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Flexible Optical Tactile Sensor With CNN-Based

Calibration for Robust

Pressure Estimation

Kosuke Ando™, Hiroshi Kawaguchi*’, Member, IEEE, and Shintaro lzumi*', Member, IEEE

Abstract—Accurately estimating pressure without interfer-
ing with natural tactile perception remains a critical challenge
for wearable tactile sensors, whose outputs are often affected
by attachment conditions and individual variability. Here,
we present a flexible optical tactile sensor that estimates
pressure from optical signals reflecting both skin deforma-
tion and hemodynamic changes. To enhance robustness and
generalization across different placements and users, a con-
volutional neural network (CNN)-based calibration framework
was developed. The sensor is less than 150 um thick and
features a perforated architecture that reduces perspiration
effects while maintaining comfort and stable contact during
long-term use. Experiments conducted on multiple fingers
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across a 0-100 kPa (0—4 N) range demonstrated stable and accurate pressure estimation, with consistent performance
maintained after reattachment and across subjects. These results confirm that the CNN calibration effectively compen-
sates for placement- and subject-dependent variability. Moreover, characteristic modulations in the optical response
associated with blood-flow dynamics were observed under loading, indicating the capability to simultaneously capture
mechanical and physiological information. Overall, the proposed optical tactile sensor with CNN-based calibration
provides a promising platform for quantitative tactile sensing in wearable devices, human-robot interaction, and

biomedical applications.

Index Terms— Force sensor, haptics, optical sensor, tactile.

[. INTRODUCTION

ITH the rapid advancement of wearable devices and

bioinstrumentation, there is growing interest in sensing
technologies that can capture force and tactile information.
In fields such as medicine, rehabilitation, sports, and robotics,
noninvasive methods capable of continuously monitoring tac-
tile cues are particularly desirable. Consequently, the human
hand, rich in mechanoreceptors, has become a prominent
target for tactile measurement systems [1], [2], [3]. Cutaneous
mechanoreceptors distributed on and within the skin transduce
physical stimuli into neural signals, forming the basis of
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tactile perception and enabling the discrimination of texture,
temperature, and vibration [4], [5].

Conventional studies on tactile sensing have primarily
focused on quantifying deformation of the finger to infer
pressure and force direction. A wide variety of transduction
principles have been explored, including resistive, capacitive,
piezoelectric, optical, and camera-based methods [6], [7], [8],
[9], [10]. Among optical approaches, several studies have esti-
mated pressure and force direction by observing load-induced
color variations in the nail bed [11], [12], [13]. However,
such noninvasive techniques are typically limited to the nail
or fingertip and often pose challenges in terms of wearability.
In parallel, multimodal sensors that integrate tactile sensing
with hand-motion tracking or pulse-wave detection modules
have been developed, enabling simultaneous acquisition of
mechanical and physiological signals [14], [15]. Nevertheless,
these multimodal systems usually require dedicated modules
for each sensing function, which increases both the device
footprint and overall system complexity.

To overcome these limitations, we previously developed
an optical tactile sensor with a flexible architecture that can
be directly adhered to the skin and simultaneously capture
skin deformation and blood-volume changes by exploiting
variations in near-infrared (NIR) light scattering and absorp-
tion [16]. When mounted on the dorsum of the hand,

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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the sensor enables tactile-force measurement without impeding
natural sensation. The device consists of an NIR light-emitting
diode (LED) and a photodiode (PD) mounted on a flexible
printed circuit (FPC) substrate, ensuring conformal skin con-
tact. A portion of the emitted light is reflected at the skin
surface, while the remainder penetrates into the tissue; photons
that are scattered but not absorbed reemerge and are detected
by the PD. External loading deforms the skin and alters both
the optical path and intravascular blood volume, thereby mod-
ulating the detected optical intensity and enabling inference
of applied pressure. Structurally, the device is analogous to
photoplethysmography (PPG) and oxygen-saturation (SpO-)
sensors, allowing the concurrent acquisition of pulse—wave
information [17], [18], [19], [20], [21]. Hence, a single nonin-
vasive architecture can simultaneously capture mechanical and
physiological signals, demonstrating both structural novelty
and the potential of this approach as a foundational technology
for tactile sensing.

Despite these advantages, practical implementation is still
hindered by considerable variability in sensor output due to
differences in placement and individual physiological factors,
which complicate accurate pressure estimation. Finger size,
hemodynamic state, and sensor misalignment are particularly
influential; therefore, calibration is indispensable to compen-
sate for these effects [22], [23], [24], [25].

Traditional calibration methods have relied mainly on
physics-based models. While effective under controlled con-
ditions, such approaches depend strongly on sensor geometry
and material properties, and often lack generality when envi-
ronmental or intersubject variations are introduced. To address
this, machine-learning and deep-learning-based calibration
techniques have gained attention for their ability to flexibly
compensate for nonlinear and subject-dependent variabil-
ity. Prior studies have applied methods such as linear
regression, random forests, and support vector machines
(SVMs) [26], [27]. More recently, deep learning architec-
tures, particularly convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), have shown strong poten-
tial for tactile sensing applications. In particular, CNNs
are well suited to scenarios involving complex physiolog-
ical signals, as they efficiently extract local features from
multichannel inputs and can process entire time series in
parallel [28], [29], [30], [31], [32], [33].

Building on the operating principle of our flexible optical
tactile sensor, this study introduces a CNN-based calibration
framework that processes optical signals arising from skin
deformation and hemodynamic changes to enhance the sta-
bility and accuracy of pressure estimation. By integratively
analyzing deformation- and blood-flow-related signals, the
CNN automatically compensates for nonlinear and subject-
dependent characteristics, enabling robust and reliable pressure
inference. In doing so, the proposed approach endows the
optical tactile sensor with embedded calibration functionality,
demonstrating its practicality as a high-precision tactile-
sensing device.

Evaluations conducted across multiple fingers and subjects
confirmed that the proposed sensor maintained high esti-
mation accuracy and robustness across various loading and
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Fig. 1. Design of the flexible optical tactile force sensor. (a) Pho-

tograph showing the sensor attached to the dorsal side of the finger.
(b) Layer configuration illustrating the flexible architecture of the device.
(c) Arrangement of the NIR LEDs and PD used in this study. (d) Circuit
configuration for LED driving and signal acquisition. (€) Schematic of the
proposed sensing principle showing how applied pressure modulates
optical scattering and absorption within the skin.

attachment conditions. The CNN-based calibration enabled
stable pressure estimation despite differences in finger geome-
try, sensor placement, and individual physiology, demonstrat-
ing strong generalization and practical applicability.

By enabling simultaneous estimation of pressure and acqui-
sition of physiological signals, the proposed approach not only
improves sensing accuracy and reliability but also broadens
potential applications. In clinical contexts, concurrent monitor-
ing of contact pressure and pulse waveforms could facilitate
intraoperative assessment and rehabilitation. In sports, com-
bined analysis of grip pressure and heart rate variability
may contribute to performance evaluation and fatigue detec-
tion. Looking forward, the integration of time-series analysis
with multimodal learning on such multidimensional data are
expected to enable deeper interpretation of human behaviors
and physiological states, paving the way for an integrated
tactile-sensing platform.

I[l. METHOD

A. Design and Implementation of the Sensor

The device developed in this study builds upon the operating
principle of a flexible optical tactile sensor and integrates
a calibration function to enable high-accuracy pressure esti-
mation [Fig. 1(a)]. The sensing unit consists of a three-layer
structure composed of a NIR LED and a PD mounted on a FPC
substrate that conforms stably to the dorsal surface of the fin-
ger. A transparent urethane sheet is overlaid for encapsulation
[Fig. 1(b)]. We employed an 860-nm LED (CSLI1501RW1,
Rohm Semiconductor) and a PD with a comparable peak
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Fig. 2. Observation of optical changes under fingertip contact.

(a) Experimental setup using a transparent glass plate and a fingertip
contact to visualize deformation-induced optical variations. (b) Optical
images and corresponding intensity profiles for unpressed and pressed
states. A blurred fingerprint pattern is shown to prevent personal identi-
fication.

spectral sensitivity at 850 nm (VEMDS8080CT-ND, Vishay
Intertechnology). To capture the directional dependence of
skin deformation, the LEDs were arranged in a circular
configuration around a centrally placed PD, with a center-
to-center spacing of approximately 10 mm. This geometry
was optimized through prior evaluations of optical scattering
characteristics in both a skin phantom and the dorsum of the
hand, as described in [16].

Multiple LEDs were driven in a time-division manner to
acquire direction-resolved optical signals corresponding to
pressure-induced skin-tissue deformation and blood-volume
changes [Fig. 1(c)]. By rapidly switching among three states,
namely left-side LED on, right-side LED on, and all LEDs
off, we could demultiplex the contribution of each LED while
suppressing ambient-light interference through LED-on/LED-
off differencing [Fig. 1(d)]. The LED and PD exhibit response
times shorter than 10 us, allowing sensor operation at a
sampling rate of approximately 10 kHz. The optical path
and detection conditions differ between unloaded and loaded
states [Fig. 1(e)]. Under applied pressure, both scattering
and absorption increase, which modulates the signal intensity
detected by the PD.

Fig. 2(a) shows camera images of the contact region when a
fingertip presses against a transparent glass plate. Comparison
of cross-sectional intensity profiles between noncontact and
contact states reveals an increase in RGB intensity during
contact, which corresponds to a reduction in capillary blood
volume [Fig. 2(b)]. The cross section along B-B’ confirms
lateral expansion of the finger under applied load.

Several structural design considerations were implemented
to enhance conformal skin contact. The skin-facing inter-
face is primarily the FPC itself, minimizing the influence
of the relatively rigid LED and PD packages on surface
adhesion. The total stack thickness was maintained below
150 pm, allowing the device to conform to skin curvature
and deformation even under relatively high loads. Because
fingertips contain a high density of eccrine sweat glands,
perspiration can lead to delamination and optical artifacts
through additional scattering and absorption. To mitigate this,
a small aperture was introduced between the emitter and the
detector to promote sweat evaporation.
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Fig. 3.  Experimental setup for pressure measurement. (a) Sensor
mounted on the finger together with a reference force sensor for ground-
truth acquisition. (b) Structural components of the proposed sensor.
(c) Measurement system consisting of the drive circuit, data acquisition
unit, and personal computer. (d) Timing diagram of the LED and PD
operation for synchronized optical signal acquisition.

Rather than directly using the raw sensor output, the
device was designed with the assumption that multichannel
optical signals would be processed by a downstream CNN.
This approach compensates for variability arising from skin
properties and attachment conditions while maintaining high
pressure-estimation accuracy. In this sense, the device func-
tions not only as an optical tactile sensor but also as an
integrated tactile sensing system with a built-in calibration
capability.

B. Experimental Setup

To evaluate the performance of the proposed optical tactile
device with integrated calibration, we mounted the sensor
on the dorsal side of the finger and constructed an experi-
mental setup to apply known loads [Fig. 3(a) and (b)]. The
prototype device was connected to a measurement board
(AFE4403EVM, Texas Instruments) and interfaced with a
Windows PC for data acquisition [Fig. 3(c)]. Parameter control
and data logging were performed using a dedicated software
tool (SLAC672, Texas Instruments). Signals under LED-on
and LED-off conditions were sampled at 100 Hz for each
channel [Fig. 3(d)].

As a reference, a high-precision six-axis force sensor
(6DoF-P18, Touchence) was attached to the palmar side of
the finger and measured concurrently with the optical signals.
The contact area between the finger and the force sensor was
kept constant throughout the measurements. The sensor was
attached around the distal dorsal region of the finger, and
repeated measurements were conducted under multiple loading
conditions.
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Loading was applied along the surface normal over a range (a) DC AC Pulse
of 0-100 kPa (0—4 N). Because the maximum tolerable load Pressure. o [ Ampitude: z3zmv] | " = r—
£048 20302 E

depends on the measurement site, the upper limit was adjusted
based on local comfort and safety. Pressure was increased
stepwise, and each step was held for 30 s to ensure steady-
state acquisition. During measurements, the three-axis force
components (Fx, Fy, Fz) from the reference sensor were
synchronized with the optical channels (LED1 and LED2) to
enable correspondence analysis.

All experiments were conducted under quasistatic condi-
tions, with participants seated to minimize motion artifacts.
Before attachment, the skin surface was cleaned, and the
device was applied with visually aligned placement to emulate
practical usage. To evaluate robustness, small positional offsets
were intentionally introduced between repeated sessions. This
study was approved by the Ethics Committee of Kobe Uni-
versity and conducted in accordance with the Declaration of
Helsinki and institutional ethical guidelines.

C. Relationship Between Contact Force and Blood Flow

As shown in Fig. 2, increasing contact force deforms cuta-
neous tissue and simultaneously alters capillary blood volume,
both of which directly influence the optical signals acquired
by the sensor. The pressure-dependent dc component of the
optical signal increases with load and saturates beyond a
certain threshold [Fig. 4(a)]. This phenomenon has also been
observed in previous studies. Sakuma et al. [34] demonstrated,
using 3-D DIC measurements, that during pressing, the distal
phalanx pulls the central region of the nail downward, while
the subcutaneous tissue is displaced laterally and pushes up
the nail edge from below, thereby elucidating the mechanism
of fingertip tissue deformation under loading. Park et al. [35]
used a sensor that measures pressure based on the lateral
deformation of the finger pad and observed that the increase
in sensor output gradually decreases as the applied force
increases, quantitatively showing the saturation of fingertip
tissue deformation by performing calibration with an expo-
nential model. Shimawaki and Sakai [36] reported, through
finite-element analysis based on CT images that the contact
area rapidly increases in the low-load region and becomes
nearly constant in the high-load region, demonstrating that
the deformation of the skin and subcutaneous tissue saturates.
These findings indicate that a similar phenomenon is likely
occurring in this study. In contrast, the pulsatile ac component
initially grows in amplitude and then diminishes at higher
pressures as local perfusion decreases. Notably, the pulse rate
remains nearly constant across loading conditions, indicating
stable detection of pulsatile waves even under elevated pres-
sure. This confirms that the sensor can capture physiological
information concurrently with force evaluation.

External pressure affects not only amplitude but also the
morphology of the pulse waveform [Fig. 4(b)]. The left panel
shows that ac amplitude increases under light loads and
decreases at high pressures, while the right panel displays
normalized waveforms, revealing systematic variations in post-
peak decay characteristics as force increases. These trends
reflect the combined effects of tissue compression and altered
microvascular hemodynamics. Taken together, the proposed
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Fig. 4. Pressure-dependent optical response. (a) Variation of optical
signal components with applied pressure: the dc level increases and
gradually saturates, the ac amplitude initially rises and then decreases,
while the pulse rate remains nearly constant. (b) Relationship between
ac amplitude and pressure (left). Normalized pulse waveforms showing
characteristic changes in amplitude and morphology with increasing
pressure (right).

sensor captures both mechanical deformation and blood-flow
dynamics through its dual optical channels.

Accordingly, this demonstrates that local blood flow
changes induced by external forces can be detected nonin-
vasively, suggesting the potential for applications in medical
devices such as continuous blood pressure monitors and
pulse oximeters, including vascular compliance assessment
and compression-induced ischemia monitoring.

D. Data Acquisition and Preprocessing

This sensor exhibits structural characteristics in which its
output varies substantially due to individual differences such
as skin stiffness, geometry, vascular structure, and pulse—wave
morphology, as well as slight positional shifts that alter the
optical propagation path. Therefore, rather than constructing
a fully generalized model, it is reasonable to ensure stable
estimation accuracy by performing calibration and retraining
at each attachment. The use case assumed in this study
consists of the procedure from sensor attachment to the start
of estimation as step 1 through step 4, with removal of the
sensor included as step 5 in the overall sequence. An overview
of these steps is shown in Fig. 5(a). Step 1: The user attaches
the sensor to the measurement site using double-sided adhesive
tape. Step 2: Calibration data are collected for several minutes
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force estimation, and sensor removal. (b) Analysis pipeline for CNN-based calibration. Flow of data acquisition, preprocessing, feature extraction,

model training, and evaluation for pressure estimation.

using a reference sensor. Step 3: The collected calibration
data are used to retrain the 1-D CNN (1D-CNN) model. The
retraining time, including data transfer, is assumed to be within
approximately 3 min. Step 4: The retrained 1D-CNN weights
are applied to the sensor and estimation begins. Step 5: After
the desired measurement duration, the sensor is removed, and
the measurement is terminated.

To estimate contact force from the optical signals,
we employed a CNN model [Fig. 5(b)]. The LED signals were
preprocessed to extract dc and ac components. For each LED,
signals recorded during illumination were sampled at 100 Hz,
and ambient-light interference was removed by subtracting
those obtained during LED-off periods. This yielded signal
components attributable to tissue deformation and blood-
flow variation. Even in the absence of external pressure, the
signals exhibited pulsatile fluctuations corresponding to the
cardiac cycle.

The differenced data were processed in Python. A fourth-
order zero-phase Butterworth bandpass filter (0.05-30 Hz)
was applied to suppress low-frequency motion artifacts and
high-frequency noise. After windowing with a Hamming
function, a fast Fourier transform (FFT) was performed to
analyze spectral content, focusing on peaks within 0.5-
1.5 Hz, corresponding to heart-rate-related pulsations. The
dc component was obtained using a fourth-order low-pass
filter with a 0.1 Hz cutoff, while the ac component was
extracted using a fourth-order bandpass filter (0.5-5 Hz).
The ac primarily reflected pulsatile information (PPG-like),
whereas the dc captured baseline shifts associated with tissue
deformation. These were analyzed alongside the reference
forces (Fx, Fy, Fz7).

Beat peaks in the ac component were detected using a
Hilbert-transform-based squared envelope, smoothed with a
0.05-s window, and identified through a dynamic threshold

computed over a 0.8-s sliding window. To remove artifacts,
intervals within £3 s of points where the derivative of Fz
exceeded the 99th percentile were excluded as noise. Sub-
sequent analyses were confined to valid beats outside these
exclusion windows.

Each beat was normalized between 0 and 1 and resampled
to a uniform grid to enable shape comparison. Beat-averaged
Fz values were used to define 0.2-N bins, and within each
bin, normalized waveforms were averaged to assess force-
dependent morphology. From two LED channels, six inputs
were prepared in total: dc, raw ac, and normalized ac signals
for each LED.

A 1D-CNN regression model was constructed and trained
on a per-recording basis.

E. Proposed CNN-Based Calibration Framework

The integrated calibration function processes six chan-
nels (dc, ac, and normalized ac from LED1 and LED2)
to stabilize pressure estimation. A CNN was used to com-
pensate for nonlinear variability caused by differences in
finger size, vascular conditions, and attachment position. The
CNN was trained as a regression model to estimate Fx, Fy,
and Fz from the six input channels, using beat-wise aver-
ages of the reference force sensor as labels. The 1D-CNN
consisted of two convolution-pooling blocks followed by
fully connected layers that output three force components
(Table I). Because real-time capability is required for pres-
sure estimation, we adopted this configuration based on its
low computational cost and fast inference performance. The
ID-CNN has a structure that can efficiently extract local
features of time-series data through convolution operations and
possesses the ability to flexibly accommodate changes in the
shape and amplitude of the input waveforms. For this reason,
even when the sensor output varies due to attachment position
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TABLE |

ARCHITECTURE OF THE 1D-CNN MODEL USED FOR PRESSURE
Layer Parameters Output shape
Input layer 6 units E}} :EE)D“FX’ Fy, Fz), LED2(Fx,
Conv1 + RelLU 1D Conv, 32 filters, kernel=7 [32, T/2]
MaxPool1 Pool size=2 [32, T/2]
Conv2 + RelLU 1D Conv, 64 filters, kernel=7 [64, T/4]
MaxPool2 Pool size=2 [64, T/4]
Flatten - [64*(T/4)]
Dense + RelLU 128 units + Dropout(0.1) [128]
Output layer 3 units [3] Fx,Fy,Fz

or individual differences, we considered that stable pressure
estimation could be achieved by enabling the model to capture
diverse waveform patterns through learning.

Training was conducted with a batch size of 32, 32 epochs,
and a learning rate of 0.001. Mean squared error (mse)
served as the loss function, and optimization was performed
using Adam. The dataset was divided 80/20 into training and
validation sets, and the model with the lowest validation loss
was used for evaluation.

The computational cost of the model was evaluated, and it
was confirmed that approximately 1.06 x 10 MACs (about
2.1 x 10% FLOPs, assuming 1 MAC = 2 FLOPs) are required
for a single inference. Based on this computational load,
the inference time on typical mobile CPUs or embedded
processors is estimated to be on the order of a few mil-
liseconds, enabling real-time processing at a sampling rate
of 100 Hz (10 ms period). Therefore, the 1D-CNN model used
in this study has a lightweight structure that allows real-time
estimation even under resource-constrained environments such
as wearable devices, indicating its high practical potential from
the perspective of computational cost.

F. Evaluation of Calibration Performance

To evaluate the effectiveness of the calibration function,
we conducted five independent measurement sessions after
attaching the sensor, alternating between training and inference
phases using a leave-one-out (LOO) cross-validation frame-
work. Each session served once as the evaluation fold, while
the remaining sessions were used for training. This approach
allowed assessment of generalization to variations in contact
location and the relative composition of Fx, Fy, and Fz.

Although signal saturation was observed above approx-
imately 40 kPa, which might affect training, we retained
the entire range of 0-100 kPa (0—4 N) to evaluate model
robustness even in the high-pressure region. Performance was
assessed using the Pearson’s correlation coefficient (r), the
coefficient of determination (R2), and the root-mean-square
error (RMSE). RMSE was computed from the number of
samples N, measured forces F;, and estimated forces ﬁ,- as
defined by the following equation:

RMSE = /% Zf\: (Fi — ﬁi)z. (1)

25.00
uDC only_mean 20.45
20.00 - mAC only_mean
15.00 |
= [
o
= [
W 10.00
=
4 L
< L
5.00
[ 2.60
[ 0.02 0.14 0.01 0.10
0.00 [ = —— I
-5.00 L
Fx Fy Fz

Fig. 6. Ablation study of dc and ac components in the CNN model.
ARMSE values obtained when estimating Fz using only the dc or only
the ac component, computed as the RMSE difference relative to the
condition using all components (dc + ac).

TABLE Il
ESTIMATION ACCURACY ACROSS ALL FINGERS FROM
THUMB TO LITTLE FINGER

Fingertip Thumb Index Middle Ring Little
Width [mm] 2.1 1.5 1.6 1.4 1.2
Thickness [mm] 1.6 1.2 1.3 1.2 1.1
Circumference [mm] 6.3 4.9 52 4.8 4.1

Because the contact area was constant, RMSE values in
newtons were converted to pressure (kPa) for reporting. Addi-
tionally, the applied force was discretized into 0.1-N bins, and
RMSE was calculated for each bin to quantify accuracy across
the full pressure spectrum.

In addition, an ablation study was conducted as a prelim-
inary examination to evaluate the contribution of the dc and
ac components included in the input layer of the CNN model.
In this analysis, estimation in the Fz direction was performed
while disabling one of the components (ac or dc), and the
difference in RMSE (ARMSE) from the case in which all
inputs (dc+ac) were used was employed as an indicator of
contribution. A load was applied in the Fz direction to the
fingertip of the index finger, and five trials were conducted
with the sensor attached; the mean and standard deviation
of Fz were then calculated. As a result, the ARMSE was
20.45 + 2.47 kPa when estimation was performed using only
the dc component, and 0.10 + 0.55 kPa when using only
the ac component, indicating that the CNN model primarily
utilizes the ac component for pressure estimation, with the dc
component contributing in a supplementary manner (Fig. 6).

[1l. RESULTS
A. Pressure Estimation Performance Across Fingers
The sensor was mounted on all five digits (thumb,
index, middle, ring, and little fingers) to evaluate how
fingertip geometry affects estimation accuracy (Table II).
For each attachment condition, five measurement sessions
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Fig. 7. Estimated versus reference forces for each finger. Scatter plots
showing the relationship between estimated and measured forces for
the thumb, index, middle, ring, and little fingers obtained from LOO
cross-validation.

TABLE IlI
AGGREGATED ESTIMATION PERFORMANCE ACROSS ALL
FINGERS FROM THUMB TO LITTLE FINGER

Fingertip Thumb Index Middle Ring Little
r [-] 0.88 0.97 0.97 0.94 0.92
R? [-1 0.77 0.94 0.94 0.89 0.72
RMSE [kPa] 8.19 6.58 6.36 7.32 1139

(N) (0.35) (0.28) (0.27) 0.31) (0.49)

were conducted, and LOO cross-validation was employed to
alternate between training and inference. Scatter plots of the
estimated versus reference forces for each finger show that the
predictions closely align with the line of identity, indicating
strong agreement (Fig. 7). Statistical testing of the Pearson’s
correlation coefficient (r) yielded p < 0.001 for all five
fingers. Because each evaluation fold contained more than
1000 samples, the correlations were statistically significant
and reliable.

When aggregated across all five fingers, the coefficient of
determination (R?) ranged from 0.72 to 0.94, and the RMSE
ranged from 6.36 to 11.39 kPa (0.27-0.49 N) (Table III). For
context, these results were compared with previous studies that
estimated pressure or force using sensors designed to avoid
interference with natural tactile sensation (Table IV). Under
this noninvasive condition, the proposed sensor achieved com-
parable or superior RMSEs, maintaining consistently high
accuracy across all digits [6], [13], [35], [37], [38]. Although
minor interfinger differences were observed, the overall

performance remained stable and did not depend on a specific
finger. In a few cases, such as the thumb or little finger, accu-
racy slightly decreased and R? fell below 0.8; nevertheless,
in 21 of 25 trials (84%), RZ > 0.8, demonstrating robust
estimation performance in the majority of measurements.

In addition, the sensor developed in this study applies
minimal mechanical pressure to the skin, allowing it to
be worn while maintaining natural tactile sensation, and it
possesses multimodal sensing capability that enables simulta-
neous acquisition of physiological information through optical
signals reflecting blood flow changes. These characteristics
provide advantages over devices reported in previous studies
in terms of both wearability and multifunctionality.

B. Pressure-Dependent Estimation Accuracy

To further evaluate performance across different force
ranges, the contact force (Fz) for each finger was divided into
0.1-N bins (£0.05 N), and RMSE was computed for each bin
after converting force to pressure. Bins without samples were
excluded from averaging because they do not represent valid
error values.

Signal amplitude increased proportionally with applied pres-
sure up to approximately 40 kPa, beyond which the response
gradually saturated [Fig. 8(a)]. Although the onset of satu-
ration varied slightly among fingers, three pressure regions
could be identified: a linear region below 40 kPa, a transitional
region between 40 and 60 kPa, and a fully saturated region
above 60 kPa. The mean estimation error in each region is
summarized in Fig. 8(b) and Table V.

Within the linear region, the sensor exhibited stable and
accurate performance, with low-RMSE values typically within
a few kilopascals. In the transitional region, partial satura-
tion appeared in some fingers, leading to moderate increases
in error. At higher pressures above 60 kPa, full saturation
occurred in all fingers, and estimation accuracy gradually
decreased; however, the RMSE remained within a practically
acceptable range, on the order of 10-15 kPa (approximately
0.4-0.6 N).

C. Effect of Sensor Positional Shift

To assess robustness against reattachment, the sensor was
deliberately shifted laterally when mounted on the finger.
The nominal position aligned the center of the PD with
the longitudinal axis of the finger. Three conditions were
compared: nominal position and +2 mm lateral offsets relative
to nominal [Fig. 9(a) and (b)]. The sensor position affected the
relative intensities of LED1 and LED2. At the center position,
their outputs were nearly equal; when shifted 2 mm to the left,
LED?2 intensity exceeded LED1, whereas a 2-mm right shift
resulted in the opposite trend [Fig. 9(c)].

Although reattachment introduced small variations in signal
amplitude and baseline, both the Pearson’s correlation coeffi-
cient (r) and the coefficient of determination (R?) remained
high under all conditions [Fig. 9(d)]. Statistical testing yielded
p < 0.001 for all three mounting conditions, confirming the
reliability of the correlations, as each evaluation contained
more than 1000 samples. Furthermore, RMSE was less than
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TABLE IV
COMPARISON WITH PREVIOUS STUDIES
[ Ref.] [ Sensor | [ Maxima force range, in N | [RMSE,in N ] [Sensor adaptability] [Sensor adaptability]
Low Skin Pressure during multimodal capability:
Normal force : Fz Attachment physiological data
LEDs and 4 Thumb:0.35, Index:0.28, Middle:0.27, Yes Yes
photodiode Ring:0.31, Little:0.49
[6] Camera 8 0.55 Yes No
LEDs and
[13] photodiodes 10 1.179 Yes No
c itive f Thumb: 0.796, Index: 0.843,
[35] apacitive foree 5 Middle: 0.261 No No
sensors
[37] Optical sensors 10-15 Thumb:1.70, Index:1.95, Middle:1.34, No No
and IMU (over 90% below 6 N) Ring:1.28, Little:1.56
Piezoresistive
[38] bend sensor 3 0.53 No No
(a) Thumb (a) 2mm 0mm 2mm
0.3
_ - : =
0.25 1 1 1 ]
g o2 ] i : i
@ 1 1 1 1
goe : | o
g o : : o
0.05 PO~ | EED2 ! =
0 10 20 30 40 50 60 70 80 90 ’l_ﬁ_![ﬂ i .I
P kP ;
l'ezs“': (kPa) bin (kPa) 0
ndex finger i i !
35 ] a5 Middle finger (b) !
30 30 f )
w 25 w25 F |
o o !
X 20 X 20 | !
g 15 E 15 F
© 10 x 10 | Capillary ——
engorgement
5 5
0 0 Leb1
Co2RETB8B8XIBS Co28ETB8E8RXIBS
bin (kPa) bin (kPa) (C)
Ring finger Little finger
35 35 - Left (-2 mm) - Center (0 mm) Right (+2 mm)
30 30 ’
E 25 E 25 20.15 E0.15 E0_15
X 20 X 20 %01 % 0.1 & 01
w w S S s
wn 15 w 15 o o o
= = >005 >0.05 >0.05
x 10 x 10
N 5 “ 10 12 14 16 18 20 ¢ 10 12 14 16 18 20 0 10 12 14 16 18 20
0 0 Time (s) Time (s) Time (s)
2855883 Y co2REERBNTRY (d)
bin (kPa i = i
(kPa) bin (kPa) 100 Left (-2 mm) 00 Center (0 mm) oo Right (+2 mm)
=% 2 9% - %
Fig. 8. Pressure-dependent response and estimation error. (a) Signal g2 g% zﬁf} 5
amplitude as a function of applied pressure for each finger. (b) Distribu- £ 6o i £eo kX 60
tion of RMSE across pressure bins for all fingers. ﬁjg 4 s ¢ ﬁjg *.‘S 8% "
14 4 4 14
2% 4 2% s* 23 b ok
TABLE V H ol =i
o ° -] B
MEAN RMSE VALUES FOR EACH PRESSURE J) g § go
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
RANGE ACROSS FINGERS True pressure (kPa) True pressure (kPa) True pressure (kPa)
Force range Thumb Index Middle Ring Little
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10 kPa in every condition, and no significant increase in error
was observed after reattachment (Table VI). These results

demonstrate that the proposed calibration function effec-

tively compensates for local positional misalignment, ensuring

stable estimation performance under realistic re-donning
conditions.
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TABLE VI
ESTIMATION ACCURACY UNDER DIFFERENT ATTACHMENT POSITIONS
Fingertip Left Center Right
(Index finger) (=-2 mm) (=0 mm) (=+2 mm)
r [-] 0.98 0.97 0.94
R? [-] 0.96 0.94 0.89
[kPa] 5.67 6.58 9.70
RMSE (N) (0.24) (0.28) (0.42)
TABLE VI
ESTIMATION ACCURACY ACROSS SUBJECTS
Fingertip Subject 1 Subject 2 Subject 3
(Index finger)
r [-] 0.97 0.86 0.89
R? [-1 0.94 0.73 0.71
[kPa] 6.58 12.16 11.33
RMSE (N) (0.28) (0.52) (0.49)

D. Reproducibility and Intersubject Variability

Reproducibility within subjects and variability across sub-
jects were assessed using three participants (two male and
one female, ages in their 20-30 s). Each participant wore
the sensor on the index finger and completed five indepen-
dent measurement sessions under identical conditions without
re-donning. LOO cross-validation was applied, using each
session once as the validation fold.

For each participant, the Pearson’s correlation coeffi-
cient (r), the coefficient of determination (R2), and the
RMSE were computed for pressure estimation (Table VII).
Statistical testing of r yielded p < 0.001 for all participants,
confirming statistical significance. Although R? and RMSE
varied slightly among individuals, all participants exhibited
consistent estimation behavior. Subject 1 achieved the highest
accuracy, while the remaining subjects maintained R%Z > 0.7,
indicating stable generalization across different individuals.
RMSE values ranged from 6.58 to 12.16 kPa (0.28-0.52 N),
which is comparable to or better than those reported in previ-
ous studies (Table V). Collectively, these results demonstrate
that the CNN-based calibration framework achieves reliable,
subject-independent performance and maintains generalization
across users with different finger geometries and physiological
characteristics.

IV. DISCUSSION

Building upon a flexible optical tactile sensor that estimates
pressure from skin deformation and blood flow changes,
we developed a CNN-based calibration framework that enables
stable force estimation insensitive to placement variability and
intersubject differences. By limiting the sensor thickness to
less than 150 pm and incorporating an aperture structure, the
design suppresses sweat-induced delamination while maintain-
ing comfort and stable skin contact during prolonged wear.
These features allow the sensor to acquire force information

without interfering with natural tactile sensation, making it
highly suitable for wearable applications.

In experimental evaluations, the proposed model consis-
tently achieved high accuracy across all fingers, with R?
values typically between 0.7 and 0.9 and RMSE values below
approximately 12 kPa (0.5 N) throughout the 0-100 kPa
(04 N) range. Even when the sensor was intentionally shifted
from its nominal position, estimation accuracy remained
stable, confirming robustness against positional variation.
Comparable performance was also observed across different
subjects, indicating that the CNN-based calibration effectively
compensates for differences in skin properties, vascular con-
ditions, and attachment configuration.

In the high-pressure region (above approximately 40 kPa),
signal saturation was observed along with an increase in
RMSE. This phenomenon likely occurs because tissue com-
pression and reduced blood volume alter the optical scattering
and absorption properties, leading to nonlinear signal behavior.
Nevertheless, characteristic changes in the amplitude and mor-
phology of the pulsatile waveform appeared at higher loads,
indicating that the sensor concurrently captures hemodynamic
variations with mechanical deformation. Therefore, unlike
conventional devices that measure only pressure magnitude,
the proposed sensor can simultaneously acquire biomechanical
(skin deformation) and physiological (blood flow dynamics)
information, providing an integrated platform for multimodal
sensing.

In addition, because actual grasping tasks involve oblique
loading and shear forces acting simultaneously, a preliminary
evaluation was conducted to examine the estimation accuracy
for components other than the axial direction. Under condi-
tions in which shear force (Fx) was applied up to a maximum
of 1 N, five evaluations using LOO were performed, resulting
inan R° of 0.75 and RMSE of 2.96 kPa (0.127 N). In contrast,
when axial force (Fz) was applied up to 1 N under the same
conditions, the results were R* of 0.92 and RMSE of 1.9 kPa
(0.08 N). These findings indicate that the estimation accuracy
for shear components is lower than that for the axial direction.
Future work will focus on improving robustness in multiaxial
force estimation by enhancing accuracy with respect to loading
direction, for example, through structural modifications such
as multipoint arrangements of the emitters or the detectors.

Across participants, the correlations between estimated and
reference pressures remained consistently high, typically yield-
ing R? values around 0.8. Although perfect agreement was not
achieved, this deviation can be attributed to interindividual
differences in skin stiffness, optical scattering, and vascular
distribution, as well as minor variations in sensor placement
and orientation relative to the skin, which influence photon
propagation and reflected intensity.

Future improvements can be achieved in several directions.
First, optimizing the layout of the optical elements to homog-
enize the sensitivity field could reduce position-dependent
variations. Second, adopting multiwavelength and multisite
illumination/detection may enable simultaneous probing of
superficial and deep tissue layers, enhancing both force esti-
mation and blood-flow analysis. Third, model generalization
could be further improved by introducing subject-adaptive
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learning or transfer-learning approaches. Finally, implement-
ing wireless communication (e.g., Bluetooth low energy)
would enhance mobility and comfort, facilitating continuous
and practical use in wearable scenarios.

Quantitative assessment of tactile information is valuable
not only in robotics and human—machine interfaces but also
in biomechanics, rehabilitation, and consumer product evalua-
tion. The calibration approach proposed in this study improves
reproducibility and quantitative reliability by compensating
for interindividual and attachment-related variability. Conse-
quently, it supports applications such as safe and precise
grasp control in collaborative robots and quantitative skill
assessment in sports and cosmetic manipulation. More broadly,
the proposed system represents a general-purpose platform
that enables quantitative analysis of both mechanical and
physiological information through tactile sensing.

V. CONCLUSION

This study presented a flexible optical tactile sensor
equipped with a CNN-based calibration framework capable
of estimating pressure from optical signals associated with
skin deformation and blood flow dynamics. The proposed
approach achieved stable and high-accuracy estimation across
different fingers, attachment conditions, and individuals. In all
experiments, the coefficient of determination generally ranged
around 0.8, and the RMSE remained within approximately
10 kPa (0.4 N), demonstrating robustness and reliable gener-
alization.

By combining mechanical and physiological sensing within
a thin, lightweight, and skin-conformal structure, the sensor
provides pressure estimation without obstructing natural tactile
sensation. The integrated calibration effectively compensates
for positional and subject-dependent variability, enabling
reproducible and quantitative tactile measurement.

The versatility of the proposed system suggests broad poten-
tial applications. In robotics, it can enhance safe and adaptive
force control for collaborative robots. In biomedical and
wearable contexts, it enables continuous monitoring of contact
pressure and hemodynamic responses during rehabilitation
or daily activities. Furthermore, the ability to simultane-
ously capture mechanical and physiological information opens
new opportunities for multimodal human sensing and tactile
analytics.

Future work will focus on extending the sensing range,
improving model generalization through adaptive learning and
integrating wireless communication for real-time monitoring.
Collectively, these developments aim to establish a practical
and scalable tactile-sensing platform that bridges human and
robotic touch perception.
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