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Abstract

We decide the Jones polynomials of knots with span up to four and enumerate

the potential Jones polynomials of knots with span five and six.

1. Introduction

The span of a Laurent polynomial f(t) ∈ Z[t±1] is the difference between the

highest and lowest degrees of f(t). The span of the Jones polynomial of a knot

K is less than or equal to the least crossing number of K. Moreover, the span

of the Jones polynomial of a nonsplit alternating link equals its crossing number

[7, 13, 14].

The Jones polynomial of a knot with span zero is 1 [5, Corollary 3] and that

with span one or two does not exist [4, Lemma 3.9]. In this note we show the

following.

Theorem 1.1. The Jones polynomial of a knot with span at most six is one

of the polynomials fk(t) or fk(t
−1), k = 1, 2, . . . , 19, listed in Table 1. Note that

fk(t) = fk(t
−1) for k = 1, 3, 11, 13, 16.

Therefore, we can decide the Jones polynomials of knots with span up to four.

Corollary 1.2. If the span of the Jones polynomial V (t) of a knot is at most

four, then it is the Jones polynomial of the unknot, trefoil knot, or figure-eight

knot, that is, V (t) = 1, t+ t3 − t4, −t−4 + t−3 + t−1, or t−2 − t−1 + 1− t+ t2.

In Table 1 the notation (r)[c0c1c2 . . . cn] denotes the polynomial tr(c0 + c1t +

c2t
2 + · · · + cnt

n). In column “Knots” we list the knots with up to 13 crossings

whose Jones polynomial is fk(t). For f8(t) and f19(t) we cannot find such knots

with up to 18 crossings; see Remark 3.1 and Question 3.2. We denote the mirror
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image of a knot K by K!. Then V (K!; t) = V (K; t−1). We use the knot names

in [9] for a knot with up to 13 crossings and those in [2] for a knot with 14–18

crossings.

k Polynomial Knots

1 (0)[+1] U

2 (1)[+1 + 0 + 1− 1] 31
3 (−2)[+1− 1 + 1− 1 + 1] 41, 11n 19

4 (2)[+1 + 0 + 1− 1 + 1− 1] 51, 10132!

5 (1)[+1− 1 + 2− 1 + 1− 1] 52, 11n 57, 12n 475, 13n 3082

6 (3)[+1 + 0 + 1 + 0 + 0− 1] 819
7 (4)[+2− 1 + 2− 2 + 1− 1] 12n 200!

8 (8)[+2 + 0 + 2− 2 + 1− 2]

9 (−2)[+1− 1 + 2− 2 + 1− 1 + 1] 61
10 (−1)[+1− 1 + 2− 2 + 2− 2 + 1] 62, 12n 25, 13n 1169, 13n 4304

11 (−3)[−1 + 2− 2 + 3− 2 + 2− 1] 63, 13n 2922

12 (2)[+1 + 0 + 2− 2 + 1− 2 + 1] 31#31
13 (−3)[−1 + 1− 1 + 3− 1 + 1− 1] 31!#31
14 (−5)[−1 + 1− 1 + 2− 1 + 2− 1] 820
15 (1)[+2− 2 + 3− 3 + 2− 2 + 1] 821
16 (−3)[+1− 1 + 1− 1 + 1− 1 + 1] 942
17 (0)[+2− 1 + 1− 2 + 1− 1 + 1] 946!

18 (4)[+1 + 0 + 1 + 0 + 0 + 0− 1] 10124
19 (6)[+1 + 1 + 0 + 1− 1 + 0− 1]

Table 1. Potential knot Jones polynomials fk(t) with span up to six.

This note is organized as follows. In Sect. 2 we review the Jones polynomial

and give some restrictions a knot Jones polynomial satisfies. Using them we prove

Theorem 1.1 in Sect. 3. In Sect. 4 we consider potential knot Jones polynomials

with span ≥ 7.

2. Jones polynomial

The Jones polynomial V (L; t) ∈ Z[t±1/2] [6] is an invariant of the isotopy type of

an oriented link L, which are defined by the following formulas:

V (U ; t) = 1,(1)

t−1V (L+; t)− tV (L−; t) = (t1/2 − t−1/2)V (L0; t),(2)
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where U is the unknot and (L+, L−, L0) is a skein triple, which is an ordered set

of three oriented links that are identical except near one point where they are as

in Fig. 1.

L+ L− L0

Figure 1. A skein triple.

Let V (t) be the Jones polynomial of a knot K. Then we have the following

evaluations:

V (1) = 1,(3)

V ′(1) = 0,(4)

V (e2πi/3) = 1,(5)

V (i) = ±1,(6)

V (eπi/3) = ±(i
√
3)d,(7)

V (−1) ≡ 0 (mod 3d),(8)

where V ′(1) is the value of the first derivative at t = 1, and d = dimH1(Σ2(K);Z3)

with Σ2(K) the double covering space of S3 branched over K. Equations (3)–(5)

follow from the fact that V (t)−1 is divisible by (1−t)(1−t3) [6, Proposition 12.5];

cf. [5, Theorem 1]. Equation (6) follows from V (i) = (−1)Arf(K), where Arf(K) is

the Arf (or Robertello) invariant of K [8, 12], cf.[6, (12.6)]. Note that Arf(K) ≡
a2(K) (mod 2) and that a2(K) = −V ′′(1)/6 [11], where a2(K) is the second

coefficient of the Conway polynomial of K. Equation (7) is proved in [8]. Since

|V (−1)| is the determinant of K, that is, |H1(Σ2(K);Z)|, we obtain Eq. (8).

3. Proof of Theorem 1.1

First, we prove for span ≤ 4 (Corollary 1.2). Let V (t) = tr(c0+ c1t+ c2t
2+ c3t

3+

c4t
4), where r, c0, c1, c2, c3, c4 ∈ Z. Then using Eq. (3), we obtain

c0 + c1 + c2 + c3 + c4 = 1.(9)

Using Eq. (4), we obtain r(c0 + c1 + c2 + c3 + c4)+ (c1 +2c2 +3c3 +4c4) = 0, and

so

r + c1 + 2c2 + 3c3 + 4c4 = 0.(10)
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Let ξ = e2πi/3. Then we have

(11) V (ξ) =

⎧⎪⎨
⎪⎩

(c0 − c2 + c3) + (c1 − c2 + c4)ξ if r ≡ 0 (mod 3),

(−c1 + c2 − c4) + (c0 − c1 + c3 − c4)ξ if r ≡ 1 (mod 3),

(−c0 + c1 − c3 + c4) + (−c0 + c2 − c3)ξ if r ≡ 2 (mod 3).

Using Eq. (5), we have

c0 − c2 + c3 = 1, c1 − c2 + c4 = 0 if r ≡ 0 (mod 3),(12)

−c1 + c2 − c4 = 1, c0 − c1 + c3 − c4 = 0 if r ≡ 1 (mod 3),(13)

−c0 + c1 − c3 + c4 = 1, −c0 + c2 − c3 = 0 if r ≡ 2 (mod 3).(14)

Since

(15) V (i) = ir((c0 − c2 + c4) + (c1 − c3)i),

using Eq. (6), we have

c1 − c3 = 0, c0 − c2 + c4 = ±1 if r ≡ 0 (mod 2),(16)

c0 − c2 + c4 = 0, −c1 + c3 = ±1 if r ≡ 1 (mod 2).(17)

Since V (t) �= 0 by Eq. (3), we may assume c0 �= 0. Then, we obtain

(18) (r, c0, c1, c2, c3, c4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 1, 0, 0, 0, 0) if r ≡ 0 (mod 6),

(1, 1, 0, 1,−1, 0) if r ≡ 1 (mod 6),

(−4,−1, 1, 0, 1, 0) if r ≡ 2 (mod 6),

(3, 1, 1, 0, 0,−1) if r ≡ 3 (mod 6),

(−2, 1,−1, 1,−1, 1) if r ≡ 4 (mod 6),

(−7,−1, 0, 0, 1, 1) if r ≡ 5 (mod 6).

The solutions (3, 1, 1, 0, 0,−1) and (−7,−1, 0, 0, 1, 1) give the polynomials ϕ(t) =

t3+ t4− t7 and ϕ(t−1) = −t−7+ t−4+ t−3, respectively. However, they cannot be

the Jones polynomials of knots. In fact, ϕ(eπi/3) = −2− i
√
3, which contradicts

Eq. (7). The other solutions yield f1(t), f2(t), f2(t
−1), f3(t).

Next, we prove for span 5. Let V (t) be the Jones polynomial of a knot with

span 5. By using Eqs. (3)–(7), V (t) is one of the following polynomials: fk(t),

fk(t
−1) (k = 5, 6, 7), ψ(t, a), ψ(t−1, a), where

(19) ψ(t, a) = t6a−4(a+ at2 − at3 + t4 − at5),

with a = (1 ± (i
√
3)d)/2, d ∈ Z≥0. Since a is an integer, d should be even. For

(d, a) = (0, 0) and (0, 1) we have ψ(t, 0) = 1 and ψ(t, 1) = f4(t), respectively. For

(d, a) = (2, 2) we have ψ(t, 2) = f8(t). For (d, a) = (2,−1) we have ψ(t,−1) =

t−10(−1− t2 + t3 + t4 + t5) and ψ(−1,−1) = −3, contradicting Eq. (8). If d ≥ 4,

then ψ(−1, a) = 4a+ 1 = 3± 2 · 3d/2 �≡ 0 (mod 3d/2), contradicting Eq. (8).
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The proof for span 6 is similar, and so omit it. This completes the proof of

Theorem 1.1.

Remark 3.1. There is no knot with up to 18 crossings whose Jones polyno-

mial is f8(t) or f19(t) listed in Table 1. However, V (12n 850) = V (41)f19(t).

A knot with Jones polynomial f8(t) or f19(t) should be neither almost alter-

nating nor of Turaev genus one; for f8(t) this follows from [3] and for f19(t) from

[10].

Question 3.2. Does there exist a knot whose Jones polynomial is f8(t) or

f19(t)?

4. Polynomials with span ≥ 7

For the polynomials with span ≥ 7 satisfying Eqs. (3)–(8) we have the following.

Theorem 4.1. For each integer n ≥ 7 there exist infinitely many polynomials

V (t) ∈ Z[t±1] with span n satisfying Eqs. (3)–(8).

Proof. First, we consider n = 7. The polynomial with span 7

(20) V (t) = t6a
(
1 + a(1− t)(1 + t2)(1− t+ t2)(1 + t+ t2)

)
,

a ∈ Z \ {0,−1}, satisfies Eqs. (3)–(8). In fact, V (i) = (−1)a, V (eπi/3) = 1 and

V (−1) = 1 + 12a ≡ 1 (mod 3).

Suppose that n ≥ 8. The polynomial

(21) V (t) = 1 + (a+ t+ t2 + · · ·+ tn−8)(1− t)2(1 + t2)(1− t+ t2)(1 + t+ t2),

a ∈ Z, satisfies Eqs. (3)–(8). In fact, V (eπi/3) = 1 and V (−1) = 24a+12(−1)n −
11 ≡ 1 (mod 3). Note that for n = 8 the span of V (t) is 8 if a �= 0, −1, and for

n ≥ 9 the span of V (t) is n if a �= −1. �

Remark 4.2. We found the polynomial V (t) in Eq. (20) in a similar way to

the proof of Theorem 1.1, and V (t) in Eq. (21) using Theorem 2 in [1].

The polynomial V (t) in Eq. (20) with a = −1 is f10(t
−1) in Table 1, which is

V (62!). The polynomials V (t) in Eq. (21) with (a, n) = (1, 8), (−2, 8), (−3, 9) are

V (12n 838), V (12n 730), V (11n 178), respectively.

Question 4.3. For each integer n ≥ 7 do there exist infinitely many knot

Jones polynomials with span n?
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