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Are Two Public Goods too many?∗

Jun Iritani and Shin-ichi Yamamoto

Graduate School of Economics, Kobe University,
2-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan

1 Introduction

We will establish in this paper a fundamental fact that the number of public goods
contributed by many individuals must be unity in almost all the models on the private
provision of public goods.

It may appear easy for the economists in the theory of private provision of public
goods to expand the model containing one public good to that containing multiple public
goods. Kemp(1984) constructed a model where every individual contributed multiple pub-
lic goods in the equilibrium. A situation was considered in Bergstrom-Blume-Varian(1986)
where multiple individuals contributed multiple public goods. Our result, on the other
hand, shows that these economies are almost vacuous. That is, let H and D be a group
consisting of two or more individuals and an arbitrary set of multiple public goods respec-
tively. Then we can not deal with the economies where each individual in H contributes
every public good in D. It is established by a simple fact that the number of equations
are strictly greater than the number of unknowns.

It is Warr(1983) who pointed out that the number of equations exceeded that of
unknowns when all the individuals were contributors to every public good. Our result is
a generalization of his in two respects. One is that non-contributors to the public goods
can exist in our setting. The other is that no operations concerning the differentiability
of functions are exploited.

2 The Number of Public Goods

Consider an economy which contains one private good and m kinds of public goods.
Denote the number of individuals, the index set of individuals and the set of public

goods by n, N
def
= {1, 2, . . . , n} and M

def
= {1, 2, . . . , m} respectively1. An individual i’s

∗The authors are grateful to Professors Tomoyuki Kamo (Kyoto Sangyo University), Toshiji Miyagawa
(Kobe University), Hiroaki Nagatani (Osaka University), Ken Urai (Osaka University) and the partic-
ipants in the Kobe-Osaka Joint Seminar on Mathematical Economics held on March 2003 for helpful
comments and valuable suggestions. This research was financially supported by MEXT (Grant-in-Aid
for Exploratory Research, KAKEN 14653012) in 2002-2003.

1The symbol “def=” implies that the left hand side is defined by the right hand side.



utility function is represented by ui : (xi, G1, . . . , Gm) ∈ R
m+1
+ �→ ui(xi, G1, . . . , Gm) ∈ R,

where xi and Gk, k ∈ M are the amount of private good and that of the k-th public

good respectively2. Let I
def
= (I1, . . . , In) ∈ R

n
++ be a given income distribution. A list

(N, (ui, Ii)i∈N ) is an economy. Producing one unit of each public good requires one unit
of private good. The price of the private good is unity.

We assume:

Assumption 1 The utility function ui(xi, G1, . . . , Gm) is continuous, increasing, quasi-
concave in R

m+1
+ , strictly increasing and strictly quasi-concave in R

m+1
++ , for i ∈ N .

Suppose that a vector of all the individuals’ contributions to each public good gk
def
=

(g1
k, . . . , g

n
k ), k ∈ M is given where gj

k is the amount of contribution to the k-th public
good by the individual j. We consider a maximization problem for each i ∈ N :

maxxi,gi
1,...,gi

m
ui(xi,

∑
j �=i g

j
1 + gi

1, . . . ,
∑

j �=i g
j
m + gi

m)

sub. to
xi + gi

1 + · · ·+ gi
m = Ii, g

i
k � 0, k ∈M


 . (1)

Denote the solution to (1) by (xi(g1, . . . , gm), (ψi
k(g1, . . . , gm))m

k=1), i ∈ N . xi(g1, . . . , gm)
is the amount of private good of individual i and ψi

k(g1, . . . , gm) is the k-th public good.
Let us consider a following artificial maximization problem for each i:

max
xi,G1,...,Gm

ui(xi, G1, . . . , Gm) sub. to xi +G1 + · · ·+Gm = Yi, (2)

where Yi is a positive real. The solution to the problem (2) is denoted by (ξi(Yi), φ
i
k(Yi)),

k ∈ M, i ∈ N , where the values of ξi and φi
k correspond to the amount of private good

and the amount of k-th public good respectively.

Definition 1 [Nash Equilibrium]
An allocation ((x∗i )i∈N , (g

∗
k)

m
k=1) is a Nash equilibrium in an economy (N, (ui, Ii)i∈N) when

ψi
k(g

∗
1, . . . , g

∗
m) = gi∗

k , ∀i ∈ N, k ∈M (3)

x∗i = xi(g
∗
1, . . . , g

∗
m), ∀i ∈ N. (4)

2.1 Multiple Public Goods Economy

Consider simultaneous equations with respect to unknowns Yi, i ∈ N :

φi
k(Yi) = φj

k(Yj), ∀i, j ∈ N, k ∈M (5)

φ1
1(Y1) + · · ·+ φ1

m(Y1) =
n∑

i=1

(
Ii − ξi(Yi)

)
(6)

2The sets R, R
�
+ and R

�
++ are the set of real numbers, � dimensional non-negative vectors and �

dimensional strictly positive vectors, respectively.
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Then we establish a theorem which is stated as follows:

Theorem 1 Suppose that Assumption 1 holds. A necessary and sufficient condition for
a Nash equilibrium ((x∗i )i∈N , (g

∗
k)

m
k=1) satisfying x∗i > 0 and gi∗

k > 0, k ∈M, i ∈ N to exist,
is that there exists a solution (Y ∗

i )i∈N satisfying ξi(Y ∗
i ) > 0 and φi

k(Y
∗
i ) > 0, k ∈ M ,

i ∈ N to the system (5) and (6).

Proof. [Necessity] Let ((x∗i )
n
i=1, (g

∗
k)

m
k=1) ∈ R

nm+n
++ be a Nash equilibrium. Define Y ∗

i
def
=

Ii +
∑m

k=1

∑
j �=i g

j∗
k , i ∈ N and G∗

k
def
=
∑

i∈N g
i∗
k , k ∈M . We have Y ∗

i = x∗i +G∗
1+ · · ·+G∗

m.

Let (x#
i , G

#
1 , . . . , G

#
m) be a solution to the problem (2) when Yi = Y ∗

i . Then the inequal-
ity ui(x

∗
i , G

∗
1, . . . , G

∗
m) � ui(x

#
i , G

#
1 , . . . , G

#
m) holds. Suppose that ui(x

∗
i , G

∗
1, . . . , G

∗
m) <

ui(x
#
i , G

#
1 , . . . , G

#
m). Define xi(λ) and Gk(λ) for λ satisfying 0 < λ < 1 as

xi(λ)
def
= λx#

i + (1 − λ)x∗i ,

Gk(λ)
def
= λG#

k + (1 − λ)G∗
k, k ∈M.

We have xi(λ̂) > 0 and Gk(λ̂) >
∑

j �=i g
j∗
k > 0, k ∈ M for a sufficiently small λ̂, since

x∗i > 0 and G∗
k >

∑
j �=i g

j∗
k > 0, k ∈ M . Therefore both points (x∗i , G

∗
1, . . . , G

∗
m) and

(xi(λ̂), G1(λ̂), . . . , Gm(λ̂)) are interior points of the domain of the utility function. Due to
strict quasi-concavity of utility functions, we have

ui(x
∗
i , G

∗
1, . . . , G

∗
m) < ui(xi(λ̂), G1(λ̂), . . . , Gm(λ̂)).

Moreover, since xi(λ̂) +G1(λ̂) + · · ·+Gm(λ̂) = Y ∗
i , we have

ĝi
k

def
= Gk(λ̂) −

∑
j �=i

gj∗
k > 0, k ∈M

xi(λ̂) +

m∑
k=1

(
Gk(λ̂) −

∑
j �=i

gj∗
k

)
= Ii,

ui(xi(λ̂), G1(λ̂), . . . , Gm(λ̂)) = ui(xi(λ̂),
∑
j �=i

gj∗
1 + ĝi

1, . . . ,
∑
j �=i

gj∗
m + ĝi

m).

This contradicts the fact that ((x∗i )
n
i=1, (g

∗
k)

m
k=1) is a Nash equilibrium. Therefore the

m+ 1-tuple (x∗i , G
∗
1, . . . , G

∗
m) is a solution to the problem (2) when Yi = Y ∗

i . This is true
for any i. Therefore, (Y ∗

i )i∈N is the solution to the simultaneous equations (5) and (6).
[Sufficiency] Let (Y ∗

i )i∈N , i ∈ N be a solution to (5) and (6). Note that

(
T

def
=
) n∑

i=1

(Ii − ξi(Y ∗
i )) =

m∑
k=1

φ1
k(Y

∗
1 ) > 0.
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Define for each i ∈ N and k ∈M

gi∗
k

def
=

1

T

(
Ii − ξi(Y ∗

i )
)
φ1

k(Y
∗
1 ) > 0, x∗i

def
= ξi(Y ∗

i ) > 0.

By definition, we have

x∗i + gi∗
1 + · · ·+ gi∗

m = ξi(Y ∗
i ) +

m∑
k=1

1

T

(
Ii − ξi(Y ∗

i )
)
φ1

k(Y
∗
1 )

= ξi(Y ∗
i ) + Ii − ξi(Y ∗

i ) = Ii, i ∈ N,

G∗
k

def
=
∑
j∈N

gj∗
k =

1

T

n∑
j=1

(
Ij − ξj(Y ∗

j )
)
φ1

k(Y
∗
1 ) = φi

k(Y
∗
i ), i ∈ N, k ∈M.

This implies that (x∗i , g
i∗
1 , . . . , g

i∗
m) satisfies the budget constraint in (1). Let (x#

i , g
i#
1 , . . . ,

gi#
m ) be a solution to the following problem:

maxui

(
xi, G

−i∗
1 + gi

1, . . . , G
−i∗
m + gi

m

)
sub. to xi + gi

1 + · · · + gi
m = Ii,

where G−i∗
k

def
=
∑

j �=i g
j∗
k , k ∈ M . It is obvious that ui(x

#
i , G

−i∗
1 + gi#

1 , . . . , G−i∗
m + gi#

m )

� ui(x
∗
i , G

−i∗
1 + gi∗

1 , . . . , G
−i∗
m + gi∗

m). Suppose that the strict inequality were true, i.e.

ui(x
#
i , G

−i∗
1 + gi#

1 , . . . , G−i∗
m + gi#

m ) > ui(x
∗
i , G

−i∗
1 + gi∗

1 , . . . , G
−i∗
m + gi∗

m). Define xi(λ)
def
=

λx#
i + (1 − λ)x∗i , Gk(λ)

def
= G−i∗

k + λgi#
k + (1 − λ)gi∗

k , k ∈ M for any λ satisfying 0 <
λ < 1. It is obvious that xi(λ) > 0 and Gk(λ) > 0 since x∗i > 0 and gi∗

k > 0, k ∈ M .
By the strict quasi-concavity in the interior of the domain of utility function, we have
ui(xi(λ), G1(λ), . . . , Gm(λ)) > ui(x

∗
i , G

∗
1, . . . , G

∗
m). On the other hand, we obtain:

xi(λ) +

m∑
k=1

Gk(λ) = λx#
i + (1 − λ)x∗i +

m∑
k=1

(
G−i∗

k + λgi#
k + (1 − λ)gi∗

k

)

= λ(x#
i +

m∑
k=1

gi#
k ) + (1 − λ)(x∗i +

m∑
k=1

gi∗
k ) +

m∑
k=1

G−i∗
k

= Ii +
m∑

k=1

G−i∗
k = x∗i +

m∑
k=1

n∑
j=1

gj∗
k = Y ∗

i .

This is a contradiction. And thus, (x∗i , g
i∗
1 , . . . , g

i∗
m) is the solution to (1) when a list

(g∗1, . . . , g
∗
m) is given. Therefore, ((x∗i )i∈N , (g

∗
k)

m
k=1) is a Nash equilibrium.

By the above theorem, it suffices for studying the system (5) and (6) for us to scrutinize
the properties of the Nash equilibrium. In the simultaneous equations (5) and (6), there
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are n kinds of unknowns: Y1, . . . , Yn. On the other hand, there are mn−m+1 equations
in (5) and (6). When m = 1, the number of equations coincides with that of unknowns.
In the general case that m > 1, the number of unknowns is strictly less than that of
equations. There are no solutions to the system (5) and (6) without exceptional cases.

We are to show the essence of the above theorem by an example. Let n = m = 2 and
let utility functions of individuals be of Cobb-Douglas type:

ui(xi, G1, G2) = (xi)
αi

(G1)
βi

(G2)
γi

,

αi + βi + γi = 1, αi > 0, βi > 0, γi > 0, i = 1, 2.

The equations (5) and (6) are represented by:

β1Y1 = β2Y2

γ1Y1 = γ2Y2

β1Y1 + γ1Y1 = I1 + I2 − α1Y1 − α2Y2.

Clearly, there exist no solutions unless β1/β2 = γ1/γ2.

We can summarize the above arguments as follows.

We can not necessarily depict an economy where many (more than
or equal to two) individuals contribute two or more public goods in
Nash equilibrium．

2.2 Two Public Goods Economy

In this section we scrutinize further the problem on the number of public goods in the
private provision of public goods. The remaining problem is to answer whether one
individual can contribute many public goods.

We can simplify an economy (N, (ui, Ii)i∈N ) containing m kinds of public goods into
the one containing two public goods. Let ((x∗i )i∈N , (g

∗
k)

m
k=1) be a Nash equilibrium in the

economy (N, (ui, Ii)i∈N ). Define:

vi(xi, G1, G2)
def
= ui

(
xi, G1, G2,

n∑
j=1

gj∗
3 , . . . ,

n∑
j=1

gj∗
m

)
, i ∈ N

yi
def
= Ii −

∑
k �=1,2

gi∗
k

The economy (N, (vi, yi)i∈N) thus derived is an economy with two public goods where
((x∗i )i∈N , (g

∗
k)

2
k=1) is a Nash equilibrium.
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Define three types of the contributors to public goods as:

J
def
= {i ∈ N | gi∗

1 > 0, gi∗
2 > 0},

J1
def
= {i ∈ N | gi∗

1 > 0, gi∗
2 = 0},

J2
def
= {i ∈ N | gi∗

1 = 0, gi∗
2 > 0}.

The key problem (2) can be rewritten according to the sets of contributors.

max
xi,G1,G2

vi(xi, G1, G2) sub. to xi +G1 +G2 = Yi, i ∈ J, (7)

max
xi,G1

vi(xi, G1, G
∗
2) sub. to xi +G1 = Yi, i ∈ J1, (8)

max
xi,G2

vi(xi, G
∗
1, G2) sub. to xi +G2 = Yi, i ∈ J2. (9)

Denote the solutions to these problems by ξi(Yi), φ
i
1(Yi) and φi

2(Yi). Consider simultaneous
equations with respect to unknowns Yi, i ∈ J ∪ J1 ∪ J2 as follows:

φi
1(Yi) = φj

1(Yj), ∀i, j ∈ J ∪ J1 (10)

φi
2(Yi) = φj

2(Yj), ∀i, j ∈ J ∪ J2 (11)

φi
1(Yi) + φi

2(Yi) =
∑

j∈J∪J1∪J2

(
yj − ξj(Yj)

)
, ∀i ∈ J (12)

φi
1(Yi) =

∑
j∈J

(
yj − ξj(Yj) − gj∗

2

)
+
∑
j∈J1

(
yj − ξj(Yj)

)
, ∀i ∈ J1 (13)

φi
2(Yi) =

∑
j∈J

(
yj − ξj(Yj) − gj∗

1

)
+
∑
j∈J2

(
yj − ξj(Yj)

)
, ∀i ∈ J2. (14)

We establish a theorem which is stated as follows:

Theorem 2 Suppose that Assumption 1 holds. If there exist a Nash equilibrium (x∗i , g
i∗
k ),

k = 1, 2, i ∈ N in an economy (N, (vi, yi)i∈N ), then there exists a solution Y ∗
i , i ∈

J ∪ J1 ∪ J2 to the simultaneous equations (10), (11), (12), (13) and (14).

Proof. Let ((x∗i )i∈N , (g
∗
k)

2
k=1) be a Nash equilibrium. Define

Y ∗
i

def
= yi +

∑
j �=i

(gj∗
1 + gj∗

2 ), i ∈ J

Y ∗
i

def
= yi +

∑
j �=i

gj∗
k , i ∈ Jk, k = 1, 2.
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Since G∗
k

def
=
∑

i∈J∪Jk
gi∗

k , k = 1, 2, it is clear that

Y ∗
i = x∗i +G∗

1 +G∗
2, if i ∈ J

= x∗i +G∗
1, if i ∈ J1

= x∗i +G∗
2, if i ∈ J2.

We can repeat the same argument as in the proof of Theorem 1 to show that (x∗i , G
∗
1, G

∗
2)

is a solution to the maximization problem (7) for the individual i ∈ J when Yi = Y ∗
i . By

the similar procedure, for the individual i ∈ J1, (x∗i , G
∗
1) is a solution to the maximization

problem (8) when Yi = Y ∗
i . Similarly for the individuals i ∈ J2, (x∗i , G

∗
2) is a solution to

the problem (9) when Yi = Y ∗
i . The above discussion implies that Y ∗

i , i ∈ J ∪ J1 ∪ J2

form a solution to the simultaneous equations (10), (11), (12), (13), and(14).

By Theorem 2, a Nash equilibrium is characterized by the equations (10), (11), (12),
(13) and (14). The equations depend on the sets J, J1 and J2 which is determined by the
Nash equilibrium. In this sense, they may be impractical when we are to find a Nash
equilibrium. However they are pertinent to our present objective, i.e. for us to make it
clear whether one individual can contribute many public goods.

The numbers of equations in (10) and (11) are #J + #J1 − 1 and #J + #J2 − 1
respectively3. The number of equations in (12), (13) and (14) is three. In short, the
number of unknowns Yi, i ∈ J ∪ J1 ∪ J2 is #J + #J1 + #J2 whereas the number of
equations is 2 × #J + #J1 + #J2 + 1.

Let us examine whether the numbers of these equations and unknowns are identical.
We distinguish three cases (i) #J = 0, (ii) #J = 1 and (iii) #J � 2.

[Case 1: #J = 0] In this case the equation (12) is null. Therefore the total number of the
equations is equal to #J1 + #J2 which is the number of the unknowns. In other words,
Nash equilibria can exist when all the individuals contribute to a single public good.

[Case 2: #J = 1] If either J1 �= ∅ or J2 �= ∅ holds, the number of equations in (10), (11)
and (12) is equal to (1 + #J1 − 1) + (1 + #J2 − 1) + 1 = #J + #J1 + #J2. Therefore at
least one of the equations (13) and (14) is redundant. In other words, there exist no Nash
equilibria when J1 �= ∅ or J2 �= ∅. The remaining case is J1 = ∅ and J2 = ∅. In this case,
the equations (10) and (11) are null. In addition to this, the two equations (13) and (14)
are equivalent to (12). Hence the number of unknowns coincides with that of equations.

[Case 3: #J � 2] The total number of equations in (10), (11) and (12) is 2×#J +#J1 +
#J2 −1 which is strictly greater than #J +#J1 +#J2. Therefore the equations (13) and
(14) are redundant. Thus there do not necessarily exist Nash equilibria.

In the above discussion, the choice of public goods 1 and 2 is arbitrary. Above inference
applies to any pair of two public goods. Therefore, we can conclude as follows.

3Let A be a set. The symbol “#A” represents the cardinality of the set A.
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Two cases are possible in the models of private provision of public
goods. One is that one individual contributes to multiple public
goods. The other is that many individual contribute to one partic-
ular public good.
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