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Abstract

This paper constructs a human-capital accumulation propelled endogenous growth

model in which a home production sector is modeled explicitly. We con�rm �rst the

basic equilibrium properties of a unique balanced-growth path, then conduct com-

parative statics and comparative dynamics exercises analytically. The implications

of home production are explored in both the long and short runs, hence some eco-

nomic realities can be explained. For example, it is shown that the present structure

can shed light on understanding the rise trend of women�s market work hours ob-

served in recent decades.
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1 Introduction

One characteristic of the labor market in recent decades is that more and more married

women (with higher education) do not quit their market occupations after marriages

while make a balance between the home and market work. The data in the United

States labor market reveal a clear trend that married women worked much longer at

the market than before (Jones, Manuelli and MaGrattan, 2003). The statistics of the

Japanese Cabinet O¢ ce reveal a similar trend in Japan�s female labor supply too. At the

same period, an observation on the education sector reveals that the enrollment rate of

female students in college has increased steadily. For example, according to the statistics

of the Japanese Cabinet O¢ ce, the percentage of female students entering junior college

or university has exceeded that of the male students since 1989.

It is natural to connect the above two increments in women�s education years and

market hours together. In fact, empirical studies have con�rmed the existence of a

positive relation between education years and the attitude towards market work. The

present paper therefore constructs an endogenous growth model with home production,

in which human capital accumulation is the engine of permanent economic growth. In

the original Uzawa (1965) and Lucas (1988) models, resources are allocated to market

goods production and education activities. In the absence of externalities, this kind

of two-sector growth model generally involves a unique balanced-growth path, which

is determined solely by the aggregate physical/human capital ratio1. In this paper,

we assume that households can derive utility from both market goods consumption and

homemade goods enjoyment. That is, in addition to market goods production and human

capital accumulation, resources can also be spent at home for non-market production.

The explicit introduction and analysis of the home sector has by now become a

fairly standard feature of economic models in business cycle research: see, for example,

1This is illustrated in Bond, Wang and Yip (1996), Caballé and Santos (1993), and Mino (1996), for
example.
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Benhabib, Rogerson and Wright (1991), Greenwood and Hercowitz (1991) and Perli

(1998). The good �tness to evidences of the predicted results by the models with home

production suggests that home activities are relevant to macroeconomic analyses2. By

contrast, in the �eld of (endogenous) growth theory, with a few exceptions3, most work

is silent on the role of home production. This neglect is based on the conjecture that

home activity is isolated to market ones. This conjecture is, however, groundless both

empirically and intuitively. For example, the results in McGattan, Rogerson and Wright

(1997) suggest that there is a signi�cant elasticity of substitution between home and

market goods. Intuitively, on the other hand, home activity should be relevant to growth

process when home production needs investment from market sector. This is because the

inclusion of home sector a¤ects resource allocation between distinct production sectors,

while this allocation is crucial to the growth process in the Uzawa-Lucas framework.

There are some developments in the literature that are related to ours if leisure

can be interpreted as special form of home production. With constant returns to scale

technologies, Ladron-de-Guevara, Ortigueira and Santos (1997,1999) analyze the equi-

librium dynamics of a pure-leisure-time version of the Lucas model. They reveal that

the inclusion of leisure leads to the possible existence of multiple balanced growth paths.

Ortigueira (2000), on the other hand, shows that the Lucas model with human capital

adjusted quality leisure displays well behaved dynamics in the sense that the balanced

growth path is uniquely determined and it satis�es global saddle-path stability. These

distinctive results show the sensitivity of dynamic properties to di¤erent speci�cations

of home production activity.

2The intuition behind this good �tness can be understand as follows. The encompass of home sector
to the standard one-sector real business cycle model brings about possibility of substitution between
market and nonmarket production over time. Therefore, relative productivity di¤erencials between the
two sectors can give arise volatility in market activity. Furthermore, the substitution between home and
market commodities at a given date, not just at di¤erent dates, a¤ects the size of �uctuations induced
by productivity shocks also.

3 In an endogenous growth framework, Einarsson and Marquis (2001) examine the consequences for
an economy when moving to a less distortion tax regime. Parente, Rogerson and Wright (2000) assess
the impact of distortion polices in a neoclassical growth model with home production.
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Di¤erent from these existing contributions, we assume that home activity is, just like

market production, to use machines and time to produce homemade goods. That is, it is

assumed that households combine at-home time and home capital (which is constituted

with consumer durable goods and residence) to produce non-tradable goods and services.

This kind of speci�cation of home sector can be justi�ed by considering that households

value their at-home time because of what they can do with it. Therefore valued leisure

is not the residual time unoccupied by production. Instead, it is the output from a home

production function, in which home time, home capital, and home technology appear

just as market time, market capital and market technology do in the market production

function. Some numerical examples may also help to justify our speci�cation of home

sector. Greenwood and Hercowitz (1991) point out that household activities involve

approximately as much capital as market sector. Eisner�s summary (1988) suggests an

estimate of home-produced output relative to measured gross national production in the

range of 20-50 percent in the US data4. The evidences are more striking in the developing

economies. For examples, it is said more than 80 percent of income goes unreported in

Argentina (Easterly, 1993).

Main �ndings of the papers are as follows. Under mild conditions, there exists a

unique balanced growth path, which is locally saddle-point stable. In the long run,

the growth rate of the present model economy is determined by the productivity of the

education sector, as in the standard model. Comparative statics analysis illustrates also

that an increase in the home capital share or the propensity towards market consumption

goods do not a¤ect the education time while can lead to less home work time hence more

labor time in market. Furthermore, the market work time predicted the present model

is shorter than the Lucas (1988) model, but longer than the case without home capital.

Transitional dynamics analysis is conducted in the case that a positive shock in

physical capital occurs. We �rst derive the shape of the stable arm of the balanced
4Two of the main items of the household product are service of household capital (e.g., owner-occupied

housing) and unpaid household labor (e.g., housework, care of family and others).
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growth path, then investigate the moving pattern of the endogenous variables during

the transitional process. For example, a sudden increase in the physical capital (this

can be caused by the coming of an international transfer) causes the home work time,

the market good consumption, and the home good consumption to jump up at �rst and

then decrease along the transitional process. The e¤ects of this change on the market

work time, the home capital share, and the education time are general ambiguous, for

which the separating rules are given. At last, numerical computations present intuitive

examples for the obtained results.

2 The model

We consider a closed economy with competitive markets where many identical, ratio-

nal households dwell in. The number of population is �xed, and is normalized to one.

Therefore, we can express the aggregate economy with a representative agent model in

which the per-capita variables express the aggregate ones as well. Assume the represen-

tative agent derives utility from consumption goods acquired in the market, Cm(t), and

produced at home, Cn(t). Its lifetime utility is

Z 1

0
U(C(t))e��tdt; � > 0; (1)

where � is the rate of time preference, C(t) is a composite of market consumption and

homemade goods. The relation between C(t), Cm(t) and Cn(t) is

C(t) = Cm(t)
Cn(t)

1� ; 0 �  � 1: (2)

that is, the intratemporal elasticity of substitution between market goods and home

goods is one. We should point out that this speci�cation of C(t) is by no mean the best
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one, but it is helpful for illustrating the equilibrium paths explicitly.5 The instantaneous

utility U(C(t)) is assumed to have the usual form of

U(C(t)) =
C(t)1�� � 1
1� � for � > 0; and � 6= 1

U(C(t)) = logC(t) for � = 1; (3)

where � is the inverse of the intertemporal elasticity of substitution for consumption.

Notice that raw leisure time does not enter the utility function directly. Instead,

non-market time a¤ects utility only by being an input in the production of home goods.

We emphasize that households value their leisure time only when they can do something

useful with it. Therefore, valued leisure is not the residual time unoccupied by pro-

duction. Accordingly, we follow Greenwood and Hercowitz (1991) in which households

derive utility from market and home goods consumption alone.

Each agent in the economy is endowed with one unit of time per period which can be

assigned to market work, home work and schooling. Time allocation fractions to these

three activities are u(t), l(t) and 1�u(t)� l(t), respectively. Following Lucas (1988), we

omit physical capital input in education sector in view of the fact that education sector

is a relative human capital intensive one. That is, physical capital is allocated between

market and home sectors. Suppose s(t) 2 [0; 1] and 1 � s(t) are the corresponding

fractions allocated to the market and home sectors, respectively.

The accumulation equation of human capital is

_H(t) = B[1� u(t)� l(t)]H(t)� �H(t); u(t); l(t) 2 [0; 1]; (4)

where B is a positive technology parameter, � 2 [0; 1) the constant depreciation rate of
5For more general speci�cation of C(t) in CES function form, see, for example, numerical experiments

in Benhabib et al. (1991).
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human capital. Suppose both market and home sectors own Cobb-Douglas technologies:6

Ym(t) = A[s(t)K(t)]�1 [u(t)H(t)]1��1 ; 0 < �1 < 1; A > 0

Yn(t) = [(1� s(t))K(t)]�2 [l(t)H(t)]1��2 ; 0 < �2 < 1 (5)

where Ym(t), Yn(t) are market and home outputs, respectively.

Note that home production equals home consumption period by period, that is,

Y2(t) = Cn(t). If market capital, s(t)K(t), and home capital, (1� s(t))K(t), depreciate

in the same rate of � 2 [0; 1), then the accumulation of aggregate physical capital K(t)

of the economy is

_K(t) = Y (t)� Cm(t)� �K(t): (6)

Since there is no distortion in the economy, we are considering a optimal growth model

with an unbounded horizon. Hence, solution of the planner�s problem coincides with

the competitive equilibrium achieved in a decentralized way through competition among

�rms and optimizing behavior of the agents. Thus, without loss of generality, we focus

on the analysis of the planner�s problem in the following.

The optimization problem of the social planner is to maximize the representative

agent�s life utility in (1) under the resources constraints (4), (5) and (6) (problem (P )

thereafter). The current-value Hamiltonian function is

HfK(t);H(t); p1(t); p2(t); Cm(t); Cn(t); s(t); u(t); l(t)g

=
1

1� � [Cm(t)
(1��)Cn(t)

(1�)(1��) � 1] + p1[A(s(t)K(t))�1(u(t)H(t))1��1

�Cm(t)� �K(t)] + p2[B(1� u(t)� l(t))H(t)� �H(t)];

where p1(t) and p2(t) are co-state variables for K(t) and H(t), respectively.

6When specifying the home production as using physical capital and raw labor only as inputs, we can
show that multiple balanced growth paths are possible (Hu, 2003).
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If omit the time argument, by the maximum principle, we know the interior optimal

solution satis�es

Cm
(1��)�1Cn

(1�)(1��) = p1; (7)

�2(1� )Cm(t)(1��)Cn(1�)(1��)[(1� s)K]�1 = p1A�1k
�1�1
m ; (8)

(1� �2)(1� )Cm(1��)Cn(1�)(1��)(lH)�1 = p2B; (9)

p1A(1� �1)k
�1
m = p2B; (10)

_p1 = p1[�+ � �A�1k
�1�1
m ]; (11)

_p2 = p2[�+ � �B]: (12)

with the feasibility conditions (4), (6), and boundary conditions:

K(0) = K0; H(0) = H0; (13)

lim
t!1

p1Ke
��t = 0; lim

t!1
p2He

��t = 0; (14)

where km(t) � s(t)K(t)=u(t)H(t) is the capital-labor ratio in the market sector.

3 Steady state analysis

Denote k � K=H, p � p2=p1 as the aggregate capital-labor ratio and the price of human

capital in units of market goods, respectively. From (7), (8) and (9), the per unit

e¢ ciency labor market good consumption Cm=H, home capital share 1� s, and market

work time ratio u can be expressed by (k; km; l) as

Cm
H

= A
�1� �1
1� �2

�� 

1� 

�
km

�1 l; (15)

1� s =
�1� �1

�1

�� �2
1� �2

�kml
k
: (16)
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u =
k

km
�
�1� �1

�1

�� �2
1� �2

�
l: (17)

Rearranging (10)-(12), (4), (6) and by use of the above results, the dynamic equations

of the market capital-labor ratio km and the aggregate capital-labor ratio k are

_km
km

= Akm
�1�1 � 1

�1
(B + � � �); (18)

_k

k
= Akm

�1�1 �A
�1� �1
1� �2

���2
�1
+



1� 

�
km

�1
l

k
� (B + � � �)

+ B
k

km
+Bl

h
1�

�1� �1
�1

�� �2
1� �2

�i
: (19)

Working out _l=l needs some algebraic calculations. Taking logs in (7)-(9), and eliminating

logCm and log[(1 � s)K], log(lH) can be expressed by log km, log p1 and log p2. Then

di¤erentiating the two sides of this relation with respect to time t, we obtain the growth

rate of l

_l

l
= B

k

km
� �2(1� )(1� �)

�

�1� �1
�1

�� �2
1� �2

�
(B + � � �)� �+ (1� �)�

�

+B
h
1�

�1� �1
�1

�� �2
1� �2

�i
l + [ �2 + (�1 � �2)]Ak

�1�1
m (20)

In summary, di¤erential equations (18), (19) and (20) constitute a complete dy-

namic system with respect to capital/labor ratio in the market sector km, aggregate

capital/labor ratio of the economy k, and working e¤ort allocated to home sector l. By

investigating this reduced-form dynamic system we can understand how these variables

changing over time for any given initial conditions. Once we understand the behaviors of

km, k, and l, the dynamics of other controls, that is, working e¤ort in the market sector

u, fraction of physical capital invested to market s, and market goods consumption Cm,

can be derived by inspecting the relations (15), (16) and (17), respectively.
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3.1 Steady state equilibrium

Under the constant-returns-to-scale technology, it is straightforward that, K, H, Cm

and hence the market output grow in a common rate along the steady growth path.

Therefore, km, k and l will have zero growth rate at the steady state. From (18), the

steady state km� satis�es

A�1km
��1�1 = B + � � �: (21)

Noticing that (1� s)K, lH and Cm grow at the same rate at the steady state, from (7),

(11) and (21), we derive this growth rate as

�� =
1

�
(B � � � �): (22)

Notice that, the home sector does not contribute to the long-run growth of the economy.

Like the standard model, it is the return to capital which determine the long-run growth

rate of the economy.

In order for this economy to have permanent growth and to ensure interior solutions,

the following conditions are needed:

B � � > � > (1� �)��: (23)

It is worth noting that this last condition is a su¢ cient condition for the transversality

conditions (14), therefore the above necessary conditions of an interior equilibrium, to

be satis�ed.

Proposition 1. Given that (23) holds, there exists a unique (interior) steady growth

path in the economy, which, in the case of �1 6= �2
7, is described as

km
��1�1 =

1

A�1
(B + � � �);

7For the case of �1 = �2, see Appendix 1.
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k� =
�2

�1 +�2

�B � � � ��
B

�
k�m;

l� =
�2

B(�2 � �1)

h
(B � � � ��)�B k�

k�m

i
;

u� =
�B � � � ��

B

�h(�2 � �1)�2 � �1�1
(�2 � �1)(�1 +�2)

i
;

s� = (1 +
�1
�2

l�

u�
)�1;

where

�1 � (��11 � 1)(B � � + �) + (B � � � ��); �1 �
1� �1
�1

; �2 �
1� �2
�2

�2 �
(B + � � �)

�1

h�1
�2
+
�1� �1
1� �2

�� 

1� 

�i� �2
�2 � �1

�
; (24)

and k�m; k
� > 0, and 0 < s�; u�; l� < 1.

Proof. See Appendix 2.

Note that the home work time, l�, will be zero if  = 1, that is, the agent has no

interest in homemade goods. In this case, the three-sector model degenerates to the

usual Lucas model in which no home sector is considered. Therefore, to guarantee the

interiority of the equilibrium, (since it is empirically plausible as aforementioned), we

focus on the case of 0 <  < 1.

The proof of the above proposition gives out the following side results that will be

used later.

Lemma 1. �1 > 0, �2 = signf�1 � �2g, and �1 +�2 = signf�1 � �2g.
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3.2 Stability of the balanced-growth path

Linearizing the dynamic system(18), (19) and (20) around the steady-state (k�m; k
�; l�),

we obtain: 0BBBB@
_km

_k

_l

1CCCCA =

0BBBB@
a11 0 0

a21 a22 a23

a31 a32 a33

1CCCCA
0BBBB@

km � k�m
k � k�

l � l�

1CCCCA ;

where

a11 = A(�1 � 1)k�m
�1�1;

a21 = �A(1� �1)k�m
�1�2k� �B k�2

k�m
2

� A�1k
�
m
�1�1

h�1
�2
+
�1� �1
1� �2

�� 

1� 

�i
l�

a22 = Ak�m
�1�1

h�1
�2
+
�1� �1
1� �2

�� 

1� 

�ik�ml�
k�

+B
k�

k�m

a23 =
��2 � �1

�2

�h
B ��2

k�m
k�

i
k�

a31 = �Bk
�l�

k�m
2 � (1� �1)(

1� �
�

)[�1 + (1� )�2]Ak�m
�1�2l�

a32 = B
l�

k�m
; a33 = B

��2 � �1
�2

�
l�:

Notice that, there are two jumpable variables, km and l, and a state one, k, in the above

system. If denote the coe¢ cient matrix as J�, to conclude a locally unique saddle-path

stable equilibrium result, we need to show the characteristic equation of J� has one

stable and two unstable roots. Then by examining the elements of J�: aij (i; j = 1; 2; 3),

the saddle-path stability result in Proposition 2 can be obtained. Before that, we present

Lemma 2 �rstly for future use.

Lemma 2. a11 < 0, a21 < 0, a22 > 0, a23 < 0, a32 > 0, and a33 = signf�1 � �2g.

Proof. The above results can be obtained immediately when noticing the ranges which

related variables and parameters lie in except a23. In fact, when �1 < �2, by Lemma 1,
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a23 < 0 can be readily obtained. In the case of �1 > �2, by transforming a23 as

a23 = B(
�2 � �1
�2

)
(1� 1

�1
)(B � � + �)��2
B � � � �� ;

the result can be achieved easily as well. �

Proposition 2. Under conditions (23), the unique steady-state, (k�m; k
�; l�), is locally

saddle-path stable.

Proof. See Appendix-3.

We, therefore, have shown that there does exist a saddlepath stable steady growth

path in the home production model, which is a desire property from the perspective of

economy reality. That is, the introduction of a new home production sector, making the

model goes nearer to the real economy, risks nothing of losing any plausibility comparing

with the standard Uzawa-Lucas framework. The saddle-path stability of the stead state

equilibrium remains as in the original Uzawa-Lucas model.

3.3 Comparative statics

Based on the previous steady-state analysis, we conduct several exercises of comparative

statics in this subsection. The main �ndings are as follows.

(I) An increase in productivity of the education sector raises the balanced growth rate of

the economy.

This is a straightforward result when noticing of the expression of ��. Since an

increase in productivity of education sector raises the wage rate per e¢ ciency unit of

labor, and a higher wage rate leads to a larger amount of labor input into education

sector. Hence, in the long run, a higher balanced growth rate, ��, can be realized.

(II) An increase in home capital share in home production technology, or increase of

propensity to market consumption goods lowers the time of household work.
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These are obtained by calculating @l�=@�2 and @l
�=@, respectively. The implications

behind these results can be understood as follows. An increase in �2 means a larger level

of home capital is employed in home production, which substitutes home work time. On

the other hand, a rise in  (expenditure share of market goods) shifts consumption

spending from home goods to market goods. Both of these two forces lead to more labor

input to the market sector, hence a higher rate of market participation of female labors,

a coincident result with the observation.

(III) In comparison with the existing work, the present model predicts a lower market

work time than Lucas (1988) model, while a higher one than the setting of pure-leisure

home production. However the education time is the same.

Our model includes Lucas (1988) as a special case, i.e., the case of  = 1. On the

other hand, if �2 = 0, we obtain a pure-leisure time version of the home production

economy. To see the relation between those di¤erent settings, we can calculate the

related derivatives respectively. The above statements are based on the calculations.

Similarly, other comparative statics exercises can also been conducted, e.g., e¤ect on

wage rate, labor supply, or e¤ect on welfare.

4 Transitional dynamics

In the previous section we have shown that under mild conditions a unique steady state

exists, which is locally saddlepoint stable. In this section, we suppose the saddlepoint

stability is assured, while concentrate on investigating the transitional dynamics. Follow-

ing the experiment conducted by Caballe and Santos (1993) among others, we consider

the consequences of a sudden positive shock in physical capital to an economy which is

initially in the steady growth path.
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4.1 Stable arm of the balanced growth path

Recall dynamic system (31), there two jumpable and one state variables involve in.

Saddle-path stability of the system ensures it has only one stable eigenvalue. In our

case, this stable root is � � a11. Therefore the generic form of the stable solution is:

km(t)� k�m = x1e
�t

k(t)� k� = x2e
�t

l(t)� l� = x3e
�t (25)

where x1; x2; x3 represent the elements of eigenvector corresponding to a11. Hence

�
a21x1 + (a22 � a11)x2 + a23x3 = 0
a31x1 + a32x2 + (a33 � a11)x3 = 0

from the de�nition of eigenvalue. To see the relation between km(t); k(t) and l(t), we

only need to know the signs of xi (i = 1; 2; 3). For example, to see the relation between

k(t) and l(t), eliminating x1 from the above system, which gives the following relation:

[a31(a22 � a11)� a21a32]x2 + [a31a23 � a21(a33 � a11)]x3 = 0:

Similarly, if the relation between km and k is of interest, eliminate x3 from the above

simultaneous equations and get

[a21(a33 � a11)� a31a23]x1 + [(a22 � a11)(a33 � a11)� a32a23]x2 = 0:

De�ning

b3 � a21(a33 � a11)� a31a23;

b2 � a31(a22 � a11)� a21a32;
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b1 � a32a23 � (a22 � a11)(a33 � a11);

then the above two equations can be simpli�ed as

b2x2 = b3x3; b1x2 = b3x1:

For showing the transitional process clearly, we con�ne to the case of � = 1. In addition,

we assume �1 > �2, the case that we think is of evidently plausible. Under these

speci�cations, de�nitely

b1 < 0; b3 < 0:

These can be derived directly by inspecting the results in Lemma 2. In addition, we

have:

Lemma 3. In the case of log utility, b2 < 0.

Proof. See Appendix-4.

Therefore, we conclude that the stable arm is positive sloped, since

x1 > 0; x2 > 0; x3 > 0:

4.2 Behavior of the endogenous variables

Based on the shape of the stable arm, the following moving pattern of km, k, and l can

be obtained.

Aggregate capital/labor ratio k, capital/labor ratio in the market sector

km, home work time l. A sudden increase in physical capital K, causes k, km, and l

to jump up at �rst, and decrease along the transitional process then.

Starting from the steady state (k�m; k
�; l�), a positive shock in K means a jump up

in k, since human capital cannot change instantly. When k > k�, we have km > k�m

and l > l� in view of the shape of the stable arm. That is, the shock results jumping

16



up in km and l �rstly, but after that all three variables move back to (k�m; k
�; l�) with

_k < 0, _km < 0, and _l < 0. Intuition behind these dynamics can be described as follows:

an increase in K, leads to the relative price of H in units of K, p, to rise up, while the

relation in (10) tells us this rising in p corresponds to an increase of km. The jumping

up of l can also be understood as a consequence of rising in p, since comparing with

expensive education spending, working at home is a more preferable choice.

To induce the moving pattern of other variables, we rely on the optimal conditions

again. In the case of � = 1, we have the following �rst-order conditions, which are the

special expressions of (7)-(12):8



Cm
= p1; (26)

1

1� s�2(1� ) = p1A�1Kk
�1�1
m ; (27)

p1A(1� �1)k
�1
m = p2B; (28)

1

l
(1� )(1� �2) = p2BH; (29)

_p1 = p1(�+ � �A�1k
�1�1
m ); (30)

_p2 = p2(�+ � �B); (31)

and the resource constraint conditions:

_K

K
= Amk

�1�1
m � Cm

K
� �; (32)

_H

H
= B(1� u� l)� �: (33)

Here, we have set the depreciation rate � = � = 0, for simplicity.

Market good consumption Cm, home-good consumption Cn. A sudden in-

crease in K, causes Cm to jump up �rstly, and decreases along the transition path

8To abuse the notations, from now on, we assume the variables have been reformulated, by scaling
down their steady growth rates, so that all variables are costants along the balanced growth path.
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thereafter. The homemade good consumption Cn also experiences a similar positive

jump when the shock occurs.

Since during the transition process, km > k�m, then _p1 > 0 from (30), while this needs

p1 to jump down at the �rst place. In spirit of (26), the jump down of p1 corresponds

to a jump up in Cm and then _Cm < 0 before arriving the BGP. The result on Cn can be

derived by examining (27), which reveals a jump up in (1 � s)K. Since both (1 � s)K

and l jump up, we can conclude Cn, must jump up as well.

Denote V (K;H), the value function of the maximization problem (P ). That is

V (K0;H0) = max
c;l;u;s

Z 1

0
logC(t)e��tdt;

subject to resources constraints, (4), (5) and (6), and initial condition, (13). By the

property of value function, 9 we have @V=@K = p1 and @V=@H = p2. And notice also

V (K;H) is homogenous of degree 0 in the case of � = 1, hence

@p1
@K

K

p1
+
@p2
@K

H

p1
= �1:

Taking log-derivatives in (27)-(28), after some algebra, we get

K

u

@u

@K
=

1

s�1
[�1 � 1� (

p

k
+ 1� �1 + s�1)

K

p2

@p2
@K

]; (34)

K

s

@s

@K
= �(1� s)

s�1
[(1� �1) + (

p

k
+ 1� �1)

K

p2

@p2
@K

]; (35)

K

l

@l

@K
= �K

p2

@p2
@K

: (36)

9For general properties of value function, see the original work of Benveniste and Scheinkman (1982).
For application of it, see Caballe and Santos (1993), or Ladron-de-Guevara et al. (1997), for example.
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K

(u+ l)

@(u+ l)

@K
=

u

u+ l

�1 � 1
s�1

� 1

u+ l

h u

s�1
(
p

k
+ 1� �1 + s�1) + l

iK
p2

@p2
@K

: (37)

Notice that, around the BGP, approximately, we have @l=@k =b2=b3;where

b2 = B2 
l�

k�m
l�(��1);

b3 = B2
� k�
k�m

�2h
(l� � 1)

��2 � �1
�2

�
+B�1

i
�B l�

��2 � �1
�2

+B�1

�
+ B

k�

k�m

h
(�2l

� � �1)
��2 � �1

�2

�
�B�12

i
;

which can be expressed by parameters only, through the following relations:

k�m =
� B

A�1

� 1
�1�1 ; k� =

�2
�1 +�2

�

B
k�m; l� =

�

B

�2
�2 � �1

�1
�1 +�2

;

�1 = �+B�1; �2 =
B

�1

� �2
�2 � �1

�
 ;  =

�1
�2
+
�1� �1
1� �2

�� 

1� 

�
:

On the other hand, suppose H� = 1, since H is unjumpable variable, we have

K�

l�
@l

@K
=
k�

l�
@l

@k
=
k�

l�
b2
b3
� ":

Therefore, " can be expressed by parameters as " = ("0 � 1)�1;where

"0 =
�1
B �1

h�1
l�
+  

k�m
k�

i
=

(�2 � �1)(�1 +�2)
 ��2

+
�1(�1 +�2)

��1�2
:

Then we have the followings:

Market work time u: After a positive shock of K, the transitional property of u
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is ambiguous. Speci�cally,

@u

@k
< (=; >)0, " < (=; >)

1� �1
p�=k� + s��1 + (1� �1)

� 
u:

This can be readily deducted by inspecting (34). Similar work can be conducted, by

examining (35) and (37), to get the following result:

Market sector capital share s:

@s

@k
< (=; >)0, " < (=; >)

1� �1
p�=k� + (1� �1)

� 
s:

Education time 1� u� l:

@(u+ l)

@k
< (=; >)0, " < (=; >)
;

where


 =
1� �1

p�=k� + 1� �1 + s��1 + s��1l�=u�
:

5 Numerical computations

To show the achieved results concretely, we present some numerical examples in this

section. In accordance with Ortigueira (2000), we set A = 3, B = 0:07, �1 = 0:4,

� = 0:05, and  = 0:45. Under the speci�cation of � = 1 and � = � = 0, for di¤erent

values of �2, we get corresponding steady-state values in Table 1.

Comparing these results with the ones of Ortigueira (2000)�s, we �nd that, depending

on the scale of �2, we can get larger or smaller steady state values than his. However,

when take �2 in the range of 0:05� 0:3, suggested by Greenwood and Herccowitz (1991)

and Parente et.al. (2000), we notice that, when home capital is included, a longer

marketwork time, shorter homework time and about the same education time result is

obtained. The less of �2, the smaller are the di¤erence. This means the present result
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Table 1: Steady state values

�2 k� l� u� 1� s�
0:30 65:90 0:400 0:330 0:450
0:20 52:10 0:410 0:300 0:336
0:10 40:00 0:437 0:277 0:208
0:05 34:19 0:450 0:264 0:118
0:01 30:12 0:457 0:257 0:026

coincides with Ortigueira (2000)�s, if home capital takes a trivial share. Compare with

the result without home capital considered, the present paper reaches a nearer result to

the empirical work (See, for example, Greenwood et al., 1995).

6 Concluding remarks

The present paper showed that introducing a home sector to the standard two-sector

model leads to new �ndings. In the long run, the present home production model gives

insights in several observations, e.g., the increasing trend of the female labor-market

participation. In the short run, for an endowment shock, we show how the economy

move along the transitional path. Although the saddle-path stability of the balanced

growth equilibrium is still available, di¤erent transitional dynamics results occur. For

the future work, two issues stand out. The one is to consider the dynamic properties of

this home production model when some distortions, e.g. taxation, are introduced. The

other is to explore the open economy version of the present setting.
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Appendices

Appendix-1: The steady-state results when �1 = �2 (for referee, not for

publication)

If the relations in (23) are assumed, then there is a unique interior steady-state equilib-

rium in the economy with the steady-state values:

km
��1�1 =

1

A�1
(B + � � �);

k� =
km

�

B
(B � � � ��);

l� =
(1� )(B � � � ��)(Akm��1�1 � �� �B)

ABkm
��1�1

;

1� s� =
�1� �1

�1

�� �2
1� �2

�km�l�
k�

=
k�ml

�

k�
;

where k�m; k
� > 0, 0 < s�; u�; l� < 1.

Proof. Eq. (21) tells us that

k�m
�1�1 =

1

A�1
(B + � � �):

When (23) is assumed, we can get a unique steady state k�m > 0 from the above relation.

Letting _l=l = 0 yield

B
k�

k�m
= (B � �)� (B � � � �

�
)

or

k� =
k�m
B
[B � � � ��]

by Eq. (22). In order to con�rm the existence of k�, we need to prove

B � � � �� > 0: (38)
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This relation is trivial for the case of � > 1 when notice that B � � = �+ ���.

When 0 < � < 1, we have

B � � = �+ ��� > (1� �)�� + ��� = ��

by (23). That is, (38) is true always.

Next, from _k=k = 0, we get

l� =
(1� )(B � � � ��)(Ak�m�1�1 � �� � �)

ABk�m
�1�1

:

To prove l� > 0, we need to show

Ak�m
�1�1 > �� + �: (39)

From (23),

(
�

�1
� 1)�� + �

�1
+ (

1

�1
� 1)� > 0

since ( 1�1 � 1)� � 0. Note that ��
� + � = B � � from (22), then rearranging the above

equation , we get
B � � + �

�1
> �� + �;

which means (39) is true. Combining (38) with (39), we can say there exist a l� > 0

which satis�es the steady growth conditions: _l=l = _k=k = _km=km = 0.

From

u� =
k�

k�m
� (1� �1

�1
)(

�2
1� �2

)l�:

In the case of �1 = �2, it takes the form of

u� =
�B � � � ��

B

�h�� + � + (Ak�m�1�1 � �� � �)
Ak�m

�1�1

i
:
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(38) and (39) imply u� > 0. On the other hand, since the relation, u = sk=km is true

always, then u�; k�; k�m > 0 imply s� > 0 as well. Notice also that

1� s� =
�1� �1

�1

�� �2
1� �2

�
k�ml

� 1

k�
> 0;

thus 0 < s� < 1.

From (4), we have

�� + � = B(1� u� � l�):

Under the endogenous growth framework, �� > 0, thus 1 � u� � l� > 0 or u� + l� < 1.

Since we have had u�; l� > 0, that is, u�; l� 2 (0; 1).

Appendix-2: Proof of Proposition 1.

Except for some additional tedious calculations, the logic in this proof is similar to the

one in Proposition 1. Firstly, let _l=l = 0, to derive the following:

B
k�

k�m
+Bl�(1� �1

�2
) = (B � �)� ��; (40)

thus

l� =
1

B

� �2
�2 � �1

�h
(B � � � ��)�B k�

k�m

i
: (41)

Then, from _k=k = 0 yield:

k�

k�m
=

�2
41 +�2

�B � � � ��
B

�
; (42)

where �1 and �2 are expressed in (24). Note that, �1 > 0 always by (38) and (23).

Case 1. �1 > �2, that is �2 > �1.

In this case, �2 > 0. Then we have k�=k�m > 0 by B � � � �� > 0. �1 > 0 and �2 > 0
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imply

B � � � �� > �2
�1 +�2

(B � � � ��);

which means B � � � �� > Bk�=k�m. Therefore, l
� > 0. Substitute l� and k�=k�m into

u� = k�=k�m � l��1=�2; and rearrange the terms, we get

u� =
�B � � � ��

B

�h(�2 � �1)�2 � �1�1
(�2 � �1)(�1 +�2)

i
:

Based on an obvious fact:

Ak�m
�1�1

�1� �1
1� �2

�� 

1� 

�
> �(�� + �)�1

�2
;

we can show �2(�2 � �1) > �1�1, which implies u
� > 0. Similarly with the proof of

Proposition 1, we can then show s�; u�; l� 2 (0; 1).

Case 2. �1 < �2, that is �2 < �1.

In this case, we have �2 < 0. Rearranging the term �1 + �2, the following can be

achieved:

�1 +�2 =
� �1
�2 � �1

�(B � � + �)
�2(1� )

+ (B � � � ��):

In order for k�=k�m > 0, �1 +�2 < 0 must hold. Since

(1� �1)(� + ��) > (B � � � ��)[(�2 � 1)� (�2 � �1)]:

that is � �1
�2 � �1

�(B � � + �)
�2(1� )

> B � � � ��:

If �1 < �2, the above relation means �1 + �2 < 0. l� > 0 can be easily checked by

noticing that
�2

�1 +�2
� (B � � � ��) > B � � � ��:
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Since �1 > 0, �2 < 0, then B � � � �� < Bk�=k�m by Eq. (42). Thus

l� =
1

B

� �2
�2 � �1

�h
(B � � � ��)�B k�

k�m

i
> 0:

Since �2(�2 � �1) > �1�1 always, no matter �1 > �2 or not, u
� > 0 is true universally.

Similarly as before, we can conclude that there is still a unique steady value (s�; l�; u�) 2

(0; 1)� (0; 1)� (0; 1) under the preconditions (23).

Appendix-3. Proof of Proposition 2

Since a11 < 0, the adjustment process of km(t) is stable always in the vicinity of the

steady-state. Therefore a stable eigenvalue � � a11 is obtained already. Given km(t) is

stable, to investigate the stability property of dynamic system constituted by (km; k; l),

we only need to consider the following sub-matrix of J�:

J�2 �

0B@ a22 a23

a32 a33

1CA
Based on Lemma 1, it is clearly that the steady-state is saddle-path stable by noticing

that Trace(J�2 ) > 0 and Det(J
�
2 ) > 0 when �1 � �2. In the case of �1 < �2, substituting

l� with the relation in Eq. (??), we can rewrite a22 as a22 = �1 +Bk�=k�m:Therefore

Trace(J�2 ) = a22 + a33

= �1 +B
k�

k�m
+Bl�(

�2 � �1
�2

) = �1 + (B � � � ):

Where the last equality is derived from (40). Hence Trace(J�2 ) > 0 due to �1 > 0 and

(38). On the other hand, Det(J�2 ) can be transformed as

Det(J�2 ) = k�l�B(
�2 � �1
�2

)(
�1 +�2

k�
):
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In the case of �1 > �2, i.e. �2 > �1, we have �1 > 0, �2 > 0 (Lemma 1). Thus

Det(J�2 ) > 0. In the case of �1 < �2, i.e. �2 < �1, we have �1 > 0 and �1 + �2 < 0

(Lemma 1). So that Det(J�2 ) > 0. This completes the proof.

Appendix-4. Proof of Lemma 3 (for referee, not for publication)

b2 = a31(a22 � a11)� a21a32 = B2 
l�

k�m
l�(��1) < 0;

where

 =
�1
�2
+
�1� �1
1� �2

�� 

1� 

�
> 0:
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