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This dissertation presents computational cost reduction techniques of deep neural
networks (DNNs), including automated hyperparameter search, not only for
established fields such as image processing but also for emerging fields such as
materials discovery.

Existing DNN computational cost reduction techniques often require complex
manual hyperparameter tuning, limiting their efficiency and broad applicability.
Furthermore, methods effective in established fields like image processing often prove
inefficient when applied to emerging domains such as materials discovery. To address
these limitations, we propose five novel techniques: (1) an 8-bit shifted dynamic
fixed-point (S-DFP) quantization method minimizing accuracy loss; (2) a structured
pruning method using zero-padding layers to improve compression efficiency, especially
for networks with shortcut connections; (3) a gradient-aware automatic pruning rate
search (GAPRS) algorithm automating optimal pruning rate selection; (4) a novel
self-supervised learning method employing atom replacement for efficient learning
with unlabeled materials data; and (5) a novel active learning method leveraging
expanded features of material structural data to reduce the cost of generating labeled
training data. We evaluated these techniques extensively. For image processing,
experiments on ImageNet and CIFAR-10 using various ResNet architectures
demonstrated significant reductions in model size and computational cost. For example,
a 60.1% parameter reduction in ResNet-50 on ImageNet with 76.17% accuracy retained.
For materials discovery, experiments on the Open Catalyst 2022 benchmark dataset
using various graph neural networks (GNNs) such as PaiNN for material energy
prediction showed that our method achieved the lowest prediction error with the fewest
training data compared to existing methods.

Chapter 1 shows research background of the dissertation and basic characteristics
for existing DNN computational cost reduction techniques such as quantization,
pruning, self-supervised learning, and active learning.

In Chapter 2, challenges in DNN computational cost reduction are summarized: (1)
trade-off between prediction accuracy, computation speed and model size of DNNSs, (2)
manual hyperparameter tuning for accelerating methods of DNN, and (3) DNNs

computational cost for emerging fields such as materials discovery.
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In Chapter 3, a quantization method using shifted dynamic fixed-point format for
DNNs training is proposed. To prevent accuracy degradation due to quantized DNN
training when using conventional DFP format, S-DFP shifts the data representable
range of DFP from a large value area to a small value area by adding bias to the
exponent of DFP. Using the proposed S-DFP format for quantized DNNs training, the
quantized model can be trained using 8-bit fixed-point precision without significant
accuracy degradation on the ImageNet task with ResNet-32, ResNet-50, ResNet-101,
and ResNet-152. Since the validation accuracy of the quantized model with proposed
S-DFP was achieved equivalent accuracy with FP32 regardless of the depth in ResNet,
the proposed S-DFP is expected to significantly improve the accuracy of the quantized
model regardless of the DNN model type, such as transformer other than ResNet. In
addition, the proposed method achieved the equivalent accuracy with conventional
16-bit DFP instead of using 8-bit S-DFP.

In Chapter 4, to reduce the workload of inefficient manual pruning rate assignment,
we describe our proposed automatic pruning rate search method named GAPRS for
structured pruning. In the proposed method, by selecting a pruning rate in which the
pruning error is smaller than a pre-defined threshold, the accuracy degradation of the
pruned model is suppressed. Furthermore, we describe a structured pruning method
without degrading the prediction accuracy of complex DNNs with shortcut connection.
To improve the inference speed and the compression ratio for the DNN model with a
shortcut connection such as ResNet, zero-padding layers are inserted into all input
paths to the addition operator. The experimental results demonstrate that the pruned
model accuracy can be effectively controlled by the proposed method. In addition, the
pruning rate derived by the proposed method can be converged. We experimentally
showed the superiority of GAPRS against various state-of-the-art methods on
CIFAR-10 and ImageNet using various ResNet architectures. For ResNet-50, our
method achieved a 60.1% reduction in parameters and a 59.8% reduction in FLOPs
while maintaining 76.17% accuracy on ImageNet. These results demonstrate the
effectiveness of GAPRS and our proposed method of inserting zero-padding layers. in

achieving high compression ratios without model accuracy degradation.
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Chapter 5 presents novel self-supervised learning (SSL) and active learning methods
designed to reduce the computational cost of materials discovery using DNNs. Our
proposed mask-less SSL method employs atom replacement with unlabeled data to
improve the accuracy of catalyst energy prediction using GNNs. Unlike existing SSL
methods that utilize fictitious "mask" atoms, our approach leverages only real elements,
thereby promoting more efficient learning. We evaluated this method on three
benchmark datasets (OC22, Poisoned Catalyst, and Expanded Poisoned Catalyst) using
CGCNN and PaiNN GNNs, achieving the lowest prediction error across all
experiments. Furthermore, we introduce a novel active learning method to enhance the
accuracy of DNN-based catalyst energy prediction with limited training data. This
method leverages all available material properties (structure and energy) to minimize
the required training data. Evaluations on three benchmark datasets (OC22, NRR, and
ORR) using PaiNN and EquiformerV2 GNNs demonstrate that our method achieves
the lowest mean absolute error (MAE) among all evaluated sampling methods even
with the fewest data.

Chapter 6 summarizes the conclusions of this study. This dissertation presents
methods for achieving low-cost DNN computation and automated hyperparameter
optimization to accelerate DNNs, addressing both established applications such as
image processing and emerging fields such as materials discovery. Our work
contributes to bridging the DNN computational demand-supply gap in diverse fields,
including image processing and materials discovery, by avoiding inefficient manual
hyperparameter tuning.

Keywords: Neural networks, Computational cost reduction, Model compression,
Quantization, Pruning, Self-supervised learning, Active learning, Dynamic fixed-point,

Structured pruning, Pruning rate search, mask less SSL, Feature sampling.
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