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Abstract

We decide the Jones polynomials of knots with span up to four and enumerate
the potential Jones polynomials of knots with span five and six.

1. Introduction
The span of a Laurent polynomial f(t) € Z[t!] is the difference between the
highest and lowest degrees of f(t). The span of the Jones polynomial of a knot
K is less than or equal to the least crossing number of K. Moreover, the span
of the Jones polynomial of a nonsplit alternating link equals its crossing number
[7, 13, 14].

The Jones polynomial of a knot with span zero is 1 [5, Corollary 3] and that
with span one or two does not exist [4, Lemma 3.9]. In this note we show the
following.

Theorem 1.1. The Jones polynomial of a knot with span at most six is one
of the polynomials fi(t) or fr(t™1), k=1, 2,...,19, listed in Table 1. Note that
fr(t) = fru(t™Y) for k=1, 3, 11, 13, 16.

Therefore, we can decide the Jones polynomials of knots with span up to four.

Corollary 1.2. If the span of the Jones polynomial V (t) of a knot is at most
four, then it is the Jones polynomial of the unknot, trefoil knot, or figure-eight
knot, that is, V(t) = 1, t +13 —t*, =4 4¢3 4t ort™2 —t7 1 41—t + 12,

In Table 1 the notation (r)[cocics . .. ¢,] denotes the polynomial t"(co + c1t +
cat? + -+ + c,t"). In column “Knots” we list the knots with up to 13 crossings
whose Jones polynomial is fx(t). For fs(t) and f19(t) we cannot find such knots
with up to 18 crossings; see Remark 3.1 and Question 3.2. We denote the mirror
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image of a knot K by K!. Then V(K!;t) = V(K;t~'). We use the knot names
in [9] for a knot with up to 13 crossings and those in [2] for a knot with 14-18

crossings.
k  Polynomial Knots
1 (0)[+]] U
2 (H1+0+1-1] 31
3 (-2)+1—-141-1+1] 47, 11n_19
4 2)+1+0+1—-1+4+1—1] 51, 10132!
) (DH+1-14+2-14+1-1] 52, 11n.57, 12n.475, 13n_3082
6 (B)+1+0+14+0+0-1] 819
7 DH+2-1+2—-2+1-1] 12n_200!
8 8)[+2+0+2—-2+1-2]
9 (-2)[+1—-142-2+1-1+1] 64
10 (-D[H+1-142—-24+2—-2+1] 69, 12025, 13n_1169, 13n_4304
11 (=3)[-1+2—-243-2+2—-1] 63, 13n.2922
12 2)H+14+0+2-2+1—-2+1] 31#3
13 (=3)[-14+1-1+3-1+1-1] 31!#3;
14 (=5)[-1+1—-142-14+2-1] 89
15 (D[+2—-2+3-3+2—-2+1] 8y
16 (=3)[+1—-1+1—-14+1—1+1] 9y
17 O)[+2—-14+1—-24+1—-1+1] 946!
18 HH+14+0+1+0+0+0—1] 10594
[ ]

(
(

19  (6)+1+14+0+1—-14+0—1
E

TABLE 1. Potential knot Jones polynomials f(¢) with span up to six.

This note is organized as follows. In Sect. 2 we review the Jones polynomial
and give some restrictions a knot Jones polynomial satisfies. Using them we prove
Theorem 1.1 in Sect. 3. In Sect. 4 we consider potential knot Jones polynomials
with span > 7.

2. Jones polynomial

The Jones polynomial V' (L;t) € Z[t*1/2] [6] is an invariant of the isotopy type of
an oriented link L, which are defined by the following formulas:

(1) V(U;t) =

(2) WV (Lyst) —tV(Lost) = (£/%

t_1/2)V(L0; t)’
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where U is the unknot and (L, , L_, L) is a skein triple, which is an ordered set
of three oriented links that are identical except near one point where they are as

in Fig. 1.
A X X(
AN /
L. L_ Lo

F1GURE 1. A skein triple.

Let V(t) be the Jones polynomial of a knot K. Then we have the following

evaluations:

(3) V() =1,

(4) V(1) =0,

() V() =1,

(6) V(i) = £1,

(7) V(em?) = £v3)",

(8) V(-1)=0 (mod 37),

where V’(1) is the value of the first derivative at t = 1, and d = dim H; (X4(K); Z3)
with 35 (K) the double covering space of S3 branched over K. Equations (3)—(5)
follow from the fact that V(¢) —1 is divisible by (1—¢)(1—#3) [6, Proposition 12.5];
cf. [5, Theorem 1]. Equation (6) follows from V(i) = (—1)A"() where Arf(K) is
the Arf (or Robertello) invariant of K [8, 12], cf.[6, (12.6)]. Note that Arf(K) =
az(K) (mod 2) and that ay(K) = —V"(1)/6 [11], where ay(K) is the second
coefficient of the Conway polynomial of K. Equation (7) is proved in [8]. Since
|V (—1)] is the determinant of K, that is, |H;(X2(K);Z)|, we obtain Eq. (8).

3. Proof of Theorem 1.1

First, we prove for span < 4 (Corollary 1.2). Let V(t) = t"(co + c1t + cat? + c3t® +
cat?), where 7, cg, c1, 2, c3, ¢4 € Z. Then using Eq. (3), we obtain

(9) co+c1+ceo+ce3+cy =1,

Using Eq. (4), we obtain r(co + ¢1 +c2 + ¢+ ca) + (¢1 + 2¢2 + 3¢z +4cq) = 0, and
S0

(10) r+c +202+303+4C4 = 0.
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Let &€ = €27/3. Then we have

(co—ca+c3)+ (1 —ca+cq)é ifr=0 (mod 3),
(11) V(&) =19 (—c1+ca—ca)+ (co—c1+c3—cg)€ ifr=1 (mod 3),
(—Co +c1—c3+ C4) + (—Co +co — 03)§ ifr=2 (mod 3)
Using Eq. (5), we have
(12) co—Co+c3 =1, cp—ca+es=0 ifr=0 (mod 3),
(13) —c14+c—ca=1, c¢—-—ct+cg—c,=0 ifr=1 (mod3),
(14) —co+c1—c3+eqg=1, —cg+tca—c3=0 ifr=2 (mod3).
Since
(15) V(Z) = iT((CO — Co + 64) + (Cl — Cg)i),
using Eq. (6), we have
(16) c1 —c3 =0, co—Co+cy = =1 ifr=0 (mod 2),
(17) co—cog+cy =0, —c1 +c3==%1 ifr=1 (mod 2).
Since V (t) # 0 by Eq. (3), we may assume cg # 0. Then, we obtain
(0,1,0,0,0,0) ifr=0 (mod 6),
(1,1,0,1,-1,0)  ifr=1 (mod6),
-1,1,0,1,0 if r=2 (mod 6),
(18) (Tv 60761762763,04) = ( ) . ( )
(3,1,1,0 0,—-1) if r=3 (mod 6),
(—2 —1,1) ifr=4 (mod 6),
(=7 100,1,1) ifr=5 (mod 6).

The solutions (3,1,1,0,0, — ) and ( 7,—1,0,0,1,1) give the polynomials ¢(t) =
3+t —t7 and p(t71) = —t~7 +t~* 4¢3, respectively. However, they cannot be
the Jones polynomials of knots. In fact, ¢(e™/3) = —2 — /3, which contradicts
Eq. (7). The other solutions yield fi(t), fa(t), f2(t™1), f3(t).

Next, we prove for span 5. Let V() be the Jones polynomial of a knot with
span 5. By using Eqgs. (3)—(7), V(¢) is one of the following polynomials: fx(t),
frt™Y (k=5,6,7), ¥(t,a), ¥(tt, a), where

(19) Y(t,a) = 194 a + at® — at® +t* — at®),

with a = (1 4 (iv/3)?)/2, d € Z>q. Since a is an integer, d should be even. For
(d,a) = (0,0) and (0, 1) we have 1(¢,0) = 1 and 9(t,1) = f4(t), respectively. For
(d,a) = (2,2) we have ¥(¢,2) = fg(t). For (d,a) = (2,—1) we have 9(¢t,—1) =
t719(=1 =2 + 3 +t* +¢5) and ¢(—1,—1) = —3, contradicting Eq. (8). If d > 4,
then ¢(—1,a) =4a+1=3+2-3%2 20 (mod 3%?), contradicting Eq. (8).
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The proof for span 6 is similar, and so omit it. This completes the proof of
Theorem 1.1.

Remark 3.1. There is no knot with up to 18 crossings whose Jones polyno-
mial is fs(t) or fi9(t) listed in Table 1. However, V(12n-850) = V' (41) f19(%).

A knot with Jones polynomial fs(¢) or fig(t) should be neither almost alter-
nating nor of Turaev genus one; for fg(¢) this follows from [3] and for fig(t) from
[10].

Question 3.2. Does there exist a knot whose Jones polynomial is fg(t) or

fio(t)?

4. Polynomials with span > 7

For the polynomials with span > 7 satisfying Eqs. (3)—(8) we have the following.

Theorem 4.1. For each integer n > 7 there exist infinitely many polynomials
V(t) € Z[tF1] with span n satisfying Egs. (3)—~(8).

Proof. First, we consider n = 7. The polynomial with span 7
(20) V)=t 1+a(l —t) A+ )1 -t + )1+t + 7)),

a € 7\ {0, -1}, satisfies Egs. (3)—(8). In fact, V(i) = (=1)%, V(e™/3) = 1 and
V(-1)=1+12a =1 (mod 3).
Suppose that n > 8. The polynomial

(21) V) =1+ (a+t+t2+ - +t" A =) 21+ )1 -t + )1+t +t2),

a € 7, satisfies Eqs. (3)~(8). In fact, V(e™/3) =1 and V(—1) = 24a + 12(—1)" —
11 =1 (mod 3). Note that for n = 8 the span of V(¢) is 8 if a # 0, —1, and for
n > 9 the span of V(¢) is n if a # —1. O

Remark 4.2. We found the polynomial V() in Eq. (20) in a similar way to
the proof of Theorem 1.1, and V'(¢) in Eq. (21) using Theorem 2 in [1].

The polynomial V(t) in Eq. (20) with a = —1 is fio(¢t~!) in Table 1, which is
V(62!). The polynomials V(¢) in Eq. (21) with (a,n) = (1,8), (—2,8), (—3,9) are
V(12n_838), V(12n_730), V(11n_178), respectively.

Question 4.3. For each integer n > 7 do there exist infinitely many knot
Jones polynomials with span n?
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