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Abstract
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version of Hart and Mas-Colell’s (Econometrica 64, 1996, 357-380)
model. The key feature of our model is the bargaining procedure in
which only the responders drop out with equal probability. We show
that our bargaining procedure generates equal after-tax income allo-
cation when the cost of delay is low in both a nontransferable utility
case and a transferable utility case. Thus, progressive income taxation
is supported in a noncooperative manner.
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1 Introduction

Why do most democratic countries employ progressive income taxation?
Economists have tried to answer the question and offered various explana-
tions. The most common one is the utilitarian approach, which considers
that the tax structure is chosen by a benevolent planner, whose objective is
to maximize the sum of individual utilities, what is called the social welfare.
If all individuals have the same utility function defined over after-tax income
and there is no disincentive effect of taxation, the maximization of the sum
of individual utilities leads to tax structure such that after-tax incomes are
equalized. Because the maximization of the social welfare corresponds to the
equalization of marginal sacrifices of all individuals for taxation, the utili-
tarian approach has often been interpreted as the equal sacrifice approach.
Such a support of progressive taxation has long been offered by Edgeworth
(1897), Pigou (1947), and others. Musgrave (1959) summarized these ar-
guments. Moreover, Young (1988) has succeeded in an axiomatization of
equal sacrifice taxation. Mirrlees (1971) has generated the optimal income
tax approach by introducing the disincentive effect of taxation and the in-
formational constraints to the utilitarian approach. After his seminal work,
enormous studies of the optimal tax approach has been undertaken. Un-
fortunately, this approach led to an unclear conclusion regarding the shape
of the optimal income tax function. Myles (2000) showed that every qual-
itative pattern of marginal tax rates, both regressive and progressive, may
be achieved as an optimal tax schedule by appropriate selection of the skill
distribution. Diamond (1998) and Saez (2001) also examined the shape of
the optimal marginal income tax rate and the progressivity of the income
tax.

Both the utilitarian and equal sacrifice approaches are commonly based
on a social justice that transcends the determinants of self-interested indi-
vidual behavior. These approaches are often called the normative approach.
In contrast to the normative approach, several studies has proposed a posi-
tive approach. The positive approach has tried to explain progressive income
taxation as an endogenous consequence of the democratic political process
– for example, majority voting, political parties’ competition and so on. It
is stressed that players are self-interested. Aumann and Kurz (1977, 1978)
have assumed that taxation policies are determined by majority voting, and
they adopted the NTU Harsanyi-Shapley value as a solution concept. Thus,
their analysis was classified as a cooperative game approach. They then
showed that the marginal income tax rate is always between 50 percent and
100 percent, but that the income tax structure can be progressive, regressive
or neutral in its economic-political equilibrium. Roemer (1999) has con-
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sidered that each of two political parties, left and right parties, consists of
reformists, militants and opportunists. He introduced to the two parties
game a Nash equilibrium that required an intra-party consensus among re-
formists, militants and opportunists. Then, he showed that both parties
propose progressive income taxation schemes in such equilibria. De-Donder
and Hindriks (2000) presented sufficient conditions for progressive income
taxation to emerge as a majority-voting outcome.

Over the last few years, the progressivity of income tax has been animat-
edly discussed from both normative and positive perspectives. This paper
employs the positive approach. Thus, we will investigate whether progressive
taxation appears as an outcome of the behavior of self-interested individuals.
In contrast to previous studies, we do not suppose that political decision pro-
cesses such as majority voting select a tax structure. We present a noncoop-
erative bargaining model for apportioning taxes among members of a society.
In our bargaining model, it is assumed that all players are self-interested and
that the tax structure is determined by voluntary negotiations among play-
ers. Especially, we consider an n-person noncooperative bargaining model
based on a coalitional form game (N, V ), which is similar to the model of
Hart and Mas-Colell (1996).

Our bargaining model has the following features. We define a coalitional
form game (N, V ) according to the method of Aumann and Maschler’s (1985)
analysis of the bankruptcy problem. The bankruptcy problem in Aumann
and Maschler (1985) is to consider how the remaining estate should be di-
vided among creditors with various claims. Our problem, however, is to
divide a given total tax among individuals, each of whom is endowed with
a different income. Our taxation problem, however, is reduced to the prob-
lem of how total after-tax income should be divided among the individuals
with different incomes. Thus, the problem of tax assignments has the same
structure as the bankruptcy problem, with the total after-tax income and the
endowment of income corresponding to the remaining estate and the claim,
respectively1. For this reason, we will employ a coalitional form game such as
Aumann and Maschler have introduced. Furthermore, we extend the game
to a nontransferable utility case, though Aumann and Maschler considered
only a transferable utility case.

Our bargaining procedure runs as follows. In each round, one player is
selected as a proposer with equal probability among all existing players. The
player can propose a pair of taxes paid by the active players that is suffi-
cient to provide a given total tax revenue. The requirement for agreement is

1Young (1988) has also recognized the close relationship between the tax assignment
problem and the bankruptcy problem.
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unanimity. The key feature of our bargaining procedure is the rule regarding
what happens if there is no agreement. Hart and Mas-Colell (1996) suppose
that only the proposer may cease to be an active player at next round after
the proposal is rejected. On the contrary, we assume that only the respon-
ders drop out, all with equal probability. This modification has an important
effect on our results. In addition, we focus on a stationary subgame perfect
equilibrium in the bargaining game.

We obtained the following results. First our bargaining procedure gener-
ated, in a equilibrium, an equal after-tax income allocation, i.e., an allocation
in which all individuals have the same after-tax income, when the probabil-
ity of the responders’ dropping out is close to zero. In other words, all
members of the society come to an agreement on an extremely progressive
taxation in a noncooperative way. The result does not depend on whether
the coalitional form game is the game with nontransferable utility or that
with transferable utility. Next, we considered the pure bargaining case. In
this case, only the grand coalition has worth to negotiate the tax assignment
and other coalitions have no value; thus, the payoff for every player becomes
zero, even if one player drops out. Then, we showed that our equilibria do
indeed yield a solution to a Nash social welfare maximization problem (a
Nash bargaining solution) as the cost of delay becomes small. The result
in the pure bargaining case establishes a noncooperative foundation for the
Nash social welfare maximization framework as, for example, in the analysis
of an optimal income tax schedule conducted by Kaneko (1981, 1982).

This paper is organized as follows. Section 2 introduces our noncoop-
erative bargaining model for dividing taxes among the members of society
and defines our equilibrium concept. Section 3 characterizes the equilibrium
payoff configurations in a nontransferable utility, a transferable utility and a
pure bargaining case. Concluding remarks are gathered in Section 4.

2 Noncooperative Bargaining Model

2.1 Coalitional form game

Let N
def
= {1, 2, . . . , n} be a finite set of players and a nonempty subset S of

N is called a coalition of players. We define the family of coalitions S by

P0(N)
def
= {S | S ⊂ N, S �= ∅} .

Let denote by yi a (taxable) income of player i and by y
def
= (y1, . . . , yn) ∈ Rn

++

an income profile of the n-person society. We assume that each player i ∈ N
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is characterized only by an income level yi. We denote an aggregate income of

the society N with an income profile y by Y (N)
def
=

∑
i∈N yi and an aggregate

income of a coalition S by Y (S)
def
=

∑
i∈S yi.

We assume that members of the society must collect a given tax revenue
T > 0 and that the aggregate income of the society exceeds the required tax
revenue, i.e., Y (N) − T > 0. The family of coalitions that can finance the
total tax from their aggregate income is defined by

S
def
=

{
S ∈ P0(N)

∣∣∣ Y (S) − T > 0
}

.

We assume that yi < T for all i ∈ N . Thus, {i} /∈ S for all i ∈ N .
Each of the players has a preference represented by a utility function

u : R+ → R which depends only on his/her after-tax income. Later in
this paper we will give an alternative interpretation of the utility function
depending only on income. The after-tax income of player i is defined by

xi
def
= yi− ti, where ti is the tax paid by player i. We assume that each utility

function of the players satisfies the following assumption.

ASSUMPTION 1. (i) All players have the same utility function u : R+ →
R. (ii) The utility function u is continuous, strictly concave, strictly increas-
ing and C2. Furthermore, the function u is bounded, i.e., for some M > 0,
u(x) < M for all x ∈ R+. In addition, u(0) = 0.

Here, we consider the tax assignment problem (T, y) that an aggregate tax
burden T is distributed among members i ∈ N of the society with different
incomes yi. The problem (T, y) is equivalent to the problem (E, y) that the

net aggregate income E
def
= Y (N) − T is allocated among members of the

society with an income profile y, because, if a pair of after-tax incomes x =
(x1, . . . , xn) with E =

∑
j∈N xj is given, then the tax burden of each player

ti = yi − xi, i ∈ N is uniquely determined. We should notice that (E, y) is a
bankruptcy problem from the Talmud in Aumann and Maschler (1985) if E
is the estate owned by a died man and (y1, . . . , yn) is his leaving debts. The
bankruptcy problem considers how the estate E should be divided among
the creditors with their claims y. We will call the vector x = (x1, . . . , xn) an
allocation of after-tax income and call the vector t = (t1, . . . , tn) satisfying
T =

∑
j∈N tj a tax assignment.

Let us define the characteristic function corresponding to the tax as-
signment problem. The set of feasible allocations of after-tax income for a
coalition S is defined by

XS def
=

{
(xi)i∈S

∣∣∣ ∑
i∈S

xi ≤ max(0, Y (S) − T ), xi ∈ R+, ∀ i ∈ S

}
.
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Using the definition of XS , we define the characteristic function as

V (S) =
{
zS ∈ RS

+ | ∃(xi)i∈S ∈ XS, ∀i ∈ S, zS
i ≤ u(xi)

}
for ∀S ⊂ N. (1)

By definition, V (S) represents the attainable set of utilities for members in
a coalition S after every member j in the complementary coalition N\S gets
his/her full income yj. This is a natural extension of the characteristic func-
tion for the bankruptcy problem defined by Aumann and Maschler (1985).
In their definition, the payoff for player i ∈ N was the amount xi itself and
the characteristic functions were defined as

v(S)
def
= max(0, E −

∑
j∈N\S

yj) = max(0, Y (S) − T ), for ∀S ⊂ N. (2)

In our definition, the payoff for player i with after-tax income xi is given by
his/her utility u(xi). As a result, our characteristic functions are represented
by (1). The game (N, V ) is an n-person coalitional form game with non-
transferable utility. On the other hand, the game (N, v) is a coalitional form
game with transferable utility, where the characteristic function v is defined
by equation (2).

We call the coalitional form game (N, V ) a tax assignment game. We will
also consider the case in which the payoff for player i is an after-tax income
xi itself later. In this case, the tax assignment game is described by (N, v).

The characteristic function defined by (1) has the following properties.

THEOREM 1. For any coalition S ⊂ N , the set V (S) is closed, convex
and comprehensive, i.e., if zS ∈ V (S) and ẑS

i ≤ zS
i for all i ∈ S, then

ẑS ∈ V (S). Moreover, 0 ∈ V (S) and V (S) ∩ RS
+ is bounded.

THEOREM 2. For any coalition S ∈ S , the boundary ∂V (S) ∩ RS
++,

where ∂V (S) is the boundary of V (S), is smooth and nonlevel. Note that the
boundary ∂V (S) ∩ RS

++ is smooth if and only if at each zS ∈ ∂V (S) ∩ RS
++,

there exists a single outward normal direction. In addition, the boundary
∂V (S) ∩ RS

++ is nonlevel if and only if the outward normal vector at any
point of ∂V (S) ∩ RS

++ is positive in all coordinates.

THEOREM 3. The characteristic function V is monotone, i.e., V (S) ×
{0H\S} ⊂ V (H) whenever S ⊂ H.

Proofs of Theorem 1, 2 and 3. See Appendix. �
Theorems 1, 2 and 3 correspond to assumptions (A-1), (A-2) and (A-3),

which are imposed on the game (N, V ) by Hart and Mas-Colell (1996).
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In Theorem 2, the smoothness and nonlevelness are proved only for vec-
tors in ∂V (S) ∩ RS

++. But, we will need the smoothness and nonlevelness
conditions for vectors in ∂V (S) ∩ RS

+\RS
++ in order to prove Proposition 6

later. Therefore, the smoothness and nonlevelness conditions must be ex-
tended from ∂V (S) ∩ RS

++ to ∂V (S) ∩ RS
+. For this purpose, we define an

outward normal vector at each ẑS in ∂V (S) ∩ RS
+\RS

++ as a limit of the
sequence of outward normal vectors at zS

ν , ν = 1, 2, . . . , where a sequence
{zS

ν }∞ν=1 converges to ẑS. Then, we shall add the following assumption.

ASSUMPTION 2. For each coalition S ∈ S , we assume that there exists
a single outward normal direction at any point ẑS in ∂V (S) ∩ RS

+\RS
++ and

that the outward normal vector at ẑS is positive in all coordinates.

Thus, ∂V (S) ∩ RS
+ is smooth and nonlevel for all S ∈ S .

2.2 Noncooperative game

We describe a noncooperative bargaining procedure based on a coalitional
form game (N, V ). Let 0 ≤ ρ < 1 be a fixed parameter. Then the n-
person noncooperative bargaining model runs as follows. At every round
t = 1, 2, . . . , there is a set N t of all active players, and a proposer i ∈ N t. In
the first round N1 = N .

(i) One player is selected as a proposer with equal probability among all
players in N t. The selected player i ∈ N t proposes a payoff vector in V (N t).

(ii) All other players in N t either accept or reject the proposal sequentially.
We assume that the responses are made according to a predetermined order
over N t. If all members of N t\{i} accept, then the game ends with these
payoffs2. If some members of N t reject, then the game moves to the next
round. With probability ρ, the set of active players at round t + 1 is un-
changed, i.e., N t+1 = N t, and, with probability 1− ρ, one player j drops out
with equal probability among all players in N\i, and the set of active players
becomes N t\j, i.e., N t+1 = N t\j. In latter case, the player j who dropped
out gets a final payoff of 0.

(iii) Every player has perfect information about the history of the game play
whenever he/she makes a decision.

We do not consider a time discount. Instead of a time discount, the
probability ρ represents the cost of delay in agreement in our bargaining
model. If ρ → 1, the cost of delay is very low.

2We will write S\i for S\{i}.
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Our bargaining procedure is similar to that of Hart and Mas-Colell (1996).
They have presented a noncooperative bargaining procedure whose station-
ary subgame perfect equilibrium coincides with the Shapley value in the
transferable utility (TU) case and coincides with the consistent value (in-
troduced by Maschler and Owen (1989, 1992)) in the nontransferable utility
(NTU) case. They are mainly interested in providing a noncooperative foun-
dation for the cooperative solution concepts. On the other hand, we have
an interest in considering the tax assignment problem in a noncooperative
bargaining framework. In addition, our procedure itself is different from that
of Hart and Mas-Colell (1996). In our procedure, only the responders, not
the proposer, drop out with equal probability after the i’s proposal is re-
jected by one member of S\i. On the other hand, only the proposer drops
out with probability ρ after the proposal is rejected in the procedure of Hart
and Mas-Colell. Note that Hart and Mas-Colell (1996) also presented a more
general bargaining procedure which contains our procedure as a special case
in Section 6 of their paper. They did not, however, discuss the bargaining
model in the context of tax assignment. Furthermore, they did not fully
characterize the equilibrium payoffs under the general procedure in an NTU
case.

Before giving a formal definition of our solution concept, let us examine
our bargaining procedure in the context of the tax assignment problem. First,
we will discuss the procedural fairness in our bargaining. In our model, every
member of the society can participate in the bargaining that determines each
tax-burden, and every member has an equal opportunity to be selected as a
proposer in the first round. Furthermore, unanimous agreement among all
active players is required to determine the tax-burden on each member of the
society. We can say that our bargaining procedure is very close to the ideal
decision-making process of a direct democracy. Our bargaining procedure
also contains some undesirable parts. In particular, the rule in which one
member is compulsorily dropped out with probability 1−ρ after the proposal
is rejected undoubtedly goes against the democratic rules. For this reason
we will focus on the properties of equilibria in the bargaining model for the
tax assignment as the probability that a player drops out converges to zero,
i.e., ρ → 1.

Next, let us focus on the relationship between the payoff and the after-
tax income for each player in this bargaining. Suppose that, for example, a
proposal (z∗

i )i∈S ∈ V (S) is accepted by all players in a coalition S. Then,
an agreement is reached on the tax assignment among them, and the payoff
for player i ∈ S results in z∗

i . For any player i ∈ S, it is satisfied that
z∗

i = u(x∗
i ) = u(yi − t∗i ). By definition of V (S), the vector (x∗

i )i∈S belongs
to XS . Therefore, we obtain

∑
i∈S t∗i ≥ T . Thus, every player j ∈ N\S
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pays no tax and obtains his/her full income yj. Recall, however, that the
payoff for any dropped-out player, which in this example would be the player
j ∈ N\S, was assumed to be zero. This assumption can be interpreted as
follows. A state or a government is formed by members of the coalition S and
provides essential public goods or infrastructures G by using the tax revenue
T . Thus, every player outside the coalition S is unable to benefit from the
public good. In other words, players outside a state cannot free-ride on the
public good. The public good does not have a property of non-excludability
here. As a result, each player j ∈ N\S receives the payoff of 0. In other
words, every player has a utility function that depends on two variables;
an after-tax income, i.e., consumption of a private good and a public good,
ũ : R+ × R+ → R. The payoff for each player i ∈ S is represented by

ũ(x∗
i , G)

def
= u(x∗

i ) = z∗
i and that for each player j ∈ N\S is defined as

ũ(y∗
i , 0) = 0. The utility function u of after-tax income is a reduced form of

the function ũ.
Formally, our bargaining model can be represented as an extensive form

game with perfect information and with chance moves. We assume that the
rule of the game is a common knowledge for all players. For every coalition
S ∈ P0(N) and for a parameter ρ, we denote by GS(ρ) the bargaining model
with the set of active players S. A pure strategy for player i in GN (ρ) is a
sequence σi = {σt

i}∞t=1 of mappings, where σt
i is the tth round strategy. The

tth round strategy σt
i , t = 1, 2, . . . , prescribes (i) a proposal aN t,i ∈ V (N t)

and (ii) a response function assigning “accept” or “reject” to all possible
proposals by other players. σt

i may depend on the history of the game play
up to round t. For a strategy combination σ = (σ1, . . . , σn), the expected
payoffs for the players in GN (ρ) are determined in the usual manner.

Let us define our solution concept of the game GN (ρ).

DEFINITION 1. A strategy combination σ∗ = (σ∗
1, . . . , σ

∗
n) of the game

GN (ρ) is said to be a stationary subgame perfect equilibrium point (SSPE) if
it is a subgame perfect equilibrium point, at which for every t = 1, 2, . . . , the
tth round strategy of every player depends only on the set N t of all active
players at round t and on the current proposer i.

In our model, a subgame of the whole game GN (ρ), having the set of active
players S and starting with a chance move to select a proposer at round t is
identical to the bargaining game GS(ρ), regardless of the history preceding
the subgame. Under the stationary assumption of a strategy combination,
all players employ identical strategies in every two identical subgames.

For an SSPE σ = (σ1, . . . , σn) of the game GN (ρ) and for each coalition
S ∈ P0(N), we will denote by vS = (vS

i )i∈S ∈ RS
+ the expected payoff vector
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of players for σ in the subgame GS(ρ). We call the collection {vS | S ∈
P0(N)} the payoff configuration of the SSPE σ.

2.3 Characterization of SSPE

We will characterize the SSPE of our bargaining model GN (ρ) correspond-
ing to the tax assignment problem. Let us denote the proposal when the
set of active players is S and the proposer is i in the SSPE σ by aS,i =

(a1
S,i, a

2
S,i, . . . , a

|S|
S,i) ∈ R|S| for i ∈ S ⊂ N . Let also aS

def
= (1/|S|)∑

i∈S aS,i be
their average. By definition, it is clear that the jth component of the vector
aS becomes aj

S = (1/|S|)∑
i∈S aj

S,i.
First, we shall prove the basic proposition about an SSPE. This proposi-

tion and the next proposition correspond to Proposition 1 and to the Corol-
lary in Hart and Mas-Colell’s (1996) paper. Since the rule of our bargaining
game is different from that of the game of Hart and Mas-Colell (1996), the
equations in the propositions are modified.

PROPOSITION 4. In every SSPE σ of the game GN (ρ), the correspond-
ing proposals are always accepted, and they are characterized by:

aS,i ∈ ∂V (S), for ∀i ∈ S ⊂ N, and (3)

aj
S,i = ρaj

S + (1 − ρ)
∑

k∈S\i

1

|S| − 1
aj

S\k for ∀i, j ∈ S ⊂ N, i �= j. (4)

Moreover, these proposals are nonnegative, i.e., aS,i ∈ R
|S|
+ for all S ∈ P0(N)

and for all i ∈ S.

Proof. See Appendix.

Remark that aj
S\j = 0. Equation (4) implies that player i will propose the

expected payoff that player j would obtain in the continuation of the game
if the proposal is rejected by j. Furthermore, Proposition 4 shows that no
delay of the agreement will occurs; thus, an agreement will be achieved in
the first round, in the SSPE σ.

The next proposition shows the relationship between the proposals aN,i

for i ∈ N and the average aN .

PROPOSITION 5. (i) (M, . . . , M) ∈ Rn
+ is an upper bound for the set

V (N) ∩ Rn
+. (ii) |aj

N,i − aj
N | ≤ M(1 − ρ) for all i, j ∈ N .
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Proof. (i) By Assumption 1, M > 0 is an upper bound for the range of utility
function u. Then, it is straightforward that (M, . . . , M) is an upper bound
for V (N) ∩ Rn

+.
(ii) By using equation (4) in Proposition 4, we have

aj
N,i − aj

N = (1 − ρ)
∑

k∈N\i

1

n − 1
aj

N\k − (1 − ρ)aj
N ,

= (1 − ρ)
[ ∑

k∈N\i

1

n − 1
aj

N\k − aj
N

]
.

It is clear that

0 ≤
∑

k∈N\i

1

n − 1
aj

N\k ≤ n − 2

n − 1
M < M, and, 0 ≤ aj

N ≤ M.

Then, we obtain |aj
N,i − aj

N | ≤ M(1 − ρ).

It follows from Proposition 5 (ii) that if ρ is close to 1, i.e., if the cost of delay
is low, then there is little distance between the proposal aN,i of player i and
the average aN for all i ∈ N . This implies that dispersion among individual
proposals would vanish as ρ → 1. Thus, it does not matter who makes a
proposal in the first round of the game if ρ is close to 1.

3 Equal Income Allocation

3.1 Nontransferable utility case

Let us study the equilibria of the noncooperative game. We begin with the
nontransferable utility case, i.e., the case in which the payoff function for
each player is given by a strictly concave utility function of after-tax income
satisfying Assumption 1.

PROPOSITION 6. Let (N, V ) be an NTU coalitional form. For each
ρ, 0 ≤ ρ < 1, there exists an SSPE. Moreover, as ρ → 1, the every limit
point of SSPE payoff configurations (aS)S⊂N is, for all i ∈ S ∈ S ,

ai
S =

∑
k∈S\i

ai
S\k
|S| +

∑
k∈S\i

1

|S|(|S| − 1)


∑

j∈S

λj
Saj

S −
∑

j∈S\k
λj

Saj
S\k


 /

λi
S , (5)

where (λj
S)j∈S ∈ RS

++ is the unique supporting normal to the boundary of
V (S) at aS, and, for all S ∈ P0(N)\S , aS = {0S}.
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Proof. See Appendix.

Rewriting equation (5), we obtain that for every i ∈ S and for every
S ∈ S ,[

1

|S|
∑
j∈S

λj
Saj

S − λi
Sai

S

]
+

∑
k∈S\i

1

|S|


λi

Sai
S\k −

1

|S| − 1

∑
j∈S\k

λj
SaS\k


 = 0.

(6)

The system of equations (6) has a (unique) solution

aS = (a1
S, a2

S, . . . , a
|S|
S ) = (āS, āS, . . . , āS), for ∀S ∈ S ,

where āS is a positive real variable. Thus, the equal payoff allocation is a
solution to (6) for each coalition S ∈ S . Combining this fact and Proposition
5, we have:

COROLLARY 1. Let (N, V ) be an NTU form. Then, as ρ → 1, the SSPE
proposals aS,i converge to the equal payoff allocation for all i ∈ S ∈ P0(N).

By Proposition 4, we know that the proposal aN,i defined by (3) and
(4) belongs to the boundary of V (N) and is accepted by every responder
j ∈ N\i at the first round in the SSPE. Therefore, as ρ → 1, the equal payoff
allocation, i.e., the payoff vector aN = (a1

N , . . . , an
N) such that aN ∈ ∂V (N)

and a1
N = a2

N = · · · = an
N is realized on the equilibrium path, irrespective

of who makes a proposal at the first round. Because every player has the
same utility function, the equal payoff allocation implies equal after-income
allocation;

x∗
1 = x∗

2 = · · · = x∗
n, and,

∑
i∈N

t∗i
def
=

∑
i∈N

(yi − x∗
i ) = T.

We have thus obtained equal income allocation in a noncooperative manner.
In other words, perfectly progressive income taxation has been unanimously
agreed upon in noncooperative bargaining with respect to the choice of tax
systems when ρ is close to 1. Here, we say that an income tax is perfectly
progressive if income taxation leads to equal income allocation.

3.2 Transferable utility case

Next, we consider the case in which the payoff function for each player i is
his/her after-tax income xi itself. In this case, the basic data for the bargain-
ing are represented by the game in coalitional form with transferable utility
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(N, v) defined as equation (2). It is well-known that the law of a decreas-
ing marginal utility of income plays a central role in supporting progressive
taxation in the context of utilitarian social welfare maximization and equal
sacrifice taxation (see Musgrave (1959), Young (1988)). Although we define
the payoff function as the after-tax income of each player (that is, there is
no decreasing marginal utility of income here), we can show that (perfectly)
progressive income taxation, i.e., equal income allocation, is obtained as an
outcome of noncooperative bargaining when ρ is close to 1. Note that the
payoff for every dropped-out player is assumed to be zero for the same reason
as in the nontransferable utility case.

We can establish the following proposition in the transferable utility (TU)
case.

PROPOSITION 7. Let (N, v) be a TU form. If 0 ≤ ρ < 1, then there
exists an unique SSPE, whose payoff configurations (aS)S⊂N satisfy

ai
S =

∑
k∈S\i

1

|S|a
i
S\k +

∑
k∈S\i

1

|S|(|S| − 1)
[v(S)− v(S\k)] (7)

for any i ∈ S ∈ S . Moreover, ai
S = 0 for all i ∈ S ∈ P0(N)\S .

Proof. See Appendix.

COROLLARY 2. Let (N, v) be a TU form. Then, as ρ → 1, any SSPE
proposals aS,i converge to the vector (v(S)/|S|, . . . , v(S)/|S|) for all S ∈
P0(N).

Proof. Rearranging equation (7), we can obtain that for all S ∈ S and for
all i ∈ S,

v(S)

|S| − ai
S +

∑
k∈S\i

1

|S|(a
i
S\k −

1

|S| − 1
v(S\k)) = 0. (8)

The system of equations (8) has a (unique) solution aS = (v(S)/|S|, . . . , v(S)/
|S|) for all S ∈ S . For S ∈ P0(N)\S , aS = (0, . . . , 0). Taking into account
of Proposition 5 and ρ → 1, we can obtain the result.

This implies that the SSPE payoffs also coincide with equal income allocation
in the TU case;

(v(N)/n, . . . , v(N)/n) = (E/n, . . . , E/n).

Thus, all players come to unanimous agreement to employ perfectly progres-
sive income taxation in the bargaining for the tax assignment when ρ is close
to 1.

13



3.3 Pure bargaining case

Finally, we consider the pure bargaining case. We call the case in which
bargaining has no value if the number of active players is less than n, i.e.,
V (S) = {0S} for all S � N , the pure bargaining case. So far we have assumed
that every player has the same utility function. Let us relax this assumption.
We allow the possibility that each individual has a different utility function.
Thus, we abandon part (i) of Assumption 1 and replace the utility function
u with ui in part (ii) of Assumption 1. Then, the characteristic function in
the pure bargaining case is defined as

V (N) =
{
z ∈ Rn

+ | ∃(xi)i∈N ∈ XN , ∀i ∈ N, zi ≤ ui(xi)
}

,

V (S) = {0S} for all S � N.

Even if different utility functions allowed, the contents of Proposition 6
are similarly satisfied as long as the noncooperative bargaining procedure
is maintained. (As a matter of fact, Theorems 1, 2 and 3, Propositions 4 and
5, and Corollary 1 also hold without the assumption of the identical utility
function. The result of perfectly progressive income taxation, however, is
not obtained.) In the pure bargaining case, ai

S = 0 for all i ∈ S and for all
S � N . Then, the system of equations (5) in Proposition 6 becomes reduced
to the following one:

λi
Nai

N − 1

n

∑
j∈N

λj
Naj

N = 0, ∀i ∈ N, (9)

where (λj
N )j∈N ∈ RS

++ is the unique supporting normal to the boundary of
V (N) at aN . This implies that a solution to the system of equations satisfies

λ1
Na1

N = λ2
N = · · · = λn

Nan
N . (10)

We denote by x∗
i the after-tax income corresponding to the solution ai

N

for each i ∈ N . Thus, ai
N = ui(x

∗
i ) for all i ∈ N . Moreover, the vector

(λ1
N , . . . , λn

N ) is in proportion to the vector

(1/u′
1(x

∗
1), . . . , . . . , 1/u

′
n(x∗

n)).

Therefore, equation (10) is expressed as

u′
1(x

∗
1)

u1(x∗
1)

= · · · =
u′

n(x∗
n)

un(x∗
n)

. (11)

When ρ is close to 1, the after-tax income allocation (x∗
1, x

∗
2, . . . , x

∗
n) is realized

in an SSPE of the noncooperative bargaining game for the tax assignment.
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Let us consider the problem of maximizing a Nash social welfare function
under the resource constraint, that is, under the set of feasible after-tax
income allocations XN . Namely, we consider the problem

max
x

n∏
i=1

ui(xi) subject to
∑
i∈N

xi ≤ E. (12)

This problem is equivalent to the tax assignment problem of maximizing a
Nash social welfare:

max
t

n∏
i=1

ui(yi − ti) subject to
∑
i∈N

ti ≥ T.

The Nash social welfare maximization problem has often been employed in
the context of optimal income taxation (see, for example, Kaneko (1981,
1982)). Note that optimal taxation has been discussed in a general equilib-
rium model and the disincentive effect of taxation on work has been taken
into account.

It is easy to verify that the first-order necessary condition for problem
(12) can be written as (11). Thus, a solution to the Nash social welfare
maximization problem also satisfies condition (11). Since a solution to the
maximization problem is unique (by the strict concavity and monotonicity
of ui), the vector (x∗

1, . . . , x
∗
n) coincides with the solution to the problem

of maximizing a Nash social welfare function under the resource constraint.
Thus, we have implemented a solution to a Nash social welfare maximization
problem in a noncooperative manner.

4 Concluding Remarks

In this paper, we presented a noncooperative bargaining model of tax as-
signment which realized equal (after-tax) income allocation in an SSPE as
ρ → 1. This result implies that members of the society come to an agreement
on a perfect progressive income tax schedule in order to collect a given tax
revenue. Our bargaining game proceeds in an extremely democratic manner,
where everyone has equal opportunities for making a proposal and the tax
assignment is determined by the unanimity rule among the active players.
Because of the noncooperative framework, binding commitments among the
players of the group are not allowed. Furthermore, each player has no al-
truistic preference and makes a decision about his/her strategies so as to
maximize his/her own payoff. Up to now, progressive taxation has been re-
garded as means for achieving a social justice, e.g., utilitarianism, or has
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been obtained through some voting mechanism. In our bargaining for the
tax assignment, all players are primarily self-interested and there is no social
mechanism planner. Therefore, our analysis has established a noncooperative
foundation for progressive taxation.

In the pure bargaining case, we showed that our bargaining procedure
implements a solution to the Nash social welfare maximization problem (a
Nash bargaining solution) in an SSPE. This implies that a Nash social wel-
fare maximization problem, for example, the theory of optimal taxation, is
supported in a noncooperative manner, as long as the pure bargaining case
is considered.

The possibility of alternative bargaining procedures exists in our model.
In particular, we have to discuss the procedure by which a players drops out
after the proposal is rejected. In our bargaining model, only the responders,
not the proposer, drop out with equal probability. This procedure seems to
be arbitrary. On the other hand, Hart and Mas-Colell (1996) considered and
focused on the case in which only the proposer drops out with some probabil-
ity, and they obtained the Shapley value and the Maschler-Owen consistent
value in a TU case and an NTU case, respectively. For procedural fairness,
or, for the sake of equal opportunity in bargaining, it would be appropriate to
establish a rule in which all players drop out with equal probability. In such
a procedure, the resulting solution is not characterized as either the Shapley
value or equal income allocation. As the number of players n, however, is
very large, the solutions converge to our solution in this paper. This implies
that our solution, namely equal income allocation, is a close approximation of
the bargaining solution in which all players drop out with equal probability.

There are some limitations in our bargaining model for the tax assign-
ment problem. First, our noncooperative bargaining game does not allow for
strategic coalition formation as in the models of Selten (1981), Chatterjee,
Dutta, Ray and Sengupta (1993), Perry and Reny (1994), Moldovanu and
Winter (1995) and Okada (1996). Secondly, we ignored the possibility that
players act to evade their taxes. For example, we should allow the members
to behave strategically by forming a coalition in which income is rearranged
among the members in order to evade full taxation, as Nakayama (1976) has
considered. Finally, we assumed that all players supply labor inelastically. It
is well-known that a progressive income tax schedule would reduce the incen-
tive to supply labor. Taking into consideration that our result has supported
perfectly progressive taxation, introducing work incentives to our bargaining
model would be a very interesting next direction for our research.
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Appendix

Proof of Theorem 1: (Closedness) We will prove that the set V (S) is
closed. Let {zS

ν }∞ν be any convergent sequence, where zS
ν ∈ V (S) for all

ν = 1, 2, . . . , and let zS be the limit point of the sequence. By definition of

V (S) and zS
ν ∈ V (S), there exists xS

ν
def
= (xS

iν)i∈S ∈ XS such that zS
iν ≤ u(xS

iν)
for any i ∈ S. Since there exists xS

ν for each ν = 1, 2, . . . , the sequence
{xS

ν }∞ν=1 is constructed. By the compactness of XS , the sequence {xS
ν }∞ν=1

contains a convergent subsequence {xS
νj
}∞j=1. Let denote the limit point of

this subsequence by xS.
(i) Because a utility function u is continuous, xS

iνj
→ xS

i implies u(xS
iνj

) →
u(xS

i ) for all i ∈ S.
(ii) Furthermore, since {xS

νj
}∞j=1 is a subsequence of {xS

ν }∞ν=1, it is satisfied

that zS
iνj

≤ u(xS
iνj

), ∀i ∈ S for each number νj .

Let define zS
νj

def
= (zS

iνj
)i∈S ∈ RS.

(iii) Since zS
ν → zS, the subsequence {zS

νj
}∞j=1 also converges to zS.

From (i), (ii) and (iii), we can obtain zS
i ≤ u(xS

i ) for all i ∈ S. This
implies that zS ∈ V (S). �

(Convexity) Let zS , z′S ∈ V (S). Then, there exists (xi)i∈S ∈ XS such
that zS

i ≤ u(xi) for all i ∈ S, and there exists (x′
i)i∈S ∈ XS such that

z′S ≤ u(x′
i) for all i ∈ S.

Therefore, it is satisfied that for any 0 ≤ t ≤ 1,

tzS
i + (1 − t)z′S

i ≤ tu(xi) + (1 − t)u(x′
i) for all i ∈ S.

Since the utility function u is strictly concave, then, for any 0 ≤ t ≤ 1,

tzS
i + (1 − t)z′S

i ≤ u(txi + (1 − t)x′
i) for all i ∈ S.

This implies that tzS
i + (1 − t)z′S ∈ V (S). �

(Comprehensiveness) Let zS ∈ V (S) and take ẑS such that ẑS
i ≤ zS

i for
all i ∈ S. Then, there exists (xi)i∈S ∈ XS such that zS

i ≤ u(xi) for all i ∈ S.
Since ẑS

i ≤ zS
i for all i ∈ S, it holds that ẑS

i ≤ u(xi) for all i ∈ S. Thus,
ẑS ∈ V (S). �

(0 ∈ V (S)) Because 0 ≤ max(0, Y (S) − T ), then {0S} ∈ XS . Further-
more, 0 ≤ u(0). Hence, {0S} ∈ V (S). �

(Boundedness) It is trivial that {0S} is a lower bound for V (S)∩RS
+. We

assume that u is a bounded function, and we denote the upper bound by M .
So, it holds that for any xi ∈ R+, u(xi) ≤ M for all i ∈ S. Hence, for any
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(zS
i )i∈S ∈ V (S)∩RS

+, zS
i ≤ u(xi) ≤ M for all i ∈ S. Thus, (M, . . . , M) ∈ RS

+

is an upper bound for V (S) ∩ RS
+. �

Proof of Theorem 2: Let ẑS ∈ ∂V (S)∩RS
++. That is, the vector ẑS belongs

to the boundary of V (S) ∩ RS
+. In addition, the set V (S) ∩ RS

+ is convex.
Then, by the supporting hyperplane theorem, there exists a (unique) vector
λ̂S �= {0S} such that λ̂S · ẑS ≥ λ̂S · zS for all zS ∈ V (S) ∩ RS

+. Moreover,

since V (S) − RS
+ ⊂ V (S), we must have λ̂S ≥ 0.

In addition, if ẑS ∈ ∂V (S)∩RS
++, then there exists (x̂i)i∈S ∈ RS

+ satisfying
the following system of equations,∑

i∈S

x̂i = Y (S) − T > 0, and, ẑS
i = u(x̂i), ∀i ∈ S.

The above system of equations reduces to∑
i∈S

u−1(ẑS
i ) − Y (S) + T = 0.

Let define a function g : RS
++ → R as

g(zS)
def
=

∑
i∈S

u−1(zS
i ) − Y (S) + T.

It is obvious that the function g is continuous. Thus, we show that there
exists a continuous function g : RS

++ → R such that

∂V (S) ∩ RS
++ = {zS ∈ RS

++ | g(zS) = 0}.
Therefore, λ̂S is represented by the gradient of g at each ẑS ∈ ∂V (S) ∩

RS
++. The gradient of g is the vector (1/u′(u−1(ẑS

1 )), . . . , 1/u′(u−1(ẑS
|S|))),

which is uniquely defined and positive in all its coordinates at ẑS. We can
take this gradient as the outward normal direction (vector) at each ẑS ∈
∂V (S) ∩ RS

++. �

Proof of Theorem 3: Let S ⊂ H and zH ∈ V (S) × {0H\S}. We denote
the V (S)’s coordinate of the point zH by zH|S. Thus, zH |S ∈ V (S) and
zH = (zH|H , 0H\S). Therefore, there exists (xi)i∈S ∈ XS such that zH

i |S ≤
u(xi) for all i ∈ S. Furthermore, we choose xi = 0 for all i ∈ H\S. Then,
it is satisfied that 0 ≤ u(0) = u(xi) for all i ∈ H\S. Using xi obtained

above, we can define xH def
= (x1, . . . , x|S|, 0, . . . , 0). The vector xH satisfies

the inequality:∑
i∈H

xi =
∑
i∈S

xi ≤ max(0, Y (S)− T ) ≤ max(0, Y (H) − T ).
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Therefore, xH ∈ XH . Moreover, it holds that zH
i ≤ u(xH

i ) for all i ∈ H. This
implies zH ∈ V (H). �

Proof of Proposition 4: The proof is by induction. The proposition holds
trivially for the 1-player case. Assume that it holds for the less than n-players
case. Let aS,i for i ∈ S ⊂ N be the proposals of an SSPE. We will show that
equations (3) and (4) are satisfied. We denote the expected payoff vector
for the members of S by vS ∈ RS in the subgames where S is the set of
active players. Since V (S) is convex we obtain vS ∈ V (S). By induction
hypothesis, aS = vS. Then, equations (3) and (4) are satisfied for S �= N .

By the convexity of V (S), it holds that vN ∈ V (N). Since for any k ∈ N ,
aN\k ∈ V (N\k), it follows from the monotonicity of V that (aN\k, 0) ∈ V (N),
where 0 is the kth coordinate. Now, we denote by ak

N\k the kth coordinate,

and then (aN\k, 0) is represented by (aN\k, ak
N\k). The convexity of V (N)

implies that for all i ∈ N

1

n − 1

∑
k∈N\i

(aN\k, a
k
N\k) = (

1

n − 1

∑
k∈N\i

a1
N\k, . . . ,

1

n − 1

∑
k∈N\i

an
N\k) ∈ V (N).

Hence, the convex combination ρvN +(1−ρ)(1/(n−1))
∑

k∈N\i(aN\k, ak
N\k) ∈

V (N) for all i ∈ N . Let increase in the ith coordinate of the vector ρvN +(1−
ρ)(1/(n−1))

∑
k∈N\i(aN\k, ak

N\k) until reaching the boundary ∂V (N) for all i.

We denote by di the induced vector, which satisfies dj
i = ρvj

N +(1−ρ)(1/(n−
1))

∑
k∈N\i a

j
N\k for j �= i and di

i ≥ ρvi
N +(1−ρ)(1/(n−1))

∑
k∈N\i a

i
N\k. For

j �= i, the amount dj
i is the expected payoff of j when player j would rejects

i’s proposal. Therefore, di is the best proposal for i among the proposals that
will be accepted if i is the proposer. Furthermore, if i makes any proposal
that is rejected, then i obtains at most ρvi

N +(1−ρ)(1/(n−1))
∑

k∈N\i a
i
N\k,

which is less than di
i. Hence, player i will propose aN,i = di and the proposal

will be accepted. Then, we have vN = aN .
Next, let us show that aN,i ≥ 0. Consider the following strategy: in the

case of the responder, accept only if offered at least 0 and, in the case of the
proposer, propose 0 ∈ V (N). This strategy will guarantee a payoff of at least
0 to player i. Therefore, aN,i ≥ 0.

Let prove the converse. We show that proposals (aS,i)S⊂N,i∈N satisfying
equations (3) and (4) can be supported as an SSPE. Let us show that all
proposals are nonnegative. Since aN,i ∈ V (N) and V (N) is convex, it holds
that the average aN ∈ V (N). Furthermore, (1/(n−1))

∑
k∈N\i(aN\k, ak

N\k) ∈
V (N) for all i ∈ N . It follows that bi

def
= ρaN + (1 − ρ)

∑
k∈N\i(1/(n −

1))(aS\k, ak
N\k) ∈ V (N). It is obvious that aN,i ≥ bi, ∀i ∈ N . By the
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induction hypothesis, aN\k ≥ 0. Then, aN,i ≥ ρaN for all i ∈ N . Taking an
average with respect to i, it holds that aN ≥ ρaN . Because 0 ≤ ρ < 1, we
must have aN ≥ 0. Therefore, the all aN,i are nonnegative.

Finally, let us verify that the strategies corresponding to these proposals
do form an SSPE. By the induction hypothesis, it holds for any subgame
after one of the players has dropped out. The strategies of the other players
do not allow player i to increase in his/her payoff from proposals that are
accepted. The only possibility to gain remains by managing to drop out.
This, however, gives a payoff of 0. The suggested strategy yields nonnegative
payoffs. �

Proof of Proposition 6: The proof will be demonstrated by proving the
following three lemmas. These lemmas will be proved in the same line as the
proofs of Proposition 6, 7, and 8 in Hart and Mas-Colell’s (1996) paper.

First we prove the existence of SSPE.

LEMMA 1. Let (N, V ) be an NTU form. Then, there exists an SSPE for
each 0 ≤ ρ < 1.

Proof. We proceed by induction. It is trivial for n = 1. Assume that there
exists aS for all S �= N such that for any H ⊂ N, H �= N , (aS)S⊂H is an
SSPE payoff configuration for the game (H,V ). By Proposition 4, aS ≥ 0
for all S. Let us define n functions αi(b) by:

αi(b) ∈ ∂V (N), and, αj
i (b)

def
= ρbj + (1 − ρ)

∑
k∈N\i

1

n − 1
aj

N\k, j �= i.

We assume that the domain of the functions is defined as the compact convex
set V (N) ∩ RN

+ . Then it induces that the range of the functions is also
V (N) ∩ RN

+ . By the nonlevelness in Theorem 2 and Assumption 2, we can
apply the implicit function theorem. Then, the functions are well-defined and
continuous. By the convexity of the domain, (1/n)

∑
i∈N αi(b) maps also into

V (N)∩RN
+ . By an application of Brouwer’s fixed point theorem, there exists

a vector aN ∈ V (N) ∩ RN
+ satisfying aN = (1/n)

∑
i∈N αi(aN). Proposition

4 implies that aN are equilibrium payoffs for N and that aN,i = αi(aN), ∀i.
By the induction hypothesis, (aS)S⊂N are the payoffs of an overall SSPE for
the game (N, V ).

Next, we introduce the notion of a hyperplane coalitional form game
(N, Ṽ ). In this game, each Ṽ (S) is defined as a half space in RS

+. Thus,

the set Ṽ (S) is represented by for some λS ∈ RS
++,

Ṽ (S)
def
=

{
c ∈ RS |

∑
i∈S

λi
Sci ≤ wS

}
.
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LEMMA 2. Let (N, Ṽ ) be a hyperplane coalitional form. Then for each 0 ≤
ρ < 1 there exist an unique SSPE. Moreover, the SSPE payoff configuration
(aS)S⊂N satisfies that for all i ∈ S ⊂ N ,

ai
S =

∑
k∈S\i

ai
S\k
|S| +

∑
k∈S\i

1

|S|(|S| − 1)


∑

j∈S

λj
Saj

S −
∑

j∈S\k
λj

Saj
S\k


 /

λi
S . (13)

Proof. We proceed by induction. Assume the statement is correct for the
less than n-players case. Let λN ∈ Rn

++ and

Ṽ (N)
def
=

{
c ∈ Rn |

∑
i∈N

λi
Nci ≤ wN

}
.

By definition of ai
N and by Proposition 4, it holds that for every i ∈ N

nλi
Nai

N = λi
Nai

N,i +
∑

j∈N\i
λi

Nai
N,j

= (wN −
∑

j∈N\i
λj

Naj
N,i) +

∑
j∈N\i

λi
Nai

N,j

= wN −
∑

j∈N\i
λj

N (ρaj
N + (1 − ρ)

∑
k∈N\i

aj
N\k

n − 1
)

+
∑

j∈N\i
λi

N (ρai
N + (1 − ρ)

∑
k∈N\j

ai
N\k

n − 1
).

Since wN =
∑

j∈N λj
Naj

N , the above equality is rewritten by

nλi
Nai

N = (1 − ρ)
∑
j∈N

λj
Naj

N + λi
N ρai

N − 1 − ρ

n − 1

∑
k∈N\i

∑
j∈N\i

λj
Naj

N\k

+ (n − 1)λi
N ρai

N +
1 − ρ

n − 1

∑
j∈N\i

∑
k∈N\k

λi
Nai

N\k.

Then, it reduces to the following equality:

n(1 − ρ)λi
Nai

N = (1 − ρ)
∑

k∈N\i
λi

Nai
N\k + (1 − ρ)

∑
j∈N

λj
Naj

N

− 1 − ρ

n − 1

∑
k∈N\i

∑
j∈N\i

λj
Naj

N\k.
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By dividing the last equality by n(1 − ρ)λi
N , we obtain

ai
N =

∑
k∈N\i

ai
N\k
n

+
∑

k∈N\i

1

n(n − 1)


∑

j∈N

λj
Naj

N −
∑

j∈N\k
λj

Naj
N\k


 /

λi
N .

Let us choose aS satisfying equation (13) and define aS,i by equations (3)
and (4) in order to show the existence of the SSPE. Then, it holds that aS =
(1/|S|)∑

j∈S aS,j. Therefore, these proposals form an SSPE by Proposition
4.

LEMMA 3. Let (N, V ) be an NTU form and a(ρ) be an SSPE payoff con-
figuration for each ρ. If a = (aS)S⊂N is a limit point of a(ρ) as ρ → 1, then
a satisfies the equation (13), where λS ∈ RS

++ for each S ∈ S is the outward
unit normal vector to ∂V (S) at aS.

Proof. Let λS(ρ) be the outward unit normal to the hyperplane passing
through the vector {aS,i | i ∈ S}, and let Ṽρ(S) be the half-space below
the hyperplane. Then, we have a hyperplane coalitional form game (N, Ṽρ)
for each ρ. By Proposition 5, aS,i(ρ) → aS as ρ → 1. Furthermore, it follows

from Theorem 2 and Assumption 2 that the boundary ∂V (S)∩R
|S|
+ is smooth

and nonlevel. Hence, we have λS(ρ) → λS . Therefore, we obtain

Ṽρ(S) → Ṽ ′(S)
def
= {c ∈ RS | λSc ≤ λSaS}.

It is clear from the fact of Proposition 4 that the payoff configuration a(ρ)
remains an SSPE payoff configuration for the hyperplane coalitional form
(N, Ṽρ). By Lemma 2, a(ρ) satisfies the equation (13) of (N, Ṽρ). Therefore,
as ρ → 1, the limit point (aS)S⊂N of the SSPE payoff configuration of the
game (N, V ) is precisely the payoff configuration of the hyperplane form
(N, Ṽ ′), which satisfies the equation (13). This completes the proof.

Proof of Proposition 7: For the proof of this proposition, it suffices to
repeat the similar arguments to those of Lemma 2. Here we will only show
that the SSPE payoff configuration satisfies equation (7). A proposer i ∈ S
proposes to each other player j ∈ S\i the expected payoff of next round, i.e.,

aj
S,i = ρaj

S + (1 − ρ)
∑

k∈S\i

1

|S| − 1
aj

S\k, (14)

where aj
S\j = 0. Then, the proposer takes all the surplus

ai
S,i = v(S)−

∑
j∈S\i

aj
S,i. (15)
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By the substitution of equation (15) to (14), we obtain that

ai
S,i = v(S) − ρ

∑
j∈S\i

aj
S − (1 − ρ)

∑
j∈S\i

∑
k∈S\i

1

|S| − 1
aj

S\k

= v(S) − ρ(
∑
j∈S

aj
S − ai

S) − (1 − ρ)
∑

k∈S\i

1

|S| − 1
[
∑
j∈S

aj
S\k − ai

S\k]. (16)

In the transferable utility case, the characteristic function v is represented
by

v(S) =
∑
j∈S

aj
S, and v(S\k) =

∑
j∈S\k

aj
S\k. (17)

Taking account of ak
S\k = 0 and equalities (17), we can reduce equation (16)

to

ai
S,i = ρai

S + (1 − ρ)v(S) +
∑

k∈S\i

1 − ρ

|S| − 1
(ai

S\k − v(S)).

Since 1 − ρ =
∑

k∈S\i(1 − ρ)/(|S| − 1), then

ai
S,i = ρai

S +
∑

k∈S\i

1 − ρ

|S| − 1
(ai

S\k + v(S)− v(S\k)). (18)

Fix i in S, and take expectation of ai
S,j over j. Then, by definition of ai

S,
we obtain

ai
S =

1

|S|
∑
j∈S

ρai
S +

∑
k∈S\i

1 − ρ

|S| ai
S\k +

∑
k∈S\i

1 − ρ

|S|(|S| − 1)
[v(S)− v(S\k)].

Thus,

ai
S =

∑
k∈S\i

1

|S|a
i
S\k +

∑
k∈S\i

1

|S|(|S| − 1)
[v(S)− v(S\k)].

We have equation (7) as the payoff configuration of (N, v). �
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