �= v, Lemma 4.6 gives us that, for every m,
we have M |= m < v. �

We now prove Theorem 4.5.
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Proof of Theorem 4.5. Ad 1: The implication from �cert to � is immediate.
Ad 2: It is obvious that N |= ∀v cert(v) holds. Suppose N |= �. It follows that N |=

�cert. Since �cert is Σ1, we have, by Σ1-completeness (Theorem 2.3), that R0 � �cert.
Ad 3: Suppose N |= ¬ �. We prove that the theory �cert is Σ1-complete.
Let N be any La-model of �cert. So, for some v, we have N |= cert(v) ∧ �0(v). By

Lemma 4.12, we find that N |= m �= v for every m ∈ �. Hence, the condition (†)
holds for N , v, and all k ∈ �.

Let
 be any Σ1-sentence such that N |= 
. By Proposition 4.3, there exists a pure
Δ0-formula 	(x) satisfying the following conditions:

1. N |= 
 ↔ ∃x 	(x),
2. ∃x 	(x) → 
 is logically valid.

Then,N |= ∃x 	(x), and, hence,N |= 	(n) for some n. By Lemma 4.11, we haveN |=
	(n). By the completeness theorem, we obtain �cert � 	(n).2 Thus, �cert � ∃x 	(x).
Therefore, we obtain �cert � 
.

Finally, by Theorem 2.3, we conclude that �cert � R0. �

§5. Certified extension generalized. In this section, we generalize Theorem 2.9 to
a wide class of further base theories.

5.1. The theory R0p. We start with reproving Theorem 2.9 for a slightly different
base theory. We define:

• Lap is the arithmetical signature La extended by a unary predicate symbol P.
• idap := idLap . (The notion id is explained in Definition 3.1.)
• R0p is the the Lap-theory obtained by extending R0 with the axioms P(n), for

all n ∈ �.
We have:

Theorem 5.1 (Second Certified Extension Theorem). For each Σ1-sentence �, we
can effectively find a sentence ��� satisfying the following conditions:

1. ��� � �.
2. If N |= �, then R0p � ���.
3. If N |= ¬ �, then ��� � R0p.

Proof. For each pure 1-Σ1-sentence �, let �certp be the La-sentence:∧
idap ∧ ∃v

(
cert(v) ∧ �0(v) ∧ ∀x � v P(x)

)
.

The proof of Theorem 4.5 can be repeated for R0p by using the sentence �certp .
Thus, for each Σ1-sentence �, it is shown that ��� = (�•)certp satisfies the required
conditions. �

The addition of
∧

idap in the definition of ��� is superfluous in the context of the
proof of Theorem 5.1. It is added since it also delivers the following simple insight.

Theorem 5.2. Suppose � is a translation from Lap to a signature of some theory.
Let � be a Σ1-sentence. Then, K� : ���

�
� ���, where K� is the interpretation based

on �.

2In fact, the witnessing proof can be directly read off from the proofs of the lemmas.
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5.2. R0p-sourced theories. We define:

• Let T and U be c.e. theories and let� be the signature of T. Let � be a translation
from � to the U-signature. The theory U is �-T-sourced iff U is deductively
equivalent to (T + id�)� . The theory U is T-sourced if it is �-T-sourced, for
some �.

In this paper we just focus on R0p-sourced theories. We have:

Theorem 5.3 (Generalized certified extension theorem). Suppose W is �-R0p-
sourced. Then, for each Σ1-sentence �, we can effectively find a sentence ��� satisfying
the following conditions:

1. ���
� � �� .

2. If N |= �, thenW � ���
� .

3. If N |= ¬ �, then ���
� �W .

Proof. This is immediate from Theorem 5.1. Note that, for (1), we use
Theorem 5.2. �

Here is a first simple example of a R0p-sourced theory.

Example 5.4. Any finitely axiomatized theory A that interprets R0 is R0p-
sourced. We note that this example is not very useful, since we already know that
the applications we want from R0p-sourced theories hold for finitely axiomatized
theories.

Here is a second example. We remind the reader of Vaught’s set theory VS. It is a
theory in the signature with the single binary relation symbol ∈, axiomatized by the
following axioms.

VSn: ∀x0 ... ∀xn–1 ∃z ∀y (y ∈ z ↔
∨
i<n y = xi )

We note that in the case that n = 0, we have an axiom that guarantees the existence
of some empty sets. We have:

Theorem 5.5. VS interprets R0.

Proof. In [25, Appendix A], it was proven that VS interprets R. So, a fortiori, VS
interprets R0. �

Theorem 5.6. The theory VS is R0p-sourced.

The idea of the proof is to represent VS as Adjunctive Set Theory AS with local
size restrictions on the sets to which one can apply adjunction.

Proof. Let � be the translation on which an interpretation of R0 in VS is based.
We assume that � is one-dimensional—as the translation provided by [25] is. The
many-dimensional case only requires minor adaptations.

We extend � to �� by providing a translation of P. The statement P��(x) will
roughly say that VS0 and VS2 and that, whenever we have a set y of cardinality � x,
we may adjoin any z to y. Here VS0 and VS2 are needed to provide the necessary
coding machinery. Here are the ingredients for formulation of our statement.

• f is an injection from objects to numbers or in(f) iff f is a set of pairs, f is
functional w.r.t. =, the objects in the range of f are in 	� , and f is injective in
the sense that, if f(u) =� f(v), then u = v.
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• dom(f, y) iff ∀w (w ∈ y ↔ ∃v f(w) = v).
• card�(y, x) iff there is an f with in(f) and dom(f, y) and ∀v ∈ y f(v) <� x.
• P��(x) iff VS0 and VS2 and

∀y ∀z (card�(y, x) → ∃w ∀u (u ∈ w ↔ (u ∈ x ∨ u = z))).

The deductive equivalence between R�
�

0p and VS is now easy to verify. �
We provide two larger classes of examples of R0p-sourced theories. Consider any

signature L. Let �0 be a translation of L in La.
Let �0(x0, ... , xk0–1), ..., �m(x0, ... , xkm–1) be any L-formulas and letX0, ... , Xm be

any computable relations on� such thatXi ⊆ �ki for each i � m. We write n for the
�0-numerals in the context of L. We define the theory R0[�0;�0, ... , �m;X0, ... , Xm]
as follows:

R
�0
0 +

⋃
i�m

{�i(n0, ... , nki –1) | (n0, ... , nki –1) ∈ Xi}.

We use R0[�0; ��; �X ] as an abbreviation of R0[�0;�0, ... , �m;X0, ... , Xm]. If L is La and
if �0 is the identity translation on La, we simply omit �0.

Theorem 5.7. Let L be a signature, let �0 be a translation of La into L. Let �� be any
L-formulas and let �X be computable relations on � matching ��. Then, R0[�0; ��; �X ] is
R0p-sourced.

Proof. To simplify inessentially we assume that �0 is 1-dimensional. For each
i � m, let �i(x0, ... , xki –1) be an La-formula representing Xi in R0. That is,
for any n0, ... , nki –1 ∈ �, if (n0, ... , nki –1) ∈ Xi , then R0 � �i(n0, ... , nki –1); and if

(n0, ... , nki –1) /∈ Xi , then R0 � ¬ �i(n0, ... , nki –1). Let �∗(x) be the L-formula∧
i�m

∀x0 ��0 x ··· ∀xki –1 ��0 x (��0i (x0, ... , xki –1) → �i(x0, ... , xki –1)).

We extend �0 to � by settingP�(x) := �∗(x). Then, clearly,R0[�0; ��; �X ] is deductively
equivalent to R�0p. �

Example 5.8. The theory R0 is R0p-sourced since it is deductively equivalent to
R0[x = x; ∅] and the theory R is R0p-sourced since it is deductively equivalent to
R0[∀y (y � x ∨ x � y);�].

Example 5.9. Suppose ∀ �x P0( �x) is a true pure Π1-sentence. Consider W :=
R0[P0;�n], where n is the length of �x. Then, by Σ1-completeness, W is deductively
equivalent to R0. However, modulo deductive equivalence, the corresponding
(�certp)� has the form ∃z (cert(z) ∧ ∀ �x � z P0( �x) ∧ ∃z �0(z)). So, we may think of
cert(z) ∧ ∀ �x � z P0( �x) as replacing cert(z). Thus, we may add all kind of desirable
properties to cert like the linearity of � below the certified element. This may be
useful if we want to use certification as the basis of an interpretation of a stronger
theory in R0.

In the development below, we use the notion of depth-of-quantifier-alternations
complexity, henceforth, simply complexity. For a careful exposition of this notion,
see [24].
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Theorem 5.10. Consider a finitely axiomatized theory A and a number n and a
computable set X of A-sentences of complexity � n. Suppose that:

• A interprets R0 via an interpretation based on translation �0.
• There is an A formula � such that A � �(�φ�) ↔ φ, for all A-sentences φ of

complexity � n. Here the numerals are the �0-numerals. (Note that these could
be sequences modulo a definable equivalence relation.)

Then A+ X is an R0p-sourced c.e. theory.

Proof. We write� for the non-empty zero-ary relation3 and
∧
A for the sentence

that is the conjunction of the axioms of A. We note that A+ X is deductively
equivalent to R0[�0;

∧
A,�;�, X ]. �

A theory is restricted, iff it can be axiomatized by axioms of complexity � n, for
some fixed n. In [24] it has been verified that sequential restricted c.e. theories can
be written as A+ X , where A and X satisfy the conditions of Theorem 5.10. So, we
have:

Corollary 5.11. Any restricted sequential c.e. theory is R0p-sourced.

Examples of restricted sequential c.e. theories are:

• �PA := S1
2 + Con1(PA) + Con2(PA) + ... , where the Coni (PA) are consistency

statements where we restrict the PA-axioms to those with Gödel number � i
and where we restrict the proofs to those in which only formulas of depth of
quantifier alternations � i occur.

• IΔ0 +�1 +�2 + ... ,
• EA + Con(EA) + Con(EA + Con(EA)) + ... ,
• PRA (in a suitable version in finite signature).

We end with a closure condition.

Theorem 5.12. Suppose U and V are R0p-sourced theories in the same signature
L, as witnessed by � and �′. Suppose the restriction of � and �′ to the arithmetical
signature is a shared part �0. Then U ∪ V is R0p-sourced.

Proof. We take as witnessing translation �� for U ∪ V , the translation �0 on the
arithmetical vocabulary and P��( �x) := (P�( �x) ∧ P�′( �x)). Alternatively, we note that
U ∪ V is deductively equivalent to R0[�0;P�( �x),P�′( �x);�,�]. �

§6. Witness comparisons and fixed points. In this section, we give the basic
definitions and facts for witness comparison. Moreover, we discuss the Gödel fixed
point lemma and its interaction with witness comparison.

6.1. Comparing the witnesses. We define witness comparison. Let φ := ∃x φ0(x)
and 
 := ∃y 
0(y). We define:

• φ � 
 :↔ ∃x (φ0(x) ∧ ∀y < x ¬
0(y)),
• φ < 
 :↔ ∃x (φ0(x) ∧ ∀y � x ¬
0(y)),
• (φ � 
)⊥ := (
 < φ),
• (φ < 
)⊥ := (
 � φ).

3If we represent relations as sets of tuples, then � = {ε}, where ε is the empty sequence.

https://doi.org/10.1017/jsl.2024.84 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.84


16 TAISHI KURAHASHI AND ALBERT VISSER

We have to do some preliminary work to compensate for the fact that in R0 we
are lacking the axiom R5 which says, for every numeral n, that x � n ∨ n � x. We
say that x is well-behaved or wb(x) iff it satisfies A1 and A2 of the definition of
certification, i.o.w., wb(x) iff 0 � x and ∀y < x sy � x. We say that a sentence is
well-behaved if it is of the form ∃x (wb(x) ∧ 
(x)).

Remark 6.1. The idea of well-behavedness, though not the name, is due to
Cobham, see Jones and Shepherdson [6]. In fact, for our purposes, we could also
have worked with certified instead of well-behaved, but we found it attractive to use
the lightest possible means to obtain the results.

We have the following lemma.

Lemma 6.2.

a. R0 � wb(x) → (x < n ∨ n � x).
b. R0 � wb(x) → (x � n ∨ n < x).

Proof. (a) can be proved by a simple induction on n and (b) is immediate from
(a). �

It follows that:

Lemma 6.3. Suppose � and �′ are 1-Σ1-sentences and �′ is well-behaved.
a. If N |= � � �′, then R0 � ¬ �′ < �.
b. If N |= � < �′, then, R0 � ¬ �′ � �.

Proof. Let � = ∃x �0(x) and �′ = ∃y (wb(y) ∧ �′0(y)).
We treat (a). Suppose � � �′ is true in the natural numbers. Then, for some n,

we have R0 � �0(n). Moreover, for all k < n, we have (†) R0 � ¬ �′0(k). We reason
in R0. Suppose �′ < �. Then, for some well-behaved y, we have �′0(y) and (‡)
∀z � y ¬ �0(z). By Lemma 6.2, we find that y < n or n � y. The first disjunct
contradicts (†) and the second disjunct contradicts (‡).

The proof of (b) is similar. �
We prove the result that gives us the desired applications.

Theorem 6.4. Suppose � and �′ are 1-Σ1-sentences, �′ is well-behaved and � is a
Σ1-sentence.

a. If N |= � � �′ and R0 � � ↔ �′ < �, then [�] is inconsistent.
b. If N |= � < �′ and R0 � � ↔ �′ � �, then [�] is inconsistent.

Proof. We prove (a). SupposeN |= � � �′ and R0 � � ↔ �′ < �. By Lemma 6.3,
we have R0 � ¬ �′ < �, and hence R0 � ¬ �. It follows that N |= ¬ �. So, by Theorem
2.9, that [�] � R0, and, hence, [�] � ¬ �. On the other hand, again by Theorem 2.9,
we have [�] � �. Ergo, [�] is inconsistent. �

By a trivial adaptation of the above argument, we also have:

Theorem 6.5. Let � and �′ be 1-Σ1-sentences, where �′ is well behaved. Let � be
any Σ1-sentence. We have:

a. If N |= � � �′ and R0 � � ↔ �′ < �, then ��� is inconsistent.
b. If N |= � < �′ and R0 � � ↔ �′ � �, then ��� is inconsistent.

https://doi.org/10.1017/jsl.2024.84 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.84


CERTIFIED Σ1-SENTENCES 17

6.2. The fixed point lemma. InR0 we can prove the representability of all recursive
functions as the following lemma describes.

Lemma 6.6. For every recursive function F there is a 1-Σ1-formula �(x, y) such
that, whenever F (n) = m, we have R0 � ∀y (�(n, y) ↔ m = y).

Proof. Consider any recursive function F and let ��(x, y) = ∃z ��0 (x, y, z) be
any 1-Σ1-formula representing the graph of F. We take

�(x, y) :↔ ∃z
(
wb(z) ∧ y � z ∧ ∃u � z ��0 (x, y, u)∧

∀a � z ∀b � z (��0 (x, a, b) → a = y)
)
.

We now use Lemma 6.2, to mimic the well-known proof of the analog of the Lemma
for the case of R. �

We can prove the usual fixed point lemma using a representation of the
substitution function provided by Lemma 6.6. However, we need a bit more.

Theorem 6.7.

i. Suppose �(x) is Σ1. Then, we can find a Σ1-formula � such thatR0 � � ↔ �(���).
ii. Suppose �(x, y) and �′(x, y) are Σ1-formulas. We can find Σ1-formulas � and �′

such that R0 � � ↔ �(���, ��′�) and R0 � �′ ↔ �′(���, ��′�).

Proof. We treat (i).
We can obtain the desired result by a careful modification of the usual proof of the

fixed point lemma. Alternatively, we can proceed as follows. Let Σ†
1 be the class given

by � ::= � | (� ∧ �) | ∃v �. Here � ranges over Σ1-sentences. We can easily rewrite a
Σ†

1-sentence to a Σ1-sentence by moving the relevant existential quantifiers out. The
usual fixed point calculation delivers a Σ†

1-sentence using the wide scope elimination
for the substitution function. Suppose we arithmetize this normalization function
say as norm. We can represent this function in R0 by Lemma 6.6. We can construct a
Σ1-formula �′(x) that functions as �(norm(x)). Let �′ be the ordinary Gödel fixed
point of �′ and let � be the normalized form of �′. Then, we have:

R0 � � ↔ �′

↔ �′(��′�)

↔ �(���).

The alternative proof is easily adapted to deliver also the desired double fixed
point promised in (ii). �

We note that the trick of the alternative proof will work for all kinds of
normalizations.

A disadvantage of the modified Gödel-style fixed point construction is that it
does not preserve witness comparison form. For the results in the next sections, this
is not really needed, but it may sometimes lead to less elegant formulations. How
nice it would be if we could preserve almost all forms of the original formula. An
elegant way to do this is to employ a self-referential Gödel-numbering, which has
self-reference built in.

The idea of a self-referential Gödel numbering was introduced by Saul Kripke
in [7, Footnote 6]. It was worked out in some detail in [19]. Recently, two papers
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appeared exploring the notion further, to wit [8] and [4]. As far as we know the only
place where the idea is truly applied is [3].

We follow the realization of [19]. The idea is simple. We extend La with a fresh
constant c and employ a standard Gödel numbering for the extended language.
We then take the standard Gödel number �φ(c)� for the extended language to be
the self-referential Gödel number of φ(�φ(c)�) for La. Without further measures,
the resulting Gödel numbering is not functional from sentences to numbers. The
functionality of a Gödel number is not strictly needed, but we opt for making the
numbering functional by stipulating that we take the smallest number assigned to
a sentence by our non-functional version. In [19] it is carefully verified that, for a
decent choice of the input standard Gödel numbering, the numbering so obtained
fulfills all the desiderata of a self-referential Gödel numbering. We write �φ� for the
self-referential Gödel number of φ. The crucial property is that for any φ(x) with at
most x free, we can effectively find a 
 with 
 = φ(�
�).

In this paper we mostly opt for the ordinary numbering, accepting the use of
Theorem 6.7 as the way to go. We will prove Theorem 8.17 twice, once with an
ordinary numbering and once with a self-referential one in order to illustrate the
use of a self-referential numbering.

§7. Vaught’s theorems revisited. We give two proofs of Theorem 2.5 and prove a
generalization of Theorem 2.6.

Theorem 2.5 (Vaught [17, 5.2]). The theory R0 is strongly effectively inseparable.

First Proof. Let i, j ∈ � be such that R0p ⊆ Wi , ∅r ⊆ Wj , and Wi ∩Wj = ∅.
Let (X,Y ) be any effectively inseparable pair of c.e. sets. We can clearly find 1-Σ1-
formulas �(x) and �(x) that represent X respectively Y. We can clearly arrange that
� and � are well-behaved.

For each natural number n, let �n be the 1-Σ1-sentence �(n) � �(n). We can
effectively find natural numbers i ′ and j′ such that Wi′ = {n ∈ � | [�n] ∈ Wi} and
Wj′ = {n ∈ � | [�n] ∈ Wj}.4 Obviously, Wi′ ∩Wj′ = ∅.

Suppose n ∈ X . Since X and Y are disjoint, we find N |= �n. By Theorem 2.9, we
have R0 � [�n], that is, [�n] ∈ R0p. Then, [�n] ∈ Wi , and hence n ∈ Wi′ .

Suppose n ∈ Y . We find N |= �⊥n . By Theorem 6.4, we obtain [�n] � ⊥, that is
[�n] ∈ ∅r. Hence, [�n] ∈ Wj , and, so, n ∈ Wj′ .

We have shown that Wi′ and Wj′ separate (X,Y ). By the effective inseparability
of (X,Y ), we can effectively find a number m� such that m� /∈ Wi′ ∪Wj′ . Then,
[�m� ] /∈ Wi ∪Wj . Thus, we have shown that (R0p, ∅r) is effectively inseparable. �

Second Proof. Let X and Y be any c.e. sets separating R0p and ∅r. We assume
that x ∈ X and x ∈ Y are represented by well-behaved 1-Σ1-formulas � and �.
By Theorem 6.7, we can effectively find a Σ1-sentence � satisfying the following
equivalence: R0 � � ↔ �([�]) � �([�]).

Suppose [�] ∈ X . Since X and Y are disjoint, we have [�] /∈ Y . It follows that
N |= �([�])< �([�]) and, thus, by Theorem 6.4, that [�] is inconsistent, i.e., [�] ∈ ∅r.
We may conclude that X ∩ ∅r is non-empty. But this is a contradiction.

4In order to avoid notational overload, we omit the Gödel numbering brackets around �n .
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Suppose [�] ∈ Y . Since X and Y are disjoint, we have N |= �. By Theorem 2.9,
we find R0 � [�], i.e., [�] ∈ R0p. Thus,Y ∩ R0p is non-empty. This is a contradiction.

Therefore, [�] /∈ X ∪ Y . Since we can find [�] effectively, we have shown that
(R0p, ∅r) is effectively inseparable. �

Let F be the set of all La-sentences having a finite model. Since R0p ⊆ F and
F ∩ ∅r = ∅, we obtain the following version of Trakhtenbrot’s theorem as a corollary.

Corollary 7.1 (Trakhtenbrot [16]). The pair (F , ∅r) is effectively inseparable.

We note that our version of Trakhtenbrot’s Theorem is formulated for the
signature La. We can generalize it to other signatures (with at least one relation
symbol with arity ≥ 2) by the usual tricks of translating a finite signature into the
signature with one binary relation symbol; see e.g., [5, Chapter 5.5]. Alternatively,
we can replace the use of theories-of-a-number by the use of very weak set theories
as developed, e.g., in [11].

We then turn to Theorem 2.6. Before generalizing Theorem 2.6, we introduce the
following notions.

Definition 7.2. Let T be an L-theory and X be a set of L-sentences.

1. We say that T is effectively half-essentially X -incomplete iff there exists a partial
computable function � such that for any natural number i, if Wi is a c.e. L-
theory such that T + Wi is consistent, then �(i) converges, �(i) ∈ X , T �
�(i) and Wi � ¬�(i).

2. We say that T isX -creative iff there exists a partial computable function� such
that for any natural number i, if Tp ∩Wi = ∅, then�(i) converges,�(i) ∈ X ,
and �(i) /∈ Tp ∪Wi .

Actually, we prove that these two notions are equivalent.

Proposition 7.3. For any L-theory T and any set X of L-sentences, the following
are equivalent:

a. T is effectively half-essentially X -incomplete.
b. T is X -creative.

Proof. “(a) to (b)”. Let � be a partial computable function witnessing the
effective half-essential X -incompleteness of T. Let Wi be any c.e. set such that
Tp ∩Wi = ∅. By using the recursion theorem, we can effectively find a natural
number k from i such that

Wk =

{
{¬�(k)} if �(k)↓ and �(k) ∈ Wi ,

∅ otherwise.

If T + Wk were inconsistent, then there would be a sentence ϕ such that T � ϕ and
Wk � ¬ϕ. Since T is consistent, we would have �(k)↓ ∈ Wi and Wk = {¬�(k)}.
In this case, we would obtain T � �(k). Hence �(k) ∈ Tp ∩Wi , a contradiction.

Thus, T + Wk is consistent. By the effective half-essential X -incompleteness of
T, we have �(k)↓ ∈ X , T � �(k), and Wk � ¬�(k). In particular, Wk � ¬�(k)
implies �(k) /∈ Wi . Therefore the partial computable function �(i) := �(k)
witnesses the X -creativity of T.
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“(b) to (a)”. Let� be a partial computable function witnessing theX -creativity of
T. Let Wi be any c.e. L-theory such thatT + Wi is consistent. We can effectively find
a number k from i such that Wk = Wir. Then, Tp ∩Wk = ∅. By the X -creativity of
T, we have �(k)↓ ∈ X and �(k) /∈ Tp ∪Wir. Therefore, the partial computable
function �(i) := �(k) witnesses the effective half-essential X -incompleteness
of T. �

We proceed with a generalization of Theorem 2.6. For each L-theory T, let
coThT := {ϕ | ϕ is an L-sentence and ϕ � T}.

Theorem 7.4. Every R0p-sourced c.e. theory T is coThT -creative.

Proof. Let T be a �-R0p-sourced c.e. L-theory and let Wi be any c.e. set such that
Tp ∩Wi = ∅. Let αi be a well-behaved 1-Σ1-formula that represents Wi and let PrT
be a well-behaved 1-Σ1-formula that represents provability in T. By Theorem 6.7, we
can effectively find a Σ1-sentence j from i satisfying R0 � j↔ αi(�j��) � PrT (�j��).5

SupposeT � �j�
� . Then, we haveN |= PrT (�j��) < αi(�j�

�) becauseTp ∩Wi = ∅.
By Theorem 6.5, �j� is inconsistent. Then, we haveT � ¬ �j�

� . This is a contradiction.
Suppose �j�

� ∈ Wi . Since Tp ∩Wi = ∅, we have N |= j. By Theorem 5.3, we find
T � �j�

� . Thus, Tp ∩Wi is non-empty. This is a contradiction.
Therefore, we obtain �j�

�
/∈ Tp ∪Wi . This implies that j is false. By Theorem

5.3 again, we obtain that �j�
� � T , i.e., �j�

� ∈ coThT . Then the partial computable
function �(i) := �j�

� witnesses the coThT -creativity of T. �
Corollary 7.5. Every R0p-sourced c.e. theory T is effectively half-essentially

coThT -incomplete.

Consider a R0p-sourced c.e. L-theory T. If U is a c.e. L-theory such that T +U
is consistent, then by Corollary 7.5, we can effectively find a sentence ϕ such that
ϕ � T , T � ϕ, and U � ¬ϕ. Then the L-theory A axiomatized by ϕ is a proper
extension of T such that A+U is consistent. This shows that Corollary 7.5 is in
fact a generalization of Theorem 2.6.

Corollary 7.6. Every R0p-sourced c.e. theory is deductively equivalent to the
intersection of the deductive closures of its finite same-signature extensions.

We note that not every c.e. theory is deductively equivalent to the intersection of
the deductive closures of its finite same-signature extensions. For example, PA has
no consistent finite same-signature extensions. So, the relevant intersection would
be the inconsistent La-theory.

We can define the notions “effective X -inseparability” and “strong effective X -
inseparability” in the forms that witnesses can be found from the setX . The following
theorem is a special case of a theorem proved in our paper [9].

Theorem 7.7 (Kurahashi and Visser [9, Theorem 5.5]). If T is coThT -creative
and effectively inseparable, then T is strongly effectively coThT -inseparable.

5As before, we omit Gödel numbering brackets. Note that, as an intermediate step, we have to find a
1-Σ1-formula �(x) such that R0 � �(���) ↔ PrT (������).
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Since R0 is effectively inseparable, every R0p-sourced theory is also effectively
inseparable. Thus, Theorems 7.4 and 7.7 establish the following theorem which is a
generalization of Theorem 2.5 and a strengthening of Theorem 7.4.

Theorem 7.8. For any R0p-sourced c.e. theory T, we have that T is strongly
effectively coThT -inseparable.

Theorem 7.8 is the strongest form of the first incompleteness theorem given in
the present paper. Of course, one can prove Theorem 7.8 directly in a similar way as
described in the proof of Theorem 2.5 above.

We close this section with the following application of Theorem 7.8.

Definition 7.9. Let T be a c.e. L-theory and X be a set of L-sentences. We
say that T is effectively uniformly essentially X -incomplete iff there exists a partial
computable function � such that for every computable sequence of consistent c.e.
extensions Ui of T with index j, we have that �(j) converges, �(j) ∈ X , and for all
i, Ui � �(j) and Ui � ¬�(j).

We proved in [9] the following theorem.

Theorem 7.10 (Kurahashi and Visser [9, Theorem 2.9]). Let T be any c.e.L-theory
and X be any set of L-sentences. The following are equivalent:

a. T is effectively X -inseparable.
b. T is effectively uniformly essentially X -incomplete.

By combining this theorem with Theorem 7.8, we obtain the following
strengthening of Corollary 7.5.

Corollary 7.11. EveryR0p-sourced c.e. theory T is effectively uniformly essentially
coThT -incomplete.

§8. Various facts about degree structures. In this section, we provide various
applications of our framework to degrees of interpretability.

8.1. Useful insights. We first remind the reader of a special property of R.

Theorem 8.1 (Visser [21, Theorem 6]). For any c.e. theory T, we have that R � T
if and only if every finite subtheory of T has a finite model.

We note that this property is inherited by every c.e. theory that is mutually
interpretable with R.

We have the following definition.

• The theory T is a globalizer iff, for every c.e. theory W, whenever T �locW ,
then T �W .

Examples of globalizers are PRA,PA, and ZF. Theorem 8.1 has the following
useful consequence, which also appears in [21].

Theorem 8.2. R is a globalizer.

Proof. Suppose R�loc U . Then, for every finitely axiomatized subtheory U0 of
U, we have R�U0. So, for every finitely axiomatized subtheory U0 of U, there is a
finitely axiomatized subtheory A of R, such that A�U0. Since A has a finite model,
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so has U0. We may conclude that every finitely axiomatized subtheory U0 of U has
a finite model. Ergo, R�U . �

Cobham has shown that R0 is mutually interpretable with R; see [6]. It follows
that the insights contained in Theorems 8.1 and 8.2 are inherited by R0.

We give two useful results. We assume that we have a Σ1-representation of
interpretability � for the case that the interpreted theory is finitely axiomatized
and the interpreting theory is computably enumerable. For later use we also assume
that this representation is well-behaved. Par abus de langage, we write � both for
the meta-notion and for its theory-internal representation.

Theorem 8.3. Let W be a �-R0p-sourced c.e. theory and let A be finitely
axiomatized. We can effectively find a Σ1-sentence 
 from an index of W, such that
N |= 
, �
�

�
� A, andW � A are equivalent.

Proof. Let W be �-R0p-sourced and let A be finitely axiomatized. By Theorem
6.7, we obtain a Σ1-sentence 
 satisfying the following equivalence:

R0 � 
↔ �
�
� � A.

Suppose �
�
� � A. Then, we have N |= 
 and, thus, W � �
�

� by Theorem 5.3.
Hence,W � A.

Conversely, suppose thatW � A. If N |= ¬ 
, then we have �
�
� �W by Theorem

5.3, and, hence, �
�
� � A. By the fixed point equation, we find N |= 
, contradicting

our assumption that N |= ¬ 
. So, we may conclude that N |= 
, and, thus,
�
�
� � A. �

Remark 8.4. The proof of Theorem 8.3 is strongly reminiscent of the proof of
Löb’s Theorem. Regrettably, it does not seem that we can take the further step to
obtain an analog of Löb’s theorem, to wit:

W � A iff (W + �W � A�
�) � A.

The left-to-right direction is trivial, but we do not know about the right-to-left
direction at the moment.

Example 8.5. Juvenal Murwanashyaka asked whether there is a finitely axioma-
tized theory B that interprets VS but does not interpret AS. Theorem 8.3 provides
an example that, additionally, is a same-signature extension of VS.

We can see this as follows. Since VS is R0p-sourced, we have, by Theorem 8.3, a
finite same-signature-theory B (= �
�

�), such that B � AS iff VS� AS. However,
VS �� AS, since, otherwise, a finite subtheory of VS would interpret AS. Such finite
subtheories are interpretable in the theory of non-surjective pairing, i.e., VS0 + VS2,
and, as is well-known this theory has a decidable extension. On the other hand, AS
is essentially undecidable. Since N |= ¬
, we have that B is an extension of VS by
Theorem 5.3.

Similarly, we can specify a finitely axiomatized same-signature extension of PRA
that does not interpret IΣ1.

Corollary 8.6. Let W be a �-R0p-sourced c.e. theory, and let T be any c.e.
theory.
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i. SupposeW �loc T . Then, there is a false Σ1-sentence 
 such that �
�
� �loc T .

ii. Suppose W is a globalizer andW � T . Then, there is a false Σ1-sentence 
 such
that �
�

� � T .

Proof. We prove (i). Let W be �-R0p-sourced and let T be any c.e. theory. Suppose
W �loc T . It follows thatW � A, for some finitely axiomatized subtheory A of T.
We apply Theorem 8.3 to find a false Σ1-sentence 
 such that �
�

� � A. It follows
that �
�

� �loc T .
(ii) is immediate from (i). �
Here is another result in the same spirit as Theorem 8.3 that uses a Rosser

argument. We remind the reader of our representation of � is well-behaved
(under the assumption that the interpreted theory is finitely axiomatized and the
interpreting theory is c.e.).

Theorem 8.7. Let W be a �-R0p-sourced theory, let T be a c.e. theory such that
T �locW , and let A be finitely axiomatized. Then, there is a Σ1-sentence �, which is
R0-provably equivalent to a witness comparison sentence, such that the following are
equivalent:

a. ((T � ���
�) � A) or (T � (A� ���

�)),
b. T � A.

Proof. SupposeT �loc W . By Theorem 6.7, we obtain a Σ1-sentence � satisfying
the following equivalence:

R0 � � ↔ ((T � ���
�) � A) � (T � (A� ���

�)).

Clearly (b) implies (a). We show that (a) implies (b). Suppose we have (a). Let
� := ((T � ���

�) � A) � (T � (A� ���
�)). Clearly, we have N |= � or N |= �⊥.

Suppose N |= �. It follows that N |= � and (T � ���
�) � A. It follows that W �

���
� , by Theorem 5.3. Since T �locW , we find T � ���

� . Hence, T � (T � ���
�)

� A.
Suppose N |= �⊥. It follows that N |= (T � (A� ���

�))< ((T � ���
�) � A). By

Theorem 6.5, ��� is inconsistent, so ���
� is inconsistent. It also follows from N |= �⊥

that T � (A� ���
�). Hence, T � A. �

The following theorem, which is in particular the case where T and A are same-
signature-theories of W, can be proved in the same way.

Theorem 8.8. Let W be a �-R0p-sourced theory, let T be a c.e. theory in the signature
of W such that T ⊇W , and let A be finitely axiomatized theory in the signature of W.
Then, there is a Σ1-sentence �, which is R0-provably equivalent to a witness comparison
sentence, such that the following are equivalent:

a. ((T + ���
�) � A) or T � B , where B = {φ ∨ ���

� | φ ∈ A}.
b. T � A.

8.2. Applications of certified extension. We turn to the consideration of various
density results.

Theorem 8.9. Consider c.e. theories T and S such that S �loc T . Then, there exists
a c.e. theory U such that T � U and S �loc U and U �loc T . Moreover, if T � S,
then U � S and, if T �loc S, then U �loc S.
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Proof. Suppose S �loc T . Then, we can find a finite subtheory A of T, such that
S � A. Since S �loc R0 and R0 is a �-R0p-sourced theory, we can apply Theorem 8.7
to S and A. Let � be the promised Σ1-sentence. Since S � A, we find (S � ���

�) � A
and S � (A� ���

�).
Let U := (S � ���

�) � T . It is immediate that T �U . Moreover, it is also
immediate that, if T � S, then U � S and, if T �loc S, then U �loc S.

Suppose S �loc U . Then, S � (A� ���
�). Quod non. Suppose U �loc T . Then,

(S � ���) � A. Quod non. �
Question 8.10. The proof of Theorem 8.9, seems to use specific properties of R0.

Is there a good way to generalize it?

We have immediately the following corollaries.

Corollary 8.11. Consider c.e. theories S and T. Suppose T �–\\ loc
S. Then, there

exists a c.e. theory U such that T �–\\ loc
U �–\\ loc

S.

The density of the degrees of local interpretability of c.e. theories was first proved
by Jan Mycielski, Pavel Pudlák, and Alan Stern in their classical paper [10, Corollary
6.17].

Corollary 8.12. Consider c.e. theories S and T, where either S is a globalizer or
T is finitely axiomatized. Suppose T �–\\ S. Then, there exists a c.e. theory U such that
T �–\\ U �–\\ S.

Proof. We note that if either S is a globalizer or T is finitely axiomatized, then
S �loc T iff S � T . �

Example 8.13. Consider INF the theory in the signature of identity with axioms
saying, for each n, that there are at least n elements and TWO the theory in the
signature of identity with an axiom saying that there are precisely two elements.
Then, we have TWO �–\\ INF. Every theory that has a finite model is interpretable in
TWO and every theory that has only infinite models proves INF. So, there can be no
theory strictly �-between TWO and INF. Ergo, density fails in general in the degrees
of interpretability of c.e. theories.

Problem 8.14. Example 8.13 seems too easy. What if we do have density for all
theories with no finite models? So, it would be good to have some further classes of
examples.

In one special case, we can constrain the in-between theories a bit more. The
following theorem is a generalization of [22, Theorem 2].

Theorem 8.15. Let W be a �-R0p-sourced c.e. theory. Consider c.e. theories S and
T such that W ⊆ S ⊆ T and S �loc T . Then, there exists a c.e. theory U such that
S ⊆ U ⊆ T and S �loc U and U �loc T .

Proof. Suppose W is �-R0p-sourced, W ⊆ S ⊆ T and S �loc T . Then, we can
find a finite subtheory A of T, such thatS � A. We apply Theorem 8.8 to W,S ⊇W ,
and A. Let � be the promised Σ1-sentence. Since S � A, we find (S + ���

�) � A and
S � B , where B = {φ ∨ ���

� | φ ∈ A}.
LetU := {φ ∨ 
 | φ ∈ T and 
 ∈ (S + ���

�)}. It is immediate that S ⊆ U ⊆ T .
Since B is a finite subtheory of U and S � B , we have that S �loc U . Also since

U ⊆ (S + ���
�) and (S + ���

�) � A, we have U �loc T . �
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Corollary 8.16. Suppose that W is a �-R0p-sourced c.e. theory. Consider c.e.
theories S and T such thatW ⊆ S ⊆ T , where either S is a globalizer or T is finitely
axiomatized. Suppose S � T . Then, there exists a c.e. theory U such that S ⊆ U ⊆ T
and S � U and U � T .

Theorem 8.17. Any finite theory is the supremum of the finite theories strictly
below it in the lattice of the interpretability degrees of c.e. theories.

We will give two proofs. The first uses an ordinary Gödel numbering and the
second a self-referential one. We remind the reader that we chose the representation
of � in such a way that, as long as the interpreted theory is finite and the interpreting
one c.e., it is well-behaved and 1-Σ1.

Proof with ordinary Gödel numbering. Suppose A is a finitely axiomatized
theory. If A is in the minimal degree, we are immediately done. Suppose A is non-
minimal. Suppose U interprets all finitely axiomatized theories strictly below A. We
have to show that U � A.

By Theorem 6.7(ii), we can find Σ1-sentences � and � such that:

• R0 � � ↔ ((U � (A� [�])) ∨ (([�] � [�]) � A)) � (U � (A� [�])).
• R0 � � ↔ (U � (A� [�])) < ((U � (A� [�])) ∨ (([�] � [�]) � A)).

Let � := (U � (A� [�])) ∨ (([�] � [�]) � A)) � (U � (A� [�])).

Claim 1. Suppose U � (A� [�]). Then, U � A.

Proof of Claim 1. SupposeU � (A� [�]). Then, N |= � or N |= �⊥. In the first
case, we have, by Theorem 6.4, that [�] � ⊥. Hence, U � A.

In the second case, we have U � (A� [�]). By Theorem 6.4, we find [�] � ⊥.
Hence, again, U � A.

So, in both cases, we may conclude U � A. �

Claim 2. Suppose U � (A� [�]). Then, U � A.

Proof of Claim 2. Suppose U � (A� [�]). It follows that N |= � or N |= �⊥.
In the first case it follows that (a) U � (A� [�]) or (b) ([�] � [�]) � A. In subcase
(a), we find, by Claim 1, thatU � A. In subcase (b), we have N |= �, and, hence, by
Theorem 2.9, that R0 � [�]. So, [�] has a finite model, and, thus, A is in the minimal
degree, contradicting our assumption on A.

Suppose N |= �⊥. In that case, we have U � (A� [�]). So, by Theorem 6.4, we
find U � A. �

Claim 3. We have either (A� [�]) �� A or (A� [�]) �� A.

Proof of Claim 3. Suppose we have both (A� [�]) � A and (A� [�]) � A.
Then, ([�] � [�]) � A. It follows that N |= � or N |= �⊥, and, hence, that N |= � or
N |= �. In both cases we may conclude that ([�] � [�]) has a finite model, so A is in
the minimal degree, contradicting our assumption on A. �

We are now ready to prove the theorem. By Claim 3, one of A� [�] and A� [�]
is strictly below A, and, hence, below U. If U � (A� [�]), it follows by Claim 1
that U � A. If U � (A� [�]), it follows by Claim 2 that U � A. So, A is indeed the
supremum of the finite elements strictly below it. �
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We now give our proof using a self-referential Gödel numbering. The proof will be
largely the same, only we need just one fixed point. We note that e.g., the arithmetized
form of U � A in this proof is the form appropriate for the self-referential Gödel
numbering and, thus, is different from the case of the ordinary numbering. We
opted to keep the same notations for readability’s sake, but the reader should keep
the point in mind.

Proof with self-referential Gödel numbering. Suppose A is a finitely
axiomatized theory. If A is in the minimal degree, we are immediately done. Suppose
A is non-minimal. Suppose U interprets all finitely axiomatized theories strictly
below A. We have to show that U � A. We find � with:

� = ((U � (A� [�⊥])) ∨ (([�] � [�⊥]) � A)) � (U � (A� [�)).

Claim 1. Suppose U � (A� [�⊥]). Then, U � A.

Proof of Claim 1. Suppose U � (A� [�⊥]). Then, N |= � or N |= �⊥. In the
first case, we have, by Theorem 6.4, that [�⊥] � ⊥. Hence, U � A.

In the second case, we have U � (A� [�]). By Theorem 6.4, we find [�] � ⊥.
Hence, again, U � A.

So, in both cases, we may conclude U � A. �

Claim 2. Suppose U � (A� [�]). Then, U � A.

Proof of Claim 2. SupposeU � (A� [�]). It follows that N |= � or N |= �⊥. In
the first case it follows that (a) U � (A� [�⊥]) or (b) ([�] � [�⊥]) � A. In subcase
(a), we find, by Claim 1, thatU � A. In subcase (b), we have N |= �, and, hence, by
Theorem 2.9, that R0 � [�]. So, [�] has a finite model, and, thus, A is in the minimal
degree, contradicting our assumption on A. �

Suppose N |= �⊥. In that case, we have U � (A� [�]). So, by Theorem 6.4, we
find U � A.

Claim 3. We have either (A� [�]) �� A or (A� [�⊥]) �� A.

Proof of Claim 3. Suppose we have both (A� [�]) � A and (A� [�⊥]) � A.
Then, ([�] � [�⊥]) � A. It follows that N |= � or N |= �⊥. In both cases we may
conclude that ([�] � [�⊥]) has a finite model, so A is in the minimal degree,
contradicting our assumption on A. �

We are now ready to prove the theorem. By Claim 3, one ofA� [�] andA� [�⊥]
is strictly below A, and, hence, below U. If U � (A� [�⊥]), it follows by Claim 1
that U � A. If U � (A� [�]), it follows by Claim 2 that U � A. So, A is indeed the
supremum of the finite elements strictly below it. �

Example 8.18. We note that both in the local and in the global degrees of
interpretability of c.e. theories, the degree of the theory INF is not the supremum of
the degrees of the theories strictly below them, so a fortiori, it is not the supremum
of the degrees of the finitely axiomatizable ones.

Corollary 8.19. In the lattice of c.e. degrees of interpretability, no theory A can
be finitely axiomatized, non-minimal, join-irreducible, and compact.
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Proof. Suppose A is finitely axiomatized, non-minimal, join-irreducible, and
compact. By Theorem 8.17, A is the supremum of the finitely axiomatized theories
strictly below it. Hence, by compactness, it is mutually interpretable with the
supremum of a finite number of finite theories strictly below it. By join-irreducibility,
it follows that A is mutually interpretable with a finite theory strictly below it. A
contradiction. �

Theorem 8.20. Consider a c.e. theory W.
i. Suppose W is mutually locally interpretable with a R0p-sourced theory. Then,

in the degrees of local interpretability of c.e. theories, W is the infimum of the
finitely axiomatized theories above it.

ii. Suppose W is mutually interpretable with a R0p-sourced globalizer. Then, in
the degrees of interpretability of c.e. theories, W is the infimum of the finitely
axiomatized theories above it.

Proof. We first prove (i). It is clearly sufficient to prove the result for the case that
W is a �-R0p-sourced theory, for some �. Suppose all finitely axiomatized theories
that interpret W locally interpret T. We want to show thatW �loc T . Suppose, in
order to obtain a contradiction, thatW �loc T . Let 
 be the sentence provided by
Corollary 8.6(i) such that �
�

� �loc T . Since 
 is false, we have �
�
�
�W and, hence,

�
�
�
�loc T . A contradiction.

We turn to (ii). Again is sufficient to prove the result for the case that W is
a �-R0p-sourced theory, for some �. Suppose all finitely axiomatized theories that
interpret W interpret T. We want to show thatW � T . Suppose, in order to obtain
a contradiction, that W � T . Let 
 be the sentence provided by Corollary 8.6(ii)
such that �
�

� � T . Since 
 is false, we have �
�
�
�W and, hence, �
�

�
� T . A

contradiction. �
Corollary 8.21. Suppose W is mutually interpretable with a c.e. sequential

globalizer. Then, W is the interpretability infimum of all finitely axiomatized theories
above it (w.r.t. �).

Proof. Any sequential globalizer U is mutually interpretable with a restricted
sequential theory, to wit �U , which is, of course, itself a globalizer; see [23]. By
Corollary 5.11, the theory �U is a R0p-sourced. We now apply Theorem 8.20. �

So, e.g., PA is the infimum in the degrees of local interpretability of c.e. theories
of the finitely axiomatized theories that locally interpret it.

§9. Conclusions. We presented the following two new methods.

• Certification of Σ1-witnesses: We introduced the notion of the certification of an
element (Definition 4.1), and explored some consequences of the certification.
The certified extension theorem on R0 (Theorem 2.9) is one of the main results
of this study.

• R0p-sourced theories: We developed a generalization of the argument concern-
ing R0 to R0p-sourced theories, which allows the generalized certified extension
theorem (Theorem 5.3) to be applied, for example, to Vaught’s set theory VS
(Theorem 5.6).

Our two methods have the following two applications:
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• Certified Σ1-sentences can be successfully applied to provide proofs of
Vaught’s two theorems. Furthermore, we proved the strong effective coThT -
inseparability of R0p-sourced c.e. theories, which yields Vaught’s two theorems
(Theorem 7.8).

• Certified Σ1-sentences can also be applied to the study of the degrees of
interpretability of theories. We proved some density results (Corollaries 8.12
and 8.16) and studied sufficient conditions for a theory to be the supremum of
the theories below it or the infimum of the theories above it (Theorems 8.17
and 8.20).

In our paper [9], we specifically discussed topics related to the first application.
This paper may be read in connection with the present paper.

Acknowledgments. We thank the referee for his/her valuable suggestions.

Funding. This work was partly supported by JSPS KAKENHI Grant Numbers
JP19K14586 and JP23K03200.

REFERENCES

[1] A. Ehrenfeucht, Two theories with axioms built by means of pleonasms. this Journal, vol. 22
(1957), no. 1, pp. 36–38 (English).

[2] H. Friedman, Interpretations According to Tarski, This is one of the 2007 Tarski Lectures at
Berkeley, 2007.
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