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ABSTRACT Parkinson’s disease is a progressive neurodegenerative disorder, and identifying patients at the
premotor stage enables early intervention and improved treatment outcomes. Dysarthria affects over 90%
of Parkinson’s patients, making speech a valuable biomarker. In this study, we propose an end-to-end deep
learning model to detect early-stage Parkinson’s disease based on speech signals. The model was trained and
evaluated using recordings from 131 early-stage PD patients and 42 healthy controls, including sustained
vowels (e.g., /A/, /O/) and repetitive syllables (e.g., /pa/, /ta/). Experimental results demonstrate that our
model outperforms various deep learning and ensemble learning classifiers in terms of detection accuracy
and F1-score, Among indicators, ACC reached 0.78, and F1-score reached 0.831. Furthermore, we explore
the temporal dynamics of speech sequences to reveal their correlation with disease progression.

INDEX TERMS Parkinson disease, deep learning, spectrum, speech recognition.

I. INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disease
that occurs in middle-aged and elderly people. The gradual
loss of dopaminergic neurons in the substantia nigra of
the midbrain is one of the main pathological features of
PD, which ultimately leads to dysfunction of the basal
ganglia and a series of movement disorders, such as
tremor, bradykinesia, and postural instability, and seriously
affects the quality of life of patients. Consequently, basal
ganglia dysfunction gives rise to bradykinesia, and postural
instability, markedly reducing quality of life. In Europe,
the prevalence of Parkinson’s disease has reached 108-257/
100,000 per year in 2020, which is a high level among
neurodegenerative diseases [1]. In addition to movement
disorders, Parkinson’s disease leads to a range of non-motor
disorders such as olfactory disturbances, dementia, sleep
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disorders, and language disorders [2], with patients with
REM sleep behavior disorders (RBD) having a risk of PD
of up to 80-90%. In early studies related to the pathology
of Parkinson’s disease, these non-motor symptoms were
often attributed to other diseases or ignored. With the
deeper exploration of studies related to neurodegenerative
diseases, these non-motor symptoms have been shown to
frequently appear several years - or even more than a decade -
before the classical motor symptoms [3]. Therefore, tracking
and detecting non-motor symptoms has become crucial
in optimizing the early diagnosis of Parkinson’s disease.
In addition, improving the timeliness of intervention has
attracted increasing attention from the medical community
due to its critical role.

In general, the diagnosis of Parkinson’s disease focuses
on the clinical assessment of movement status, but this
diagnostic approach based on movement tracking has some
shortcomings. On the one hand, such diagnosis requires
sufficient clinical experience of clinicians, because early PD
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patients may have very mild motor symptoms, and traditional
clinical movement tests (e.g., UPDRS score) may not be
sensitive enough to recognize mild symptoms. On the other
hand, movement monitoring requires high-precision motion
sensors and relatively closed experimental environments, and
its results are affected by a series of external factors such as
equipment quality. This leads to the fact that the accuracy
and sensitivity of the results of movement analysis are very
dependent on professional equipment and manual evaluation
with rich clinical experience, the complexity of the data
is high and the degree of automation is low. In addition,
complex motion detection devices and sensors make it
difficult to follow the patient’s condition remotely for long
periods. Although voice analysis methods also have certain
requirements for recording devices (such as microphones),
compared to motion sensors, the process of obtaining voice
data is more natural and non-contact, and is more accessible
and scalable in a variety of practical application scenarios.
Therefore, in the task of assisting in the screening of mild
cases, voice-based analysis methods are expected to serve as
a more convenient and universally applicable supplementary
measure.

Modern Parkinson’s disease detection systems are often
based on multiple types of instruments to improve early
detection accuracy and diagnostic efficiency in terms of
imaging, movement, and biomarkers. The most common
of these symptoms are abnormal voice symptoms such as
vocalization, resonance, and intonation, and these motor
dysarthria caused by PD can significantly affect the speech
ability of the patients. More importantly, some existing
studies have found that most patients develop voice defects
in the early stage of the disease [4], [5], [6], and the
movement data in the same period often do not have
the sensitivity required for early diagnosis. Signal data
also has the advantages of being non-invasive, convenient,
and less costly to obtain and analyze. The non-invasive
evaluation capability provides a good basis for remote and
continuous disease tracking, which opens up better ways for
PD healthcare optimization and personalized treatments, and
the low cost also makes large-scale comprehensive screening
of PD possible.

The general prodromal symptoms of patients with Parkin-
son’s disease include hyposmia, impaired color vision,
constipation, and erectile dysfunction; in the early stage,
dysarthria and constipation may also occur [7]. And the
severity of dysarthria tends to increase as the disease
progresses. With the gradual deterioration of the disease,
dysarthria becomes more serious and the patient’s pronun-
ciation becomes more and more difficult to hear. UPDRS
(Unified Parkinson’s Disease Rating Scale) is a measure of
the severity of Parkinson’s disease, proposed by the American
Movement Disorder Society (AMDS) in the 1980s. The
unified parkinson’s disease rating scale was developed by
the American Movement Disorders Society in the 1980s
to quantitatively assess the severity of Parkinson’s disease
in patients by quantifying symptoms such as hypophonia,

slurred and monotonous speech, and rapid or irregular speech
rate, rapid and irregular speech rate are mainly based on
self-reporting by the patient and subjective assessment by
the physician. However, the reproducibility of this method
is poor and the ability to dynamically monitor is limited;
more importantly, because of the lack of analysis of
specific acoustic characteristics, in this era of emphasis on
precision medicine, qualitative evaluation may not be able to
comprehensively and objectively assess language impairment
in Parkinson’s disease [8].

In recent years, the rapid development of signal processing,
speech recognition, and deep learning technologies has
significantly advanced the field of artificial intelligence
(AI). AI has shown great potential in assessing speech
disorders in Parkinson’s disease (PD) [9]. It enables high-
throughput, automated analysis of patient characteristics and
supports dynamic, personalized medical decision-making
by leveraging large-scale data processing and time-series
modeling. Karaman et al. developed a deep convolutional
neural network model based on speech signals and migration
learning to recognize PD using biomarker-derived speech
signals, achieving 89.75% accuracy and 91.50% sensitiv-
ity [10]. Khaskhoussy and Ayed used CNN to extract
deep features from raw speech signals from patients with
Parkinson’s disease and used a multilayer perceptron to
detect Parkinson’s disease, achieving precision 75% with
50-50 cross-validation [11]. Asmae Ouhmida et al. used two
databases of the UCI machine learning repositories to use
convolutional neural networks (CNNs) and artificial neural
networks (ANNs) to categorize healthy patients and PD based
on voice characteristics, with an accuracy of up to 93.10%.
Speech analysis in Parkinson’s disease mainly focuses
on raw features extracted manually by signal processing
techniques [12] and deep features automatically learned
and extracted from speech signals by deep neural networks
with high-dimensional abstract representations [13], which
include fundamental frequency, volume, and jitter, and have
the advantages of high interpretability and low computational
complexity, and are good for clinical quantitative analysis.
They have good usability in clinical quantitative analysis,
however, the reliance on raw features on manual design and
development limits their application to the task of analyzing
large-scale multimodal datasets, where deep features are
generally used to capture complex speech patterns and
nonlinear variations. Past studies have shown that both types
of features have the potential to show the best classification
results in different multilingual dataset-based classification
tasks [14], but in most of the studies, these two types of
features have been considered and processed separately [15],
[16], [17]. In clinical applications, if we can break through
the limitation of a single feature, we can improve the
accuracy of the model prediction and the comprehensiveness
of the model, while maintaining good interpretability. This
can provide strong support for personalized long-term
prediction of Parkinson’s disease process and treatment
evaluation.
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Section II of this paper describes in detail the related work
and the methodology used in this study, Section III discusses
the dataset and the specific setup of the experiments,
Section IV discusses the possibilities of exploratory analyses
and summarizes the experimental results, and Section V
discusses the nature of the research in this paper and presents
the relevant conclusions.

II. MATERIALS AND METHODS
A. SPEECH CHARACTERIZATION PLAYS A ROLE IN THE
DETECTION AND DIAGNOSIS OF PARKINSON’S DISEASE
Motion detection based on motor function assessment has
been one of the main clinical diagnostic tools for Parkinson’s
disease for a long time [18]. Neuronal degeneration in the
substantia nigra region of the brain in PD patients leads to
the destruction of the basal ganglia, which regulates motor
function, thus causing uncontrollable limb tremor in patients.
Currently, the most popular detection methods are advanced
motion sensors [19] and handwriting analysis [20]. The
rapid development of given signal recording techniques and
wearable devices has reinvigorated the subject in recent years,
and skills are now capable of realizing the distinction between
PD patients and healthy individuals, and even distinguishing
PD patients taking and not taking specific medications by
their notes [21]. However, in the diagnosis of early-stage PD,
motion detection has some insurmountable disadvantages,
such as the fact that motor symptoms are usually not obvious
in early-stage patients [2], and the cost of data detection
tracking is generally high.

In patients with PD, ambiguous speech and dysarthria
usually manifest at the early stage of the disease, and
decreased coordination of the oral muscles and respiratory
control difficulties caused by PD manifest themselves in
the form of slower speech speed, disorganized intonation,
and reduced volume. In detail, motor dysfunction caused by
neurodegenerative changes in Parkinson’s disease patients
leads to muscle stiffness and weakened respiratory support,
resulting in a narrower fundamental frequency range, unsta-
ble pitch, andweaker and unstable loudness when PD patients
speak. In contrast, healthy individuals exhibit natural and
stable changes in fundamental frequency and loudness when
speaking. Furthermore, from the perspective of speech data
characteristics, the speech spectrum of healthy individuals is
typically evenly distributed with minimal or no fluctuations.
In contrast, PD patients exhibit significant abnormalities in
spectral characteristics due to the severe fluctuations in voice
timbre, reflecting changes in phonation and resonance of the
vocal fold during speech.

Traditional PD speech analysis relies on a manual qualita-
tive assessment, which is inefficient and highly subjective.
The intervention of machine learning and deep learning
technologies has made the quantitative assessment of speech
features possible. With the help of these tools, it is possible
to identify appropriate attributes that have not traditionally
been applied in the medical diagnosis of Parkinson’s disease
and to rely on these alternative metrics in the preclinical

stage of Parkinson’s disease [22], [23], [24]. For exam-
ple, Nagasubramanian and Sankayya utilized heterogeneous
datasets specially developed with absolute multi-variate
speech attribute processing algorithm for effective value
creation, to construct a clear data model for improved
Parkinson’s disease detection [25]. Thanks to DL techniques
represented by CNN, LSTM, and Transformer, in addition
to the original speech features, neural networks can be
used to extract deep nonlinear features that capture subtle
spatial patterns in the spectrum and large rhythmic pauses
in the time series, which can be exploited to optimize the
classification performance of the model. Deep Convolutional
Neural Networks (DCNN) have been used to differentiate
between the voices of Parkinson’s disease patients and
those of healthy individuals, which, unfortunately, initially
provided an accuracy of only 75% [26]. Some recently
proposed related studies aim to focus on improving the
effectiveness of PD classification and diagnosis tasks based
on speech signal features using more advanced optimization
strategies and model algorithms, which include hyperpa-
rameter fine-tuning, feature correlation analysis, synthetic
minority over-sampling technique (SMOTE) to solve the
category imbalance problem and migration learning based
on a publicly available large database [27], [28]. These deep
neural network-based methods for extracting deep features
from PD speech data have shown considerable discrimi-
native power and can capture correlations and potentially
complex patterns that are difficult to distinguish in the
original conventional speech features. However, DL-based
deep feature studies often lack interpretability and thus
have low acceptance for clinical applications, and model
training is demanding in terms of both data quality and
computational resources. Therefore, synthesizing raw speech
and deep neural features and striking a balance between
performance and usability may be one of the best solutions at
present.

B. DATA SET
The speech dataset used in the study related to this paper
was obtained from Department of Neurology, National
Center for Geriatrics, Beijing Hospital, Institute of Geriatrics,
Chinese Academy of Medical Sciences, Beijing, China.Total
173 participants, of which 131 were individuals with early-
stage Parkinson’s disease and the remaining 42 were healthy
participant controls. For each participant, 11 different speech
sounds were recorded using three different devices, and the
distribution of clinical characteristics of all participants is
shown in Table 1. In this paper, three different devices
were used for data collection, including the RØDE Wireless
GO II RX using a 2.4 GHz digital wireless transmission
(Series IV 2.4 GHz), the Xbox NUI Sensor using four
linear array microphones with a sampling rate of 16 kHz,
and the Intel® Smart Sound Technology uses a digital
microphone with a sampling rate of 16 kHz and a sensitivity
of -42 dBV/Pa. We saved all the speech data collected by
the devices as WAV files, and the whole process of speech
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data collection was carried out in a quiet soundproof room
with an average noise level of no more than 25 dB, and all
microphones were located at a distance of nomore than 10 cm
from the patient’s mouth. The entries of these speech data
are shown in Table 2. Informed consent was signed by all
the subjects from whom data were collected in this study.
According to the relevant laws and regulations of the data
collection region, the dataset used in this study does not
belong to the public dataset.

In this study, each participant’s speech segment was
recorded using three different microphone models, gen-
erating three independent but corresponding data subsets.
To assess the robustness of themodel across different devices,
we performed five-fold cross-validation on the data recorded
by each microphone and calculated the average of the
evaluation results of the three models in the final validation
experiment as an indicator of the overall performance of the
model.

TABLE 1. Distribution of data for PD and non-PD.

TABLE 2. Voice data entry.

All participants were native speakers of Mandarin Chinese
and residents of mainland China. The study included
patients with Parkinson’s disease (PD) and healthy controls.
Additionally, to control for speech variability, participants
with other known speech or cognitive impairments were
excluded to ensure the voice features analyzed were primarily
attributable to PD. About Ethics approval, the Parkinson’s
disease voice recordings were collected at Beijing Hospital
with approval from the hospital’s Ethics Committee. All
participants provided written informed consent. The present
study was conducted using de-identified data in accordance
with institutional and international ethical guidelines.

Inclusion criteria for PD patients were:
1) A confirmed diagnosis of idiopathic PD following the

MDS Clinical Diagnostic Criteria.
2) Classification as early-stage (Hoehn and Yahr ≤ 2).
3) Native Mandarin proficiency.
4) Ability to provide informed consent.

Exclusion criteria included:
1) Presence of other neurodegenerative diseases.
2) History of psychiatric or speech-language disorders

unrelated to PD (e.g., aphasia, vocal fold pathology).
3) Non-native speakers of Mandarin.
4) Individuals with severe hearing impairment.
5) Missing or incomplete voice data.

C. PREPROCESSING AND RAW FEATURE EXTRACTION
For the extracted raw speech data, we firstly resampled
all the audios at a standardized sampling rate of 48000,
and then we used the python based Librosa to convert the
speech files into Mel-spectrogram as shown in Figure1, and
we used Librosa to extract the Mel Frequency Cepstrum
Coefficient(MFCC), Root Mean Square energy (Root Mean
Square), Zero Crossing Rate, Spectral Centroid, Spectral
Bandwidth, Spectral Rolloff and Pitch. In addition, we also
extracted some original speech features using parselmouth
(Praat) that are associated with PD pathology in previ-
ous studies [29], including fundamental frequency cyclic
fluctuations (Jitter), amplitude fluctuations (Shimmer), and
resonance peaks (Formants).

FIGURE 1. MEL spectrograms of /i/ vowels for healthy (a) and PD
patients (b),In PD voice, the resonance peak position may be unclear or
have low energy, appearing as blurred or discontinuous horizontal stripes
in the spectrum diagram.

For each audio file, we extracted a total of 16 original
speech features and then used principal component analysis
(PCA) to filter out 9 features from these features with higher
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correlation with the classification prediction results [30]. The
benefit of feature dimensionality reduction is that removing
the redundant noise from the features helps to optimize the
efficiency of the model, reduce the complexity, and improve
the accuracy and performance.

In addition, the nine original speech features included in
this study are as follows:

1) Duration: Refers to the duration of the voice data.
2) RMS: Measures the magnitude of the energy of the

speech signal, reflecting the volume.
3) SpectralCentroid: Indicates the ‘‘center of mass’’ of the

spectrum, a weighted mean of frequencies present in
the signal, reflecting the brightness of a sound.

4) SpectralRolloff: Is the frequency below which a
specified percentage of the total spectral energy is
contained.

5) MFCC_3: MFCCs (Mel frequency cepstral coeffi-
cients) are parameters that represent the characteristics
of the vocal tract. The 3rd coefficient captures acoustic
information in a certain frequency range.

6) MFCC_5: Similar to MFCC_3, the 5th coefficient
captures acoustic info in another frequency band,
providing complementary spectral features.

7) jitter: Measures tiny variations in the fundamental
frequency (pitch) period, reflecting vocal fold vibration
stability.

8) Shimmer: measures small variations in amplitude
between consecutive vocal cycles, indicating loudness
stability.

9) F0: or fundamental frequency, is the rate of vocal fold
vibration and determines the pitch of the voice.

D. ARCHITECTURE OF THE PROPOSED MODEL
The method proposed in this paper aims to use speech
data from patients with PD to determine whether an
individual suffers from early-stage PD or not. Figure 2
describes its workflow. It is mainly divided into four steps:
speech data preprocessing, raw feature extraction, feature
splicing, and fusion, and prediction of classification results by
neural network. To examine the deep feature representation
extracted by the neural network more comprehensively,
three different pre-trained neural network architectures are
used in the experiments of this paper, which are Tem-
poral convolutional neural network based on time, Two-
Level Ensemble Network, and Time- Warped Input Echo
State Network. Warped Input Echo State Network. The
Temporal convolutional neural network based on time is
characterized by a series of time-distributed 2D-CNN (Two-
Dimensional Convolutional Neural Network) modules that
transform the inputs into time-series dynamic features. The
obtained time series dynamic features are then passed to
a second module containing 1D-CNN (1D Convolutional
Neural Network) modules to learn the dependencies between
them. This method combines time series encoding and
spectrum-based feature extraction to effectively capture the

dynamics of speech signals. It is the first end-to-end deep
learning model that combines the time series features and
local spatial information of speech signals for Parkinson’s
disease detection. The principle of a Two-Level Ensemble
Network is to train the data in parallel using multiple
base models and to aggregate the prediction results of the
individual models at subsequent layers of the network using
methods such as weighted tie-breaking and meta-modeling.
Models’ prediction results, this architecture makes good use
of the diversity of parallel models and is especially resistant
to overfitting in small and medium data sets. Time-Warped
Input Echo State Network is an improved echo state network
(ESN) model, that deals with nonlinearities and temporal
deformations of time-series data by introducing time-warping
techniques, The network structure can efficiently capture
the complex patterns and dynamic features of temporal
variations, and thanks to the unique ability to analyze data
with temporal irregularities and complex time-dependent
data, this network performs very well, especially in the task
of speech data analysis [31]. TleNet effectively captures
both temporal and local articulation features of Parkin-
son’s speech, even under limited computational resources,
facilitating early detection of subtle motor impairments in
speech. TWESEN incorporates timewarping edit similarity
to enhance robustness against rhythm variations and mis-
alignments in speech, enabling more accurate differentiation
between normal and pathological speech patterns.Both of
these methods are commonly used and highly efficient in PD
speech analysis tasks. In this study, they serve as the control
group, while Time-CNN is the temporal neural network
we propose, which will be briefly introduced in the next
subsection.

FIGURE 2. System architecture flowchart.
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In the experimental phase, we cross-compare the perfor-
mance of hybrid and single features in three different network
architectures, while in the performance evaluation phase,
we use five-fold cross-validation to weaken the impact of
the evaluation bias caused by data segmentation chance on
the results and to keep the complexity and computational
overhead of the network within a manageable range.

Additionally, to reduce the bias caused by the initial weight
values, we trained these models using 10 different runs and
took the average, i.e. the average of these 10 runs on the test
set. Since excessive training cycles may lead to overfitting
of the training dataset, we determine the optimal model by
monitoring model performance on the validation dataset and
then use it for testing. The number of epochs for all models
is set to 200. It is important to note that, due to model
performance monitoring in the validation set, the number of
epochs for the optimal model is sometimes less than 200.

E. END-TO-END TIME-SERIES CONVOLUTIONAL NEURAL
NETWORK APPROACH
The temporal neural network used in this paper consists
of two main layers [32], the first one consists mainly of
2D-CNNs about temporal distributions, which convert the
Mayer spectrograms into dynamic features about time series,
and these features are then passed to the second layer
consisting of a one-dimensional convolutional neural network
to learn the dependencies of the features.

Specifically, the modules in the first layer acquire feature
blocks through a fixed time window slide along the time axis,
and extract features from these fixed-length feature blocks
using 2D-CNNs, which consist of a stack of convolutional
layers, a batch normalization layer, an average pooling layer,
and a dropout layer, and the main purpose of this layer
is to capture local spatial features of the spectrograms and
to mine the temporal structure of the temporal distribution
of time-dependent features. The second layer consists of
a one-dimensional convolutional neural network and the
average pooling layer, where the time series features output
from the first layer are flattened to perform the convolution
operation, and the final results are output to the fully
connected layer for prediction.As shown in the Figure 3.

FIGURE 3. End-to-end temporal neural network architecture.

FIGURE 4. Significant differences in the distributions of (a) duration and
the two Meier spectral features (b) MFCC-3, (c) MFCC-5 according to
patient group(p < 0.05).

III. IMPLEMENTATION
A. EXPERIMENTAL ENVIRONMENT
The network models used in this paper were performed
on an identical workstation with Ubuntu 20.04.6 LTS,
configured with 32Gib RAM, Intel(R) Core(TM) i7-10700
CPU@2.90GHz and NVIDIA RTX 3080 GPUs, and a deep
learning architecture optimized with the GeForce CUDA
library. The deep learning architecture is optimized with the
GeForce CUDA library, and the programming environment
is based on Python 3.8.0 and Pytorch 2.4.0.

B. FEATURE CORRELATION ANALYSIS
To transform the original audio files into Mel spectro-
grams, the Python-based Librosa 0.11.0 library was used.
Based on the spectrogram results, we extracted a series of
original speech features including Mel frequency cepstrum
coefficients (MFCC), and to optimize the classification
reliability and complexity of the model and to improve
the computational efficiency, we used principal component
analysis to downsize the 16 standardized original speech
features [33]. In this method, the principal components with
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the highest correlation with the original feature distribution
are removed by maximizing the variance of the data features,
and the high-dimensional features are projected to the low-
dimensional space, to reduce the feature dimensionality and
remove the redundancy. Based on cumulative explained
variance, we select 9 features with high correlation with
PD distribution from 16 original features, as shown in
Figure 4, the features extracted by PCA exhibit substantial
distributional differences across distinct labels, suggesting
a strong correlation between the selected features and the
classification labels.

During model training, we employ regularization to
enable the network to better adapt to differences in feature
distributions and to enhance its generalization capability.
In addition, We calculated the Pearson correlation between
each of the 16 voice features and the binary early-PD
label. Several features, including jitter and MFCC3, showed
moderate positive correlations (| r |> 0.4, p < 0.05), indicating
their potential as discriminative markers for early PD,
as shown in Figure 5.

FIGURE 5. Pearson correlation coefficient between voice characteristics
and early PD labels, among them, speech features with p less than
0.05 are marked in red.

C. RESULTS AND EVALUATION
The experiments in this paper are conducted using five-fold
cross-validation (CV), whichmeans that the dataset is divided
into five subsets of the same size in each round of iteration.
Four of them are used randomly for training, the remaining
one subset i.e., is used to validate the prediction of the model,
and the average of five predictions is averaged as the result
after five rounds of iteration.

In order to calculate the performance of hybrid features
in different neural network architectures, the experimental
evaluation metrics include accuracy, F-score, specificity,
sensitivity, and Mathews correlation coefficient (MCC),
which are calculated using the following formulas:

accuracy =
TP+ TN

TP+ FP+ TN + FN
.

F_score =
2 × specificity × sensitivity

specificity + sensitivity
.

specificity =
TP

TP+ FP
.

sensitivity =
TP

TP+ FN
.

MCC =
TP× TN-FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

.

(1)

Among them, TP, FP, TN, and FN denote true positive,
false positive, true negative, and false negative, respectively,
and F-score is used to comprehensively measure the model
precision and recall. Especially for the scenarios of labeled
unbalanced datasets like the one studied in this paper, the
reconciled mean of the F-score can better evaluate the classi-
fication effect of the model, and the value usually fluctuates
within the range of 0.5-1, with 0.5 denoting immediate
prediction and 1 representing perfect prediction. 0.5 means
immediate prediction, 1 means perfect prediction, MCC
(Matthews Correlation Coefficient) is a specific measure of
the overall performance of the dichotomous classification
model is a widely used evaluation index, its value is in the
range of -1-1, -1 means the prediction is completely wrong,
0 means the result is consistent with random prediction,
1 means the prediction is completely correct, 0 means the
result is consistent with random prediction, and 1 means
the prediction is completely correct. The value is in the
range of -1-1, -1 means the prediction is completely wrong,
0 means the result is consistent with the random prediction,
and 1 means the prediction is completely correct, which
comprehensively reflects the correlation between the model
prediction result and the real label. Sensitivity refers to the
model’s ability to identify ‘‘positive’’ individuals correctly.
In this study, high sensitivity refers to the model’s ability to
effectively identify individuals with the disease, particularly
in the early stages, which is crucial for timely intervention and
treatment planning. While specificity refers to the model’s
ability to correctly identify ‘‘negative’’ individuals, in this
study, the high-specificity explanatory model demonstrated
high accuracy in excluding individuals without early-stage
PD, thereby helping to reducemisdiagnosis and lower the risk
of unnecessary anxiety or overtreatment.

In a comparative experimental setup with different data
branches, we utilize log-Meier spectrograms as the input for
the time-frequency representation of the deep learningmodel.
Log-Mel spectrograms were extracted from all recordings
(resampled to 24000 Hz) using librosa, with a window size of
2048, a hop length of 512, and 65 Mel bands. Subsequently,
the effects of the extracted raw features and the hybrid
features spliced with neural network features were tested on
three different neural network architectures, for each network
architecture we used Grid Search to determine the optimal
hyperparameters based on five-fold cross-validation, and in
addition, for the control group using only a single neural
network feature, we also made a reference comparison on
three different neural network architectures. Experiments,
as shown in Table 3.
It can be noticed that the classification performance of

hybrid features in independently different network models
always outperforms or equalizes the control group with
single neural network features. This demonstrates that hybrid
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TABLE 3. Performance of hybrid and single features in different networks.

features possess superior competitiveness in early PD diag-
nosis classification tasks. Although neural networks cannot
provide detailed interpretability analysis like traditional
methods, the fusion strategy reduces human intervention
while enhancing the stability and accuracy of classification
predictions. In the experiments, the Hybrid feature achieved
an ACCmetric 0.015 higher than using neural networks alone
in Time-CNN, and also saw improvements of 0.018 and
0.02 in this metric in tlenet and TWIESN, respectively.
These results suggest that combining manually extracted
features with deep learning features may provide a more
comprehensive representation of speech signals in patients
with early-stage Parkinson’s disease. To assess the stability
of the model under different data partitions, we used 5-fold
cross-validation and calculated the standard deviation of
the performance metrics for each fold. In our 5-fold cross-
validation experiment, the performance rankings of different
models across folds were not entirely consistent. In most
folds, Time-CNN showed better results. Tlenet exhibited
greater variability, possibly due to higher sensitivity to data
partitioning in cross-validation. Of course, this inconsistency
may also stem from the heterogeneity of the data itself,
with minor differences in category distribution, feature
variability, or noise levels across folds. We also noticed that
after introducing hybrid features, the standard deviation of
each fold increased across different models. This may be
due to the expansion of feature dimensions relative to the
insufficient number of samples, causing differences in data
structure to have a significant impact on the prediction results.
The hyperparameter settings for the three different network
models are shown in Table 4.

In addition, Time-CNN always reported the best results
of the three different methods, whether in experiments using
hybrid or single features, reaching 0.831 and 0.47 for F1
and MCC in the hybrid model experiments, which are
significantly better than the rest of the tlenet and TWIESN,
the relationships between accuracy and loss across different
training epochs are shown in the figure 6. This may be since
Time-CNNuses a 2D-CNN structure to process the log-Meier
spectrograms compared to the tlenet’s multi-scale convolu-
tional kernel temporal features and TWIESN’s projection
space processing, Time-CNN better preserves the structural
properties of the spectrograms, which results in stronger
sensitivity to specific anomalous patterns. Besides, Time-
CNN takes a direct spreading between 2D-CNN and ordinary

TABLE 4. Hyperparameter search space of neural networks.

CNN and subsequently uses the output of ordinary CNN to
input the fully-connected layer, and this modular construction
is easier to tune, while themultiple-scale convolutional kernel
fusion paths of TLENET make the optimal hyper-parameter
tuning more complicated, and TWIESN is because most of
the parameters are initialized by the reservoir (e.g. spectral
radius, leak rate) defined and controlled by the reservoir
initialization [34], which makes the hyper-parameter tuning
very sensitive to the classification results and difficult to tune
compared to Time-CNN.

In addition, we analyzed the log-Meier spectrogram
and linear scale of the speech data in the speech data
sustained vowel /a/. Figure 7 shows an example of log-Meier
spectrogram heatmap image of a 52-year-old male healthy
control and a 57-year-old female early PD patient. The
heatmap is generated by back-propagating the gradient of the
last convolutional layer based on the classification output and
mapping it back to the original image size superimposed.
We note that the energy of the speech signal of the early
patient is still concentrated in the low-frequency region
(<1000 Hz) compared to that of the healthy controls, but the
energy in the high-frequency region (2000 Hz and above)
is unevenly attenuated, as indicated by the appearance of
slight ripples and irregularities over time, which resembles
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FIGURE 6. The training and validation process of Time-CNN model shows
the relationship between accuracy and loss metrics across different
epochs.

the pattern that has been frequency perturbations of speech
in PD patients found in published studies [35]. In addition,
the horizontal bright lines show periodic interruptions or
frequency drifts, which may reflect the deterioration of vocal
fold modulation, especially in the early stages of Parkinson’s
disease when this trend has been observed [12], which is also
consistent with the model classification results. In contrast
to the early-stage patients, the speech energy of the healthy
individuals was concentrated in a consistent low-frequency
band, showing a very stable frequency pattern.

FIGURE 7. Log-Meier spectral thermograms in 52-year-old healthy men
(a) and 57-year-old female patients (b) with early PD.

IV. DISCUSSION
In this study, we demonstrate the performance of using
raw speech features and neural network temporal fea-
tures together in the task of detecting speech patterns in

Parkinson’s disease and classifying patients with early-stage
Parkinson’s disease. We conducted experiments on three
different pre-trained neural networks using speech data with
11 different entries, and the results show that the hybrid fea-
tures based on spectrograms exhibit impressive classification
performance in different neural network architectures. The
results show that the hybrid features based on spectrograms
exhibit considerable classification performance in different
neural network architectures, and it also demonstrates that
the fusion strategy is feasible for early PD diagnosis tasks.
In both the hybrid feature experiment and the comparison
group using ordinary neural network temporal features,
the Time-CNN model consistently reported superior results
compared to the other two network models. In the hybrid
feature experiment, the ACC was 0.78 and the F1-score was
0.83; when using only neural network temporal features, the
ACC was 0.765 and the F1 score was 0.79. The experimental
results suggest that the Time-CNN model identifies learned
dynamic features that capture the narrowed overall frequency
range and reduced variability of Parkinson’s disease-related
sounds, which are important clinical indicators for detecting
patients with Parkinson’s disease. In addition, compared to
the direct use of speech data, spectrograms can retain and
highlight subtle features such as frequency anomalies, jitter,
and pitch changes in the articulation process of patients with
PD, leading to better classification performance. Moreover,
because the redundancy of the original speech waveforms is
generally high, it is difficult to converge in a conventional
neural network [36], and the spectrogram data also have
better training efficiency. In traditional clinical research
on Parkinson’s disease, feature extraction has been highly
dependent on domain knowledge and expert experience for
feature design and selection. In the experiments studied in this
paper, we employed a fusion strategy combining traditional
features with automatically extracted features from neural
networks to train the neural network model. In addition,
we used Principal Component Analysis (PCA) to select and
reduce the dimensionality of traditional speech features. This
method has been proven to retain high-frequency information
in speech representations efficiently [37]. In particular,
speech data with a high degree of redundant noise have the
dual characteristics of high dimensionality and low sample
size, which makes the selection of initial candidate variables
particularly important [38], [39].

With the widespread application of deep learning, end-
to-end methods are increasingly being used in clinical
research to assist in the diagnosis of movement disorders and
cognitive disorders related to dementia [40], [41]. Compared
with traditional machine learning methods, deep learning
techniques have a stronger representation of sensitive fea-
tures, while the performance will continue to enhance with
the accumulation of data and have a higher generalization
ability. In addition, several studies have shown [42], [43]
that deep models can significantly outperform traditional
machine learning methods in early PD vs HC classification
tasks, especially inmulticenter andmultispecies speech tasks.
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Chandrasekaran et al. used recurrent neural networks and
fuzzy KNN based on magnetic resonance imaging of the
brain to achieve early Parkinson’s disease detection [44], and
the results outperformed the general decision tree and random
forest algorithms. Srinivasan et al. employed a variety of tech-
niques including the synthetic minority oversampling tech-
nique (SMOTE) for solving the category imbalance problem,
feature selection for identifying the most relevant features,
and the use of RandomizedSearchCV for the detection of
Parkinson’s disease, based on a small dataset of 195 speech
recordings from 31 patients. Hyper-parameter tuning using
strategies such as RandomizedSearchCV, and achieved
99.11% and 95.89% accuracy using KNN and feed-forward
neural network (FNN) models, respectively [28]. Rahul
Nijhawan et al. developed a Transformer-based approach
to retrieve dysarthria indicators from subjects’ speech
recordings to detect PD, and Nijhawan et al. developed a
Transformer-based approach to retrieve dysarthria indicators
from subjects’ speech recordings to detect PD. Metrics to
detect PD, in addition to providing an XgBoost-based feature
selection method and a fully connected neural network
layer technique for incorporating continuous dysphonia mea-
sures. Their proposed method comprehensively outperforms
traditional machine learning techniques (e.g., Multilayer
Perceptron (MLP), Support Vector Machines (SVMs), and
Random Forests (RFs)) in all conventional metrics, and their
study also found that The accuracy of partial discharge (PD)
detection can be further improved by using a constant-length
vector representation generated by the Transformer. The
solution they used can also be used in a setup similar to
the Siamese network with a triple-state contrast loss function
to bring vector representations of similar classes closer
together through direct supervision [16], which confirms
the feasibility and frontiers of neural networks in complex
sequence modeling and feature representation.

Although making precise judgments about important
spectral regions for CNN classification decisions remains one
of the greater challenges in the field of PD diagnosis, it is
still feasible to emphasize some of the routine differences
between PD patients and healthy controls [45]. In this
paper, the average length of the original recordings was
more than 60 seconds, and we uniformly cut them to
40 seconds to standardize them for neural network input.
Interpretability has always been one of the limitations of
AI application in clinical medicine, we have conducted
some analyses of different branching features to explore
the independent value and potential connection of different
modal features, for example, in the analysis of the data
in this paper, we found that in the narrow band of PD
patients at 500-2000 HZ, the healthy controls appeared
to be significantly different, which may be due to the
peak frequency of the articulatory resonance close to the
vowels. The original speech features used in this paper
have been proven to be directly related to the physiological
mechanisms of PD in previous studies [2], and these features
have been clearly defined and mature quantitative standards,

which have significant advantages in terms of interpretability,
and can be used in conjunction with temporal features
extracted from neural networks to complement the ‘‘black-
box’’ characteristics of neural networks. The combination of
these features with the time-series features extracted from
neural networks may be able to complement, in a sense, the
lack of interpretability of neural networks due to their ‘‘black
box’’ characteristics, and thus improve the performance and
clinical confidence of the early Parkinson’s disease detection
system.

Additionally, although this study collected speech data
in a controlled studio environment to minimize background
noise interference, we recognize that this setting differs
from actual remote or home monitoring scenarios. Future
research will focus on evaluating the robustness of the
model in everyday environments with different types of
devices and background noise to verify the feasibility and
cost-effectiveness of this method in a wider range of practical
applications.This study used five-fold cross-validation to
evaluate model performance, but this method cannot cover
cross-device generalization issues completely that may arise
in practical applications. Future work should further verify
the generality of this method on differentmicrophones, differ-
ent noise environments, or multi-center datasets. Considering
the interpretability of enhanced deep learning models in
clinical settings, we plan to introduce interpretable artificial
intelligence methods such as saliency maps and layer-wise
relevance propagation (LRP) in subsequent studies. This will
help clinicians intuitively understand the speech features that
the model focuses on, thereby improving their understanding
and trust in the model’s decision-making basis.

V. CONCLUSION AND PROSPECTS
In this paper, we propose a multimodal diagnostic model
based on speech recording data for the diagnosis of patients
with early Parkinson’s disease and determine the early
Parkinson’s disease through the original speech features
and the temporal features extracted by the neural network.
We combined spectral-based raw speech features and time-
series-based deep features extracted by end-to-end neural net-
works in different pre-trained deep learning architectures to
classify healthy and early PD patients. Unlike most previous
studies that treated these two types of features separately, the
unified framework we propose can simultaneously capture
complementary information in the frequency domain and
time domain, thereby improving the prediction accuracy
and robustness of the model. Specifically, Our model takes
the raw features as branching inputs to an intermediate
layer and then extracts time-series dynamics deep features
through a series of temporally distributed two-dimensional
convolutional neural networks. The time-series dynamics
deep features are extracted through a fully-connected layer
pre concatenate splicing the outputs of the two types
of features to achieve feature fusion. Cross-validation is
performed to ensure the reliability of the experimental results,
we compared our Time-CNN model against two existing
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published methods (TLENet and TWIESN), ensuring a fair
and representative evaluation, and the results demonstrate
that this feature fusion method achieves equal or better
results compared to a single feature in several different
neural network architectures. In addition, we discussed the
relevance of the features and the patterns exhibited by the
spectrum charts of different patient groups. The experimental
results prove that the hybrid features in different pre-training
network architectures have a better effect than a single
temporal feature, and also complement the problem of lack of
interpretability that the deep learning technology has always
had in the clinical application.

Although our work has achieved some results, it can be
extended in at least two directions: first, this method can be
tested on larger and more diverse datasets, which not only
refers to the increase in the number of speech entries and
patients, but also implies that there are more kinds of speech
data in different languages, and the validity of the method can
be verified by expanding the dataset. Secondly, there is still
room for more extensions to this feature fusion approach, and
additional techniques (e.g., cross-modal attentional fusion
and multiscale adaptive fusion) have a lot of room to be
utilized in the Parkinson’s disease speech diagnosis task.
These improvements are promising to further improve the
robustness and classification performance of the model.
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