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Abstract

Diamantoudi (2005, Economic Theory) has proved the existence of
the (unique) stable set of cartels in a price-leadership cartel model,
in which firms are assumed to be farsighted and the dominant cartel
adopts the optimal pricing policy. In this note, we give an alternative,
elementary proof based on a constructive algorithm. With this, we
can fully characterize the stable set of cartels: it contains at least one
Pareto-efficient cartel and, in particular, the largest stable cartel in it
is Pareto-efficient. By using a simple example, we also show that there
can be some stable, but not Pareto-efficient cartels and some Pareto-
efficient, but not stable cartels. JEL classification: C71, D43, L13.
Keywords: price leadership model, cartel stability, foresight, stable set

1 Introduction

D’Aspremont et al. [1] have examined a price-leadership cartel model in
which a dominant cartel sets price at the level that maximizes the profits of
the member firms and each firm is assumed to be able to enter or exit from
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the dominant cartel freely. They have shown that if the number of firms is
finite, there always exists a stable cartel—a cartel such that if once formed,
no member firm wants to exit from it and no outside firm wants to enter it.

As pointed out by Diamantoudi [2], the analysis by d’Aspremont et al. [1]
exhibited some inconsistency in firms’ attitudes or perspectives toward other
firms’ reactions. In the d’Aspremont et al. [1] model, it is assumed that
a cartel firm contemplating exiting from the current cartel compares the
current profit (as a member of the cartel) with the prospective profit (as a
fringe firm) that can be gained under a new price set by the new (smaller)
cartel of the remaining cartel firms, and the firm will actually deviate from
the current cartel if the latter is higher than the former; a similar argument
applies to a fringe firm contemplating entering the current cartel as well.
That is, in the d’Aspremont et al. [1] model, each firm contemplating a
deviation (entry or exit) is assumed to have an ability to recognize the
reaction of readjusting price by the members in the new cartel established
after its deviation; in a sense, each firm is assumed to be farsighted to some
extent. Despite this farsightedness, each firm in the d’Aspremont et al. [1]
model ignores possible reactions of entry-exit by other firms subsequent to
its own deviation. Firms are assumed to be farsighted on one hand, but
myopic on the other.

Diamantoudi [2] has modified the d’Aspremont et al. [1] model so that
each firm is farsighted enough to recognize not only the reaction of readjust-
ing price by the new cartel members but also the reactions of entry-exit by
other firms subsequent to its own deviation. Adopting (a variant of) the von
Neumann-Morgenstern stable set as the solution concept, she has shown the
existence of a unique set of stable cartels.1 Her proof of the existence and
uniqueness of the stable set heavily depends upon a well-known theorem due
to von Neumann and Morgenstern [6] that an abstract system with a strictly
acyclic relation admits a unique stable set. Her argument is essentially exis-
tential and the characteristics of the stable set for the price-leadership cartel
model have not been fully investigated.2

In this paper, we investigate the characteristics of the stable set for
the price-leadership cartel model. To this end, we first give an alternative,
constructive proof of the existence of the stable set. The method of our proof
is based on an algorithm to find and construct the stable set. After proving

1Kamijo and Muto [3] and Kamijo and Nakanishi [4] have modified the Diamantoudi
[2] model in two different directions. Kamijo and Muto [3] have examined the case where
coalitional entry-exit is allowed. Kamijo and Nakanishi [4] have examined the case where
the dominant cartel can set price at any (nonnegative) level it wants (i.e., the dominant
cartel adopts the flexible pricing policy). These studies have shown that, in each model,
every individually rational and Pareto-efficient cartel structure constitutes a (farsighted)
stable set.

2Diamantoudi [2] has examined the relationship between the stable set of cartels and
the myopic core of cartels and shown that the intersection of them contains the smallest
cartel belonging to the stable set (Diamantoudi [2], Theorem 5).
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its existence by construction, we show that the stable set of cartels and the
set of Pareto-efficient cartels have a nonempty intersection; in particular, we
show that the largest cartel in the stable set is Pareto-efficient. Further, by
using a simple example, we also show that neither of the stable set and the
Pareto-efficient set can include the other as its subset.

2 Model

2.1 Price-leadership Cartel

We consider an industry composed of n � 2 identical firms, which produce a
homogeneous good. The demand for the good is represented by a continuous,
monotonically decreasing function d(p), where p is the price of the good.
Every firm has an identical cost function c(q), where q is the output level of
a firm.

When a firm does not participate in a cartel, it behaves competitively.
We denote the supply function of a (competitive) fringe firm by qf (p), which
is derived from the usual, price-equal-marginal cost condition. If k � 1 firms
decide to form a cartel, then the cartel becomes able to exercise a power to
determine the market price of the good. (As in d’Aspremont et al. [1] and
Diamantoudi [2], we assume that there can be only one dominant cartel.)
We denote the cartel consisting of k firms as C(k) and the set of all possible
cartels as C ≡ {C(0), C(1), . . . , C(n)}.3 Although C(0) actually represents
a situation with no cartel, we include C(0) in the set of all possible cartels
for notational convenience.

Taking account of the responses by the non-cartel firms, firms in C(k)
derive the residual demand and divide it equally among them. Then, pro-
duction per firm in C(k) can be written as a function of the number of firms
in the cartel, k, and price p: For k = 1, . . . , n,

r(k, p) ≡ max {d(p) − (n − k)qf (p), 0}
k

. (1)

The optimal price for cartel C(k), in the sense that it maximizes the joint
profit of its members, can be written as a function of k: For k = 1, . . . , n,

p∗(k) ≡ arg max
p�0

p · r(k, p) − c(r(k, p)). (2)

Then, the profits of a fringe firm and a cartel firm evaluated at the optimal
price p∗(k) can be written as functions of the cartel size k:

π∗
f (k) ≡ p∗(k)qf (p∗(k)) − c(qf (p∗(k))), k = 1, . . . , n − 1, (fringe firm) (3)

π∗
c (k) ≡ p∗(k)r(k, p∗(k)) − c(r(k, p∗(k))), k = 1, . . . , n. (cartel firm) (4)

3Actually, C is the set of possible cartel sizes (in terms of the number of firms). We
regard two different cartels of the same size as the same. In this paper, as in d’Aspremont
et al. [1] and Diamantoudi [2], cartels are identified by their respective sizes.
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We assume that the competitive equilibrium prevails if there is no actual
cartel (i.e., k = 0). We denote the competitive equilibrium price by pcomp,
which is derived from the market clearing condition d(p) = nqf(p). There-
fore, we have π∗

f (0) ≡ pcompqf(pcomp)− c(qf (pcomp)). Under certain regular-
ity conditions on the demand and cost functions, we can show the following
results:

Proposition 1. π∗
c and π∗

f satisfy the following properties:

(i) π∗
c (k) is increasing in k,

(ii) π∗
c (k) > π∗

f (0) for all k = 1, . . . , n,

(iii) π∗
f (k) > π∗

c (k) for all k = 1, . . . , n − 1.

We omit the proof of the above proposition; see d’Aspremont et al. [1].
Property (i) means entry of a new cartel member is beneficial to each in-
cumbent cartel member. Property (ii) means that a situation with no cartel
is the worst for every firm. Property (iii) means that for a given cartel size,
it is preferable for a firm to stay outside the cartel than to be inside the
cartel.

Given a cartel C(k), we can specify (i) members of the cartel (i.e., i ∈
C(k)), (ii) fringe firms (i.e., j ∈ N \C(k)), and (iii) the price level p∗(k) set
by the cartel (or the competitive price pcomp when k = 0). Therefore, we
can regard a cartel C(k) itself as a description of the current state of the
economy. With this understanding, we say that “C(k) Pareto-dominates
C(m)” if all firms’ profits under C(k) are not lower than under C(m) and
some firms’ profits are strictly higher than under C(m). A cartel C(k)
is said to be Pareto-efficient if there is no other cartel C(m) that Pareto-
dominates C(k). Let P ⊂ C be the set of Pareto-efficient cartels. The
following proposition characterizes P .

Proposition 2. The set of Pareto-efficient cartels is characterized as fol-
lows:

P =
{
C(k) ∈ C

∣∣ C(k) = C(n) or π∗
f (k) > π∗

c (n)
}

. (5)

Proof. Let P ′ be the set appeared in the right-hand-side of Eq. (5). We first
show that P ⊃ P ′. Let us consider C(n) ∈ P ′ and take an arbitrary cartel
C(m); note that m < n by definition. Under C(n), all firms receive π∗

c (n).
If C(m) �= ∅, members of the cartel C(m) receive π∗

c (m). By Proposition 1,
we have π∗

c (m) < π∗
c (n). If C(m) = ∅, all firms receive π∗

f (0). Again, by
Proposition 1, π∗

f (0) < π∗
c (n). C(m) cannot Pareto-dominate C(n).

Next, let us consider a cartel C(k) ∈ P ′ that satisfies π∗
f (k) > π∗

c (n).
Take an arbitrary cartel C(m) with m �= k. If m < k, then, similar to
the above paragraph, C(m) cannot Pareto-dominate C(k). Suppose m > k.
Then, there must exist a firm that is a fringe firm under C(k), but a cartel
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firm under C(m). Such a firm receives π∗
f (k) under C(k) and π∗

c (m) under
C(m). By assumption and by the monotonicity of π∗

c , we have π∗
f (k) >

π∗
c (n) � π∗

c (m). C(m) cannot Pareto-dominate C(k). Hence, P ⊃ P ′.
Lastly, we show that P ⊂ P ′. Take an arbitrary cartel C(m) not in

P ′. That is, C(m) satisfies π∗
f (m) � π∗

c (n). By Proposition 1, we have
π∗

c (m) < π∗
f (m) if m �= 0 and π∗

f (0) < π∗
c (n) if m = 0. C(n) Pareto-

dominates C(m). Then, C(m) /∈ P . Hence, P ⊂ P ′.

2.2 The Diamantoudi Model

A cartel is said to be stable if, once it is established, no member firm wants
to exit from it and no fringe firm wants to enter it. For example, let us
consider a cartel firm, say firm i, in C(m). As a member of C(m), firm i
receives the profit π∗

c (m). If firm i exits from C(m), then the cartel changes
to C(m − 1) and firm i receives the profit π∗

f (m − 1) as a fringe firm. A
myopic firm will actually exit from C(m) if π∗

f (m−1) > π∗
c (m). On the other

hand, a farsighted firm, anticipating reactions by other firms subsequent to
its own exit, may decide not to exit from C(m) even if π∗

f (m − 1) > π∗
c (m).

A farsighted firm looks forward and it decides to deviate from the current
state only if the ultimate outcome can give rise to a higher profit.

To incorporate the farsightedness of firms into the model, Diamantoudi
[2] has defined the following dominance relation, denoted by �, on C.

Definition 1 (Indirect domination). For C(k), C(m) ∈ C, we have
C(k) � C(m) if{

k > m and π∗
c (k) > π∗

f (m + j) ∀j = 0, . . . , k − 1 − m, or
k < m and π∗

f (k) > π∗
c (m − j) ∀j = 0, . . . ,−k − 1 + m.

(6)

The first line means that there is an increasing sequence of cartels C(m),
C(m+1),. . . , C(k−1), C(k) such that each entering firm will be made better-
off as a member of the final cartel C(k). The second line means that there
is a decreasing sequence of cartels C(m), C(m− 1),. . . , C(k + 1), C(k) such
that each exiting firm will be made better-off as a fringe firm outside the
final cartel C(k). When C ′ � C for C,C ′ ∈ C, we simply say “C ′ indirectly
dominates C.” The pair of the set of all possible cartels C and the binary
relation � defines an abstract system associated with the price-leadership
cartel under the optimal pricing policy: (C, �). The dominance relation �

on C is said to be strictly acyclic if there is no infinite sequence of elements
C,C ′, C ′′, · · · ∈ C such that C � C ′ � C ′′ � · · · (ad infinitum).4

The von Neumann-Morgenstern stable set (simply, the stable set) for
(C, �) is defined as follows:

4For C, C′ ∈ C, we write C � C′ and C′
� C interchangeably.
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Definition 2 (The stable set). A set K ⊂ C is said to be a (von Neumann-
Morgenstern) stable set for (C, �) if it satisfies the following two conditions:

• For any C ∈ K, there does not exist C ′ ∈ K such that C ′ � C,

• For any C ∈ C \ K, there exists C ′ ∈ K such that C ′ � C.

These conditions are called “internal stability” and “external stability,” re-
spectively.

It is a well-known theorem due to von Neumann and Morgenstern [6] that
an abstract system with a strictly acyclic dominance relation admits a unique
stable set. Therefore, to show the existence and uniqueness of the stable set
for (C, �), it suffices to show that � is strictly acyclic. Diamantoudi [2] has
proved this fact:5

Fact 1 (Diamantoudi [2]). The binary relation � on C is strictly acyclic.

Fact 1 and the von Neumann-Morgenstern theorem together imply the
following theorem immediately:

Theorem 1 (Diamantoudi [2]). There exists a unique, non-empty stable
set of cartels for (C, �).

Although the stable set for (C, �) is determined uniquely, this does not
imply the stable set itself is a singleton. That is, the unique stable set may
contain some different sizes of cartels. We call a cartel in the stable set for
(C, �) as a “stable cartel under the optimal pricing.”

Theorem 1 is essentially existential. Unfortunately, it does not provide
us with much information about the shape or the characteristics of the stable
set. The von Neumann-Morgenstern theorem is so general that it makes us
unable to extract some useful information from a specific model. In the next
section, we give an alternative, constructive proof of Theorem 1, with which
we can fully characterize the unique stable set of cartels under the optimal
pricing.

3 Results

Our alternative proof of Theorem 1 is elementary and constructive; it does
not rely on Fact 1 nor on the von Neumann-Morgenstern theorem. To prove
the theorem, we first define an algorithm that determines a certain subset
of cartels, which is a candidate for the stable set; then, we show that this
subset is actually the unique stable set for (C, �).

Before stating our main results, we show one useful lemma:

5In Diamantoudi [2], Fact 1 is mentioned only in the proof of her Theorem 3.
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Lemma 1. For C(k), C(m) ∈ C such that C(k) � C(m), we have the fol-
lowing results:

(i) if k > m, then C(k) � C(�) for any � with k > � � m; and

(ii) if k < m, then C(k) � C(�) for any � with k < � � m.

Proof. Because a similar argument can be applied to (ii), we only prove (i).
By definition, C(k) � C(m) implies π∗

f (m′) < π∗
c (k) for all m′ = m,m +

1, . . . , k − 1. In particular, because k > � � m, we have π∗
f (m′) < π∗

c (k) for
all m′ = �, � + 1, . . . , k − 1. Therefore, C(k) � C(�).

3.1 Algorithm for constructing the stable set

Let us define a sequence of integers, h1, h2, . . . , recursively, as follows:6

h1 ≡ 1,
hj+1 ≡ min

{
k ∈ Z

∣∣ π∗
c (k) � π∗

f (hj)
}

, j = 1, 2, . . . ,
(7)

where Z ≡ {1, 2, . . . , n}. Because π∗
f (k) > π∗

c (k) for all k = 1, . . . , n− 1 and
π∗

c is increasing, the above recursive procedure is defined well and it deter-
mines a finite sequence of integers: h1, h2, . . . , hJ . Let H ≡ {h1, h2, . . . , hJ}
be the set of such integers. We can easily verify that hj < hj+1 for all
j = 1, 2, . . . , J − 1. Define a subset of cartels as follows:

D ≡ {C(k) ∈ C | k ∈ H } . (8)

By construction, we have C(hj) /�C(hj+1) for all j = 1, 2, . . . , J − 1. This
implies C(hr) /�C(hs) for any hr, hs ∈ H with r < s. However, it is possible
to have C(hj) � C(hj+1) for some j.

Next, we construct a new subset of cartels by deleting some elements
from D according to the following recursive deletion procedure:

• Let D(0) ≡ D.

• From D(0), delete all cartels that are indirectly dominated by C(hJ),
which is the largest cartel in D(0), and let D(1) be the resulting set of
cartels;

• From D(1), delete all cartels that are indirectly dominated by the sec-
ond largest cartel in D(1) (the largest one is C(hJ )) and let D(2) be
the resulting set of cartels;

• In general, from D(�−1), delete all cartels that are indirectly dominated
by the �th largest cartel in D(�−1) and let D(�) be the resulting set of
cartels.

6An analogous technique has been utilized in Nakanishi [5] to prove the existence of
the purely noncooperative farsighted stable set for an n-player prisoners’ dilemma.
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Because the set of cartels is finite, the above procedure will stop within
some finite steps. We denote the final set obtained by the above procedure
as D∗. By construction, C(hJ) is never deleted and must remain in D∗.
Accordingly, D∗ is non-empty. We write the subset of H that corresponds
to D∗ as H∗ ≡ {h∗

1, . . . , h
∗
t , . . . , h

∗
T }. Without loss of generality, we can set

h∗
1 < h∗

2 < · · · < h∗
T . By definition, we have hJ = h∗

T , T � J , and h1 � h∗
1.

(It is possible to have h1 < h∗
1; this implies that h1 has been deleted in the

above deletion procedure.) In the following, we prove that D∗ is the unique
stable set for (C, �).

3.2 Alternative proof of Theorem 1

[External Stability]: Take an arbitrary cartel C(k) ∈ C \ D∗. Consider
the case where k < h∗

1. We show that C(k) is dominated by C(h∗
1). If

k = 0, we have π∗
f (k) = π∗

f (0) < π∗
c (1) � π∗

c (h
∗
1) by Property 1; and if

h1 = 1 � k < h∗
1, we have C(h1) � C(h∗

1) by the construction of h∗
1, which

implies C(k)�C(h∗
1) by Lemma 1. In any case, we obtain C(k)�C(h∗

1) ∈ D∗.
Next let us consider the case where h∗

t < k < h∗
t+1 for some h∗

t ∈ H∗

(or h∗
T < k). Note that h∗

t = hr for some hr ∈ H. We distinguish two
subcases: (a) h∗

t = hr < k < hr+1 and (b) hr+1 � k < h∗
t+1. In subcase

(a), we have π∗
f (h∗

t ) = π∗
f (hr) > π∗

c (k) by the definition of hr+1. Since
π∗

c is increasing, we have π∗
f (ht) > π∗

c (k) > π∗
c (k − 1) > · · · > π∗

c (ht + 1).
Therefore, C(k)�C(h∗

t ) ∈ D∗. In subcase (b), we must have C(hr+1)�C(h∗
s)

for some s with s � t+1 by definition. (Note that C(hr+1) had been deleted
before C(h∗

t ) was reached in the recursive deletion procedure.) If s > t + 1,
C(hr+1)�C(h∗

s) implies C(h∗
t+1)�C(h∗

s) by Lemma 1. This contradicts the
definition of C(h∗

t+1). Then, we have s = t + 1. In turn, C(hr+1) � C(h∗
t+1)

implies C(k) � C(h∗
t+1) ∈ D∗ by Lemma 1. Hence, D∗ is externally stable.

[Internal Stability]: Take arbitrary h∗
t , h

∗
s ∈ H∗ with t < s. Note that

we have h∗
t = hr for some hr ∈ H. We cannot have C(hr) � C(hr+1) by the

definition of hr+1. Then, a fortiori, we cannot have C(h∗
t ) = C(hr)�C(h∗

s);
otherwise, Lemma 1 will be violated. Further, by definition, we cannot have
C(h∗

t ) � C(h∗
s). Hence, D∗ is internally stable.

[Uniqueness]: We first show that there is no cartel that indirectly dom-
inates C(h∗

1); this means that C(h∗
1) is in the core of (C, �).7 Suppose, in

negation, that there exists a cartel C(k) that indirectly dominates C(h∗
1).

Because we have k /∈ H∗ by the internal stability of D∗, we only have to
distinguish the following three cases: case 1 where k < h∗

1; case 2 where
h∗

s < k and C(h∗
s) � C(k) for some s � 1; and case 3 where k < h∗

s and
C(k) � C(h∗

s) for some s � 2.
7Note that C(h∗

1) is the smallest cartel in D∗; hence, this result corresponds to Theo-
rem 5 in Diamantoudi [2].
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Case 1. Similar to the first part of the proof of the external stability, we
have C(k) � C(h∗

1), which implies π∗
f (k) < π∗

c (h∗
1). Therefore, C(k) � C(h∗

1)
cannot be true.

Case 2. C(k)�C(h∗
1) implies π∗

f (m) < π∗
c (k) for all m = h∗

1, h
∗
1+1, . . . , k.

In particular, we have π∗
f (h∗

s) < π∗
c (k). This contradicts C(h∗

s)�C(k). Then,
we cannot have C(k) � C(h∗

1).
Case 3. C(k)�C(h∗

s) implies π∗
f (m) < π∗

c (h
∗
s) for all m = k, k+1, . . . , h∗

s−
1. If C(h∗

1) � C(k), then π∗
f (m) < π∗

c (k) for all m = h∗
1, h

∗
1 + 1, . . . , k − 1.

These facts together imply C(h∗
1) � C(h∗

s). This, however, contradicts the
construction of h∗

1. Again, C(k) � C(h∗
1) cannot hold. None of cases 1

through 3 can be true. Hence, we obtain the desired result.
Now let K be an arbitrary stable set for (C, �). In order to prove the

uniqueness, it suffices to show that K = D∗. Note that, by the result just
obtained above, we must have C(h∗

1) ∈ K; otherwise the external stability of
K will be violated. Note also that, by applying a similar argument as case 1
above, we have C(k) /∈ K for all k < h∗

1; otherwise the internal stability of
K will be violated. The rest of the proof is divided into several steps. In
step 1, we show that any cartel C(k) such that h∗

1 < k < h∗
2 cannot be in K;

in step 2, we show that C(h∗
2) ∈ K; then in step 3, repeatedly applying the

same arguments as steps 1 and 2, we show that any cartel C(k) such that
h∗

j < k < h∗
j+1 or h∗

T < k cannot be in K and C(h∗
j) ∈ K for j = 1, . . . , T .

Step 1. Note that h∗
1 = hr for some r. We distinguish two cases: case 1

where h∗
1 = hr < k < hr+1 � h∗

2 and case 2 where hr+1 � k < h∗
2. Suppose,

in negation, that C(k) ∈ K.
Case 1. Because, by the definitions of hr and hr+1, C(h∗

1) ∈ K indirectly
dominates C(k); this contradicts the internal stability of K. Case 1 is not
possible.

Case 2. Because C(h∗
2)�C(hr+1) by definition, we have C(h∗

2)�C(k) by
Lemma 1. By the internal stability of K, C(h∗

2) cannot be in K. Then, by
the external stability of K, there exists a cartel C(m) ∈ K that indirectly
dominates C(h∗

2). We consider three subcases: (i) h∗
1 < m < k, (ii) hr+1 �

k < m < h∗
2, and (iii) h∗

2 < m.
In case 2-(i), C(m) � C(h∗

2) implies C(m) � C(k) by Lemma 1; this,
however, violates the internal stability of K.

In case 2-(ii), because C(h∗
2) � C(hr+1) by definition, then we have

C(h∗
2) � C(m) by Lemma 1. Then, we have π∗

f (m) < π∗
c (h∗

2). This con-
tradicts C(m) � C(h∗

2).
In case 2-(iii), C(m) not only indirectly dominates C(h∗

2) but also Pareto-
dominates C(h∗

2). Then, by simply connecting the sequence realizing C(m)�
C(h∗

2) to the one realizing C(h∗
2)�C(k), we obtain an appropriate sequence

that realizes C(m) � C(k). This contradicts the internal stability of K.
Case 2 is not possible, either. Hence, we can conclude that C(k) /∈ K for
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any k with h∗
1 < k < h∗

2.

Step 2. Suppose, in negation, that C(h∗
2) /∈ K. Then, by the external

stability of K, there must exist a cartel C(m) ∈ K that indirectly dominates
C(h∗

2). By the results obtained in step 1, we must have m > h∗
2.

8 We
distinguish four cases: case 1 where m = h∗

j > h∗
2 for some j; case 2 where

h∗
2 � h∗

j � hs < m < hs+1 � h∗
j+1 for some j and s; case 3 where h∗

2 � h∗
j <

hs = m < h∗
j+1 for some j and s; and case 4 where h∗

2 � h∗
T < m.

Case 1. C(m) = C(h∗
j ) � C(h∗

2) contradicts the definition of H∗.
Case 2. C(m) � C(h∗

2) implies C(m) � C(hs) by Lemma 1. On the
other hand, by the definition of hs+1 and the monotonicity of π∗

c , we have
π∗

f (hs) > π∗
c (m); C(m) cannot indirectly dominate C(hs)—a contradiction.

Case 3. By the construction of H∗, C(h∗
j+1) indirectly dominates C(m)

(= C(hs)). In addition, C(h∗
j+1) Pareto-dominates C(m) by construction.

Then, similar to case 2-(iii) in step 1, we have C(h∗
2) � C(h∗

j+1). This
contradicts the definition of H∗.

Case 4. C(m) � C(h∗
2) implies C(m) � C(h∗

T ) by Lemma 1. However,
by the definition of h∗

T (= hJ), we have π∗
f (h∗

T ) > π∗
c (m); C(m) cannot

indirectly dominate C(h∗
T ). This is a contradiction. All cases 1 though 4 in

step 2 are not possible. Hence, we have C(h∗
2) ∈ K.

Step 3. Repeatedly applying the same arguments as step 1 and step 2,
that any cartel C(k) such that h∗

j−1 < k < h∗
j or h∗

T < k cannot be in K
and C(h∗

j) ∈ K for j = 1, . . . , T . Hence, we can conclude K = D∗.

3.3 Characterization of the stable set

The stable set for (C, �) is nothing but D∗, which is obtained through the
algorithm we have shown. With this result, we can effectively compare the
set of stable cartels under the optimal pricing and the set of Pareto-efficient
cartels.

Theorem 2. The set of stable cartels under the optimal pricing and the
set of Pareto-efficient cartels have a non-empty intersection. In particular,
the largest cartel in the set of stable cartels under the optimal pricing is
Pareto-efficient. That is,

C(h∗
T ) ∈ D∗ ∩ P.

Proof. By the definition of the recursive deletion procedure, we have C(h∗
T ) =

C(hJ) ∈ D∗. Then, it remains to show that C(h∗
T ) = C(hJ) ∈ P . Remem-

ber that hJ is the last and the largest integer generated from the recursive
8Remember that C(h∗

1) cannot indirectly dominate C(h∗
2) by definition and that C(k) /∈

K for any k with k < h∗
1 or h∗

1 < k < h∗
2.

10



equation (7). If hJ = n, then the proof ends. Suppose hJ < n and suppose,
in negation, that C(hJ) /∈ P . By Proposition 2 and the properties of π∗

f and
π∗

c , we have π∗
c (n) � π∗

f (hJ ) > π∗
c (hJ ). Then, by Eq. (7), another integer

hJ+1 must be generated after hJ—a contradiction. Hence, C(hJ) ∈ P .

4 Example

Our Theorem 2 is all that we can say about the relationship between the
set of stable cartels under the optimal pricing and the set of Pareto-efficient
cartels in a general setting. To get more insights, we construct a concrete
example. By this example, we show that neither of D∗ and P can contain
the other as a subset.

We specify the demand function and the cost function as follows:

d(p) ≡ a − bp, a, b > 0, (9)

c(q) ≡ q2

2
. (10)

Then, the supply function of a fringe firm becomes qf (p) ≡ p. The compet-
itive equilibrium price pcomp can be derived from d(p) = nqf(p). Then, the
per-firm residual demand for a cartel firm becomes as follows:

r(k, p) ≡ a − (b + n − k)p
k

. (11)

Then, the profits of a fringe firm and a cartel firm can be written as functions
of p and k:

πf (p) ≡ p2

2
, (12)

πc(k, p) ≡ pr(k, p) − 1
2
{r(k, p)}2 . (13)

Through a usual procedure, we obtain the optimal price for the size k cartel:

p∗(k) ≡ a(b + n)
(b + n)2 − k2

, k = 1, 2, . . . , n. (14)

By substituting p∗(k) and pcomp into πf and πc, we obtain π∗
f and π∗

c :

π∗
f (k) ≡ a2(b + n)2

2 {(b + n)2 − k2}2 , k = 0, 1, . . . , n − 1, (15)

π∗
c (k) ≡ a2

2 {(b + n)2 − k2} , k = 1, 2, . . . , n. (16)

Both π∗
f and π∗

c is monotonically increasing in k. As can be seen easily, we
have

π∗
f (k) =

(b + n)2

(b + n)2 − k2
· π∗

c (k), k = 1, . . . , n. (17)

11



For all k � 1, the multiplier to π∗
c in the right-hand-side of the above equation

is greater than unity. Therefore, we have π∗
f (k) > π∗

c (k) for all k � 1. By
simple calculation, we can show that

π∗
c (k + 1) � π∗

f (k) ⇔ k4 � (b + n)2(k2 − 2k − 1). (18)

Then, assuming that (b + n) is sufficiently large, we obtain the following
facts:

π∗
c (k + 1) > π∗

f (k), k = 0, 1, 2, (19)

π∗
c (k + 1) < π∗

f (k), k = 3, 4, . . . , n. (20)

These facts imply that C(k)�C(k+1) for k = 0, 1, 2 and that C(k−1)�C(k)
for k = 4, 5, . . . , n.

Now, let us construct the set D. To be more concrete, we henceforth
assume b = 1 and n = 20. Given hj , the integer hj+1 is the minimum integer
k satisfying π∗

f (hj) � π∗
c (k). By simple calculation, we can show that

π∗
f (hj) � π∗

c (k) ⇔
[
2(b + n)2(hj)2 − (hj)4

(b + n)2

]1/2

� k. (21)

By definition, h1 = 1. Then, by repeatedly applying the above equation, we
obtain the following results:

h1 = 1, h2 = 2, h3 = 3, h4 = 5, h5 = 7, h6 = 10, h7 = 14, h8 = 18. (22)

That is, J = 8. Hence,

D = {C(1), C(2), C(3), C(5), C(7), C(10), C(14), C(18)} . (23)

Next, let us consider the recursive deletion procedure and construct D∗.
Let D(0) = D. The largest cartel in D(0) is C(18); but, it does not indirectly
dominate any other cartel in D(0); therefore, D(1) = D(0). The second largest
cartel in D(1) is C(14); but, it does not indirectly dominate any other cartel
in D(1); therefore, D(2) = D(1). Similarly, we have D(0) = D(1) = · · · =
D(5). The sixth largest cartel in D(5) is C(3). In this case, C(3) indirectly
dominates both C(1) and C(2). By deleting C(1) and C(2) from D(5), we
obtain D(6) = D(5) \ {C(1), C(2)} and then the deletion procedure stops.
Consequently, we have

D∗ = D(6) = {C(3), C(5), C(7), C(10), C(14), C(18)} . (24)

In this case, we have h∗
1 = h3 = 3, h∗

2 = h4 = 5, h∗
3 = h5 = 7, h∗

4 = h6 = 10,
h∗

5 = h7 = 14, and h∗
6 = h8 = 18 (i.e., T = 6).

Let us examine the set P of Pareto-efficient cartels. Clearly, we have
C(n) = C(20) ∈ P . For C(k) with k �= n to be included in P , we must

12



have π∗
f (k) > π∗

c (n). By simple calculation, we obtain a necessary-sufficient
condition for this inequality:

k >
[
(b + n)2 − [

(b + n)2
{
(b + n)2 − n2

}]1/2
]1/2

(25)

By substituting b = 1 and n = 20, we obtain k > 17.508 . . . . Hence,

P = {C(18), C(19), C(20)} . (26)

As our Theorem 2 indicates, we have C(18) ∈ D∗ ∩ P . In fact, in this
specific example, C(18) is the only stable cartel included in both D∗ and P .
Furthermore, we have both D∗ \ P �= ∅ and P \ D∗ �= ∅. Therefore, neither
D∗ ⊂ P nor P ⊂ D∗ can be true.
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