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§1. Introduction

This paper is concerned with the existence of solutions of the boundary value
problem

( 1 ) x,/:f(t, X, x’)a
(2) x(0)=a, x(1)=b,

where x is an n-vector and the prime denotes differentiation with respect to ¢.

Scorza-Dragoni [17] first proved that the equation (1) has a solution satisfying
(2) for arbitrary a and b whenever f: IX R" X R*—R" is bounded and continuous,
where and through this paper /=[0, 1]. Hartman [5] (or refer to [6]) obtained an
existence result for the problem (1)~(2) by imposing growth conditions on f which
yield a priori bounds of x'(¢) in terms of a bound of x(¢). Such an idea had been
found out by Nagumo [13] in 1937 for scalar second order equations. Hartman’s
result has been developed by Bernfeld, Ladde and Lakshmikantham [1], Lasota and
Yorke [10], Schmitt and Thompson [16] and so on.

In the case where n=1, Nagumo [14] has obtained a beautiful existence theorem
for the problem (1)~(2). We have extended his result in [8, 9] by using topological
properties of solution curves. In this paper, we consider a further extension of the
result to vector equations. Our main theorem is Theorem 3 in Section 4, and the
proof is based on the degree theory for a certain class of set-valued mappings which
will be called regular mappings.

§2. Regular mapping and the degree

For a set AC R™, we use the following notations; A4 is the closure, 4 is the
boundary and co A4 is the convex hull. Furthermore, we set

Comp (R™)={A4: A is a nonempty compact set in R™},
Conv (R™)={A4 ¢ Comp (R™): 4 is convex}.
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By Caratheodory’s lemma (refer to [4, p. 28]), co A4 is written as

co A:{f rpit i ri=1,r=>0,p, e 4, i=0,1, ---, m}
1=0 1=0

Therefore, if A is compact, then so is co 4. Let M be a metric space, and let
C(M, R™) be the set of all continuous mappings from M into R™. For a given map-
ping @: M—Comp (R™), @*: M—Conv (R™) denotes the mapping defined by @*(x)
=co @(x) for x e M, while 4(®) denotes the set of all sequences {@,} in C(M, R™)
satisfying the following condition:

(R) If{®,} is a subsequence of {@,} and if {x,} is a sequence in M converging
to an x in M, then the sequence {@, (x,)} contains a subsequence which converges to
some point in @(x).

The element {@,} of A(®) will be called an approximate sequence of @. A map-
ping @: M—Comp (R™) is called upper semicontinuous if, for every x e M and an
open set ¥ containing @(x), there exists a neighborhood W of x such that @(W)CV,
where O(W)= U{0(»): y e W}. Itis clear that if @ is upper semicontinuous, then
so is @*.

Cellina [2] has proved the following lemma (see also [3, Lemma 1]).

Lemma 1. If®: M—Conv (R™) is upper semicontinuous and if M is compact,
then A(D) is nonempty.

Let D be a bounded and open set in R™, and let @: D—Conv (R™) be upper
semicontinuous. Applying Lemma 1, Cellina and Lasota [3] defined the degree of @
by

koo

for a point p e R™\@(@D) and a {@,} € A(D), where d(D,, D, p) is the degree of the
continuous mapping @,, refer to [11] or [15]. This statement involves that

(i) the limit in the right hand side of (3) exists for every {@,} € A(D) and it is
independent of the choice of {@,},

(ii) d(@, D, p)=0 implies p e (D),

Gii) if @(., -): IxD—Conv(R™) is upper semicontinuous and if p €
R™\@(1, 8D), then d(@(0, -), D, p)=d(@(1, -), D, p),

(iv) for @ satisfying @(x)={x} on D, d(@, D, p)=1 if and only if p e D.

Hukuhara [7] and Ma [12] have also introduced the same degree as in the above
by different approaches from that in [3].

A mapping @: M—Comp (R™) is said to be regular if A(®) is nonempty.
Lemma 1 shows that an upper semicontinuous mapping from M into Conv (R™) is
regular when M is compact.
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Lemma 2. Consider a mapping ®: M—Comp (R™). If there is a ¢ ¢ C(M, R™)
such that ¢(x) e O(x) for all x € M, then @ is regular. Conversely, if @ is regular and
single-valued, @(x)={¢(x)}, then ¢ ¢ C(M, R™).

Proof. The first assertion of the lemma is clear since the sequence {@,} in
C(M, R™) defined by @,=¢ satisfies (R). We prove the last assertion. Suppose that
$ is not continuous. Then there exist ¢>>0, x ¢ M and a sequence {x;} in M con-
verging to x such that |¢(x) —¢(x,)|=¢ for all j, where|.|is any norm in R™. Let
{0,} e A(D) be fixed. By (R), the sequence {@,} converges to ¢ at every point in M,
and hence there exists a subsequence {@,} of {@,} satisfying |D (x;)—¢(x,)|<1/j for
all j. Therefore we have ¢ <|¢(x) — ¢(x;)| <|$(x) — Dy (x,)|+1/j. On the other hand,
by using (R), we have |¢(x)— D, (x,)|—0 as j—oc by taking a subsequence if neces-
sary, a contradiction. q.e.d.

The following lemma is trivial.

Lemma 3. (a) For mappings @, ¥: M—Comp (R™), we have A(Q)C AT if
O(x)CW(x) for x e M. Especially, if @: M—Comp (R™) is regular, then O*: M—
Conv (R™) is regular.

) If O(-, -): IX M—Comp (R™) is regular, then @(t, -): M—Comp (R™) is
regular for every t e L.

(©) Let M, and M, be metric spaces. Suppose that g,: M,—M, and g,: R™—R"
are continuous and that @: M,—Comp (R™) is regular. Then the composite mapping
g, 0P og: M,—Comp (R"™) is regular.

Examining the arguments in Cellina and Lasota [3], we can generalize the con-
cept of the degree for a regular mapping by (3) if p € R™\@*(8D), and we can obtain
the following theorem.

Theorem 1. (a) d(@, D, p)=+0 implies p € O(D) whenever ®: D—Comp (R™) is
regular.

(by If &(-, -): IXD—Comp (R™) is regular and if p e R™\@*(I, aD), then:
d(®(0, -), D, py=d(9(1, -), D, p).

Remark 1. Clearly, we have
(4) d(@, D, p)=d(®*, D, p)

for a regular mapping @. Even if @ is not regular, @* may be regular, which suffices
to define d(@, D, p) by (4). In this case, we cannot conclude that p e @(D). under
d(®, D, p)+0, though d(®@, D, p)=+0 implies p e @*(D). This is seen in the following
example. ‘ ‘
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Example. Let D=(—1, 1), and let @: D—Comp (R) be the mapping defined
by &(x)={x/|x|} for x=£0 and #(0)={—1, 1}. Then & is upper semicontinuous, and
hence @* is regular. Since ¢*(@D) does not contain 0, d(d*, D, 0) is defined.
Clearly, the sequence {@,} in C(D, R) defined by

1, 1k<x<l1,
B, (x)={kx, —Vk<x<1Jk,
1 —l<x<—1/k

is an approximate sequence of @*. Therefore we have d(@*, D, 0)=1 and 0 € §*(D),
while 0 ¢ @(D).

§ 3. Solution mapping

Consider a differential equation
(E) x'=h(t, x),
where &: I X R™—R™ is continuous, and assume that
© every solution of (E) is continuable over I.

A subset S of IX R™ will be called a positively invariant set of (E) if every solu-
tion curve of (E) starting from a point in S remains in S on its right maximal interval
of existence, that is, if every solution x of (E) satisfies (z, x(¢)) ¢ S for <7< 1 when-
ever (z, x(z)) € S for some = € I. Clearly, the intersection and the union of positively
invariant sets are positively invariant. Similarly, the concept of the negatively in-
variant set of (E) is defined.

For (z, §) e IX R™, we put

(5) O(z, £)={x(1): x is a solution of (E) satisfying x(z)=¢}.

Then, by well-known Kamke’s theorem (see [6, Theorem 3.2, p.p. 14-15]) and the
assumption (C), 9(z, &) is a compact set in R™, and we have the following theorem.

Theorem 2. The solution mapping @: IX R™— Comp (R™) defined by (5) is
regular, and it satisfies that ®(1, £)={&} for & e R™.

Proof. 1t is well-known that the mapping % in the equation (E) admits a
sequence {A,} in C(IX R™, R™) with the following properties:

(Al) {h,} converges to A uniformly on every compact set in 7X R™.

(A2) Every solution of

(Ev) x'=h(t, x)
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is uniquely determined by initial data and it is continuable over I for k=1, 2, - - -.
Let @,: I X R*—R™ be the mapping defined by @,(z, &)= x,(1) for each k, where
x, is the solution of (E,) satisfying x,(r)=¢. Then @, are continuous. It follows
from (A1) and Kamke’s theorem that the sequence {@,} satisfies (R) if M=IX R™ in
(R). Therefore @ is regular and {@,} ¢ 4A(D).
The last assertion of the theorem is clear. q.e.d.

§4. Boundary value problems

In this section, we give an existence theorem for the problem (1)—(2). The equa-
tion (1) is equivalent to the system

(6) x/=y, y,:f(t’ x’y)-

Let /=0, 1] and J={1, 2, - - -, n}. For two vectors x and y in R", we write
x<y when x,<y, holds for each i ¢ J, where and hereafter the suffix ; denotes the
i-th component of a vector, and hence i runs over the set J. The scalar product of
x and y will be denoted by {x, y), thatis, (X, yY>=D>c; X Vi

For given twice continuously differentiable functions e, 8: I—R" satisfying a(z)
<B(t)onlI, set

o={(t, x) e IXR": at) <x < B()}-
Let 2 be the compact set defined by
Q={ x,y) e o XR": (8, )< y<+(t, X},

where ¢ and + are continuously differentiable functions from o into R* satisfying
&(t, x) <(?, x) on . We assume that the function f in the equation (6) is defined
and continuous on £2.

Theorem 3. Suppose that the following inequalities hold on @ or on £ for each
iel;

(7) a(z¢t, x) I xi=ay2),
(8) BO=v(t, x) i x;=B:(2),
(9) Oz flt, x,y) I xi=aft), yi=ai(t),
(10) BIO=Slt, x, ) if x;=pt), y=pA0),

an Sl x Nz Db, 3)  Fr=4ie ),

I R ARG VCE ) S AR ()
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Then, for a given b € R* with a(1)<b< (1), the equation (6) has at least one solution
(x, y) defined on I which satisfies x(1)=>b and

(13) C(x(@), yt)eR  fortel
In particular, if a(0)=a= B(0) holds, then the solution satisfies (2).

Remark 2. The condition (9) will be meaningless when the set {(f, x, y) € £:
x;=ayt), y;=af(t)} is empty. This is similar for the condition (10).

Proof. The proof is fairly complicated and lengthy, so we proceed in the seven
steps.

Step 1. We shall construct a bounded and continuous extension F: I XX R X R*
—R" of f so that the following inequalities hold for each i e J;

(14 a/(O>F(t, x, ) if x,<a(t), y,=al?),

s BI)<F(t,x,y) ifx,>p.t), yi=pBit),

(16) F(t, x, = flt, x,9) for (£, x,y) e o XR", y,Z¢4(t, %),
17 Ft, x , <[t x,§) for (1, x,y) e o X R", y,=¥t, x),

where j is the vector with the j-th component, j € J, defined by

@4(t, X), yj<¢j(t’ x),
(18) ij: yjs ¢j(t’ x)é yjé@’"j(t’ x):
V(2 X), ;> (2, %)

which depends on #, x and y.
First of all, for each i e J, we shall define F; on the domain

Vi={(t, x, ) eoXR": ;e R, ¢,t, x)Zy;<+¥,(t,x) forjeJ\{i}}

so as to satisfy

19 a/()=F(t,x,y)  onA,

(20) Bi/)SF{t,x,y) onB,

@1 F(t,x,p)=zft,x,) onV;
and

(22) F(t, x, <f{t,x,)  onVy,

where
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A, ={t, x,y) e Vi x,=a,(t), y;=0ai(1)},

Bi={(t, x, y) € Vi: x;=B:2), y:=Bi(t)}

Vi={tx) e Vi y:<gt, x)},

Vi={{t x,p) eV y >t x)}.
Here, notice that V;,=V; UL U V; and that the inequalities (19) and (20) are already
satisfied on 4, N £ and on B, N 2, respectively, by (9) and (10). Therefore, since 4,
cRUV; and B,CQ2U ¥; by (7) and (8), it is not difficult to obtain a bounded and

continuous extension F; of f; on the domain ¥V, which satisfies (19) through (22).
For an arbitrary (¢, x, ¥) € o X R*, define F,(¢, x, y) by

Fi(t: Xy y):‘Fz(t’ X, j}*):

where $*=(P¥, - - -, §¥) with p¥=y, and ¥=9, given by (18) for j e J\{i} which
depends on i, t, x and y. Here, we note that (¢, x, 7*) belongs to V,. Finally, for
an arbitrary (¢, x, y) e IXR*X R"* and i € J, we set

F(t, %, y)+ﬂ’f%%,- x> B1),

Fi(t9 X, J’)Z Fi(ta X, y)5 ai(t)éxi éﬁz(t)a

Ft, %, y)— a ) —x;
z(t X y) l—l—ai(t)—-xi’ xi<ai(t)n

where % is the vector with the j-th component, j € J, defined by
B4, x> pi(1),

(23) X;=19%X; o, () <x; < B,(2),
(), x;<ay(t)

which depends on ¢ and x. Here, we note that (7, %, y) belongs to w X R*. It is easy
to see that F(z, x, y) satisfies all required conditions.

Step 2. Instead of the equation (6), we consider the equation
(24) x':y’ y,:F(t’ X, J’)

The boundedness of F assures that every solution of (24) is continuable over I. Sup-
pose that (x, y) is a solution of (24) satisfying x,()<a.(t) and y,(t)=a;(t) for some
ieJand t eI Then, by (14), we have

yi)=F(t, x(t), y@)<e/(1).

Therefore we can easily observe that
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N,={({t, x,y) e IXR*X R": x,<a,(1), y,>ei(t)}
is a negatively invariant set of (24) for each i ¢ J, while

P,={(t, x,y) e IXR"X R": x,<a(t), y; <c(t)}
is a positively invariant set of (24). Similarly, by (15),

M ={(t, x, y) e IXR"XR": x,> (1), y: < 1)}
and

Q:={(t, x, y) e IXR*X R": x,> (1), y:=pi(t)}

are, respectively, a negatively invariant set and a positively invariant set of (24).
Let X, i e J, be the set defined by

Xiz{(ta xa y) € IX Rann az(t)gxt_g_ﬁz(t)}

‘Then the outside of X is the disjoint union of P,, Q,, N, and M,. Since M,U N, is
negatively invariant, the set ¥,=P,U X, U Q, is positively invariant. Therefore the
intersection Y= N{Y,: i € J} is positively invariant.

Step 3. Let e and § be arbitrary fixed numbers such that 0<e<§<{1. Then
we shall obtain a continuous mapping p: [¢, 8] X R*—R" which satisfies

25) (1, )=p(t, )<Y(t, x) for (t,x) cw,  e<t=<0
and
(26) & x,p0(t,x)eY for (¢, x) € [¢, ] X R™

Let C: {(¢, x) € : e<t<5}—R" be the mapping such that the i-th component
Cy(t, x) is linear in x, and satisfies C,(¢, x)=min {a;(z), ¥, x)} at x;,=a(?),
=max {B{(1), ¢t, X)} at x,=p.(t). Since aj(t)=p}(t) when a,(t)=p(t) for some
t e [e, 8], Ci(t, x) turns out to be continuous by (7) and (8) if we set Cy(t, x)=al(?)
when «;(2)=p4(t). Define p;: [¢, 5] X R*—R, i e J, by

¢, %), Ct, )<dt, %),
pi(ts x): Cz(t’ X‘), ¢z(t3 )_C)écz(ts )_C)é"t’/'z(ta )_C):r
":”i(ta J—C)a 1I/'i(t’ )—C)< Cz‘(t, X),
where x is the vector given by (23). Then we can easily see that p is continuous and
satisfies (25). When x,<<a,(t), we have C,(¢, X) <r,(t, X) since X,=a,(¢), and hence
22, x) =max {¢,(t, X), Ct, )} <ai(t) by (7). Consequently, we have (7, x, p(t, x))
€ P, if x,<<a(t). Similarly, we have (z, x, o(¢, x)) € Q, if x,>B,(t). Thus, (¢, x.
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p(t, x)) belongs to ¥, for each i € J, namely, (26) holds.
By Theorem 2, the mapping @: [e, 8] X R* X R"—Comp (R™ X R") defined by

O(z, &, p)={(x(5), ¥(d)): (x, y) is a solution of (24) through (z, &, )}

is regular. We define two continuous mappings 7: [e, ] X R*—[e, 6] X R* X R” and
m: R*X R">R" by 1(t, x)=(t, x, p(¢, x)) and n(x, y))=x. By Lemma 3 (c), the com-
posite mapping ¥'=n o Do y: [¢, 5] X R"—Comp (R") is regular.

Step 4. Let r be a number satisfying r > max {|ee,(2)|, | f?)|: e <t <6, i e J}, and
let D be the set defined by
D={xeR*:|x;|<rforallieJ}.

Then D is a bounded open set in R”. The restriction of ¥ to [e, 6] X D, denoted by
¥ again, is regular. By the assumption, there exists a continuous mapping p: I—R™
satisfying p(1)=>5 and

@7 at)=p)<p(z)  onl
We want to prove
(28) d@(, +), D, p(9)=1.

The definition of r and (27) imply that p(§) € D. Clearly, ¥ satisfies that ¥(3, x)=
{x} for all x in D, and hence we have d(¥'(3, -), D, p(d))=1.

Let (¢, x) be an arbitrary point in [¢, 5]X0D. Then we have that |x;|=r for
some i € J. First, consider the case where x,— —r. As was seen in Step 3, we have
7(t, x)=(t, x, p(t, x)) € P, because x,= —r<a,(¢). Since P, is positively invariant,
the set ¥'(¢, x) is contained in the convex set {x € R": x,<a,(6)}. Therefore we have
U*(t, x)C{x e R*: x;<a,(d)}. Similarly, in the case where x,=r, we have ¥*(z, x)
C{x e R*:x,>p,0)}. It follows from (27) that ¥*(z, x) does not contain p(9) for
all (¢, x) € [¢, 8] X 8D, namely,

p(®) € R"\¥*([e, 6], aD).

By Theorem 1 (b), we obtain that (¥ (s, -), D, p(3)=d(¥(s, -), D, p(5)). Thus, (28)
is proved.

Step 5. It follows from (28) and Theorem 1 (a) that there exists a & € D satis-
fying p(d) € T(e, £). In other words, the equation (24) has a solution (x, y) such that

(29) x€)=¢  We)=ple, &)
and that x(0)=p(5). We show that the solution satisfies

(30) a)=x()<p()  onle,dl.
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By (26) and (29), we have (¢, x(e), ¥(¢)) € Y. If the solution does not satisfy (30),
then the solution curve enters P, U Q, for some i e J because Y is positively invariant.
Namely, there exists a ¢ & [¢, §] such that (¢, x(¢), y(¢)) e P,UQ,. Since P,UQ, is
positively invariant, either x,(5)<<@,(d) or x,(8)>54) holds. This contradicts x(5)
=p(6) and (27), and hence we have (30).

Step 6. 'We shall prove that the solution satisfies
1€1)) (t, x(2), p(t)) e 2 on [e, 8].
Suppose that (31) is false. Then there exists a subinterval [e, ] of [e, 5] such that
(32 (0, x(0), M) € 2, (£, x(2), ¥(2)) ¢ £ for o<1,

where we note that (e, x(¢), y(e)) € 2 by (25), (29) and (30).

Let U: {(t, x, ») e w X R*: ¢ <t<7}—R be the mapping defined by U(z, x, y)=
ZiEJ diSt (yw [¢z(ta x): "!"z(ta x)])s namely,
(33) U(ta X, J’)Z EZG: [¢z(ta x)_yz]+ ;{ [yz_‘l"z(t’ .XT)],
where G,={i e J: y,<¢(t, x)} and Hy={i e J: y,>,(t, x)}, which depend on ¢, x
and y, and we understand that for empty G, or H, the corresponding sum makes

zero. It is clear that U(z, x, »)=0 if and only if (¢, x, ) € £. Along the solution
curve, put

u(t)=U(t, x(2), ¥(1)) fore<t<n,

where we note (30). Since clearly U is Lipschitz continuous in (z, x, y), u is absolutely
continuous. The relation (32) implies #(¢)=0 and u(¢) >0 for 6<t<<.
We show that u satisfies

39 log u(z)—log u(s) <nK(z —s) for e <<s<7,

where K=max {|(8/0x,)¢.(, x)|, |(@/ox ¥t x)|: (t, x) e w, i, j € J}. We put

re.xy =3 {5 (2 46 9)g09-)

i€Go Li€Go \ 0X;

+j§10 ( ai b2, x))[llfj(f, x)—'yj']}

J

+ 2 {3 (e )~ e 0]

i€Go \ OX

+ 2 0
X

j€Hs \ 0

Pilts ), =t 20},
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where G, and H, are those as in (33). Then I” is continuous and satisfies |I'(z, x, )|
<nKU(t, x, y), and hence

(35 [ I°(t, x(2), y(t))| <nKu(t) for e <t<x.

Let s be fixed with 6<s<{z. Then we have u(t)>0 on [s, z] and the function
(2

36) ut)=log u(t)+'[s I'(w, x(w), p(w))dw[u(w)

is absolutely continuous on [s, z]. Differentiating (36), we have

(37 U )=w'()+I'@, x(2), yt))  ae. onls, ).

We want to show that x/(£)<0 a.e. on[s, z]. Let ¢ ¢[s, ] be fixed. Then there
exist two subset G and H of J and a sequence {v,} of nonzero numbers such that

limy,=0, s<t4y, <t fork=1,2,...

k— oo

and that u(f) is expressed in

(38) u@)= §6[¢i(0, x(0)—y0)]+ ;H [yi0) — 0, x(6))]
for =t, t+y,, k=1,2, ---. Clearly, G,CGC{ie J: y,(t)< (¢, x(¢))} and H,C H

C{ieJ: yt)=+(t x(¢))}. Here, we emphasize that G and H do not depend on 4.
Therefore I'(z, x(¢), y(¢)) is expressed in

2. X[ 1) 3,0

(e, (1), )=3 {];G [ 5

+ 3 [ 2 st son vt xon —», 001}

(39) jeH aaxj
+ 5 {5 [0 x@n |-, x0)
1€H \jeG 7

+ 5 [L2 0 x| — e xo).
‘When u is differentiable at ¢, the equality «/(z)=lim, .., [u(t+v,)—u(t)]/v, and (38)
imply
w0 u/(t)zi;; _aaT¢i(t, x(t))+<aix¢i(t’ x(1)), y(t)>— Ft, x(t), y(t))}

+ 35 (R 50, 00—t M) (T 50, 0}

Substitute (39) and (40) into (37). Then a direct calculation gives
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el = 5 {24t xO)+(2 g0 X, 50— 00, 10}

QY 3

ot

+ 3[R 50,300 = 24 5O~ (Lv it 50, 50

)

where () is the vector given by (18) with x=x(¢). By (16) and (17), we have

(42) Ft, x(t), y) = fit, x(2), §(¢)), forieG
and
43) Fi(t, x(2), YD) < fi(t, x(1), (1)), forie H.

It follows from (41) through (43) that

0
0x

w05 5 {20030+t 20), 50 )= 16 X0, 5O}

o 0 0 .
+ 2 {0300, 50OV =2t OV~ (Lt 50, 50

Therefore, by the assumptions (11) and (12), we obtain that u(t)y/(z) <0 because p,(¢)
=2, x(2)) for i € G and P,(t)=+(¢, x(¢)) for i e H. This implies ¢/(¢)<0 a.e. on
[s,7}. Thus, we have u(z)— u(s)<0. On the other hand, it follows from (35) and
(36) that

(z)— pfs)=log u(z)— log u(s)+ L I'(w, x(w), y(w))dw[u(w)
=log u(z)—1log u(s) — nK jt dw,

and hence we obtain (34).
Making s—o in (34), we arrive a contradiction since the left hand side of (34)
tends to -+ oo (note u(e)=0). Thus, we have (31).

Step 7. Let {¢,} and {5,} be two sequences in the open interval (0, 1) such that
lim, ... e,=0 and lim,_., 6,=1. As was seen in the above argument, for each integer
k, the equation (24) has a solution (x*, y*) which satisfies x*(5,)=p(d,) and

(44) (5, x*(t), y* () e 2 onle, o)

We may assume that (x¥, y*) are defined on I because every solution of (24) is con-
tinuable over I. Since @ is compact and F is bounded, the family {(x*, y*): k=
1,2, - - -} is uniformly bounded and equicontinuous on /. By taking a subsequence
if necessary, we may assume that {(x*, y*)} converges to a solution (x, y) of (24) uni-
formly on I. Since x*(§,)=p(,)—b as k—>oo, we have x(1)=». Furthermore, we
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can conclude that (13) holds by (44). At the same time, this shows that (x, y) is a
solution of (6). This completes the proof.
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