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RISK PERFORMANCES OF THE BIAS CORRECTED
FEASIBLE MINIMUM MEAN SQUARED ERROR
ESTIMATORS UNDER BALANCED LOSS

By KAZUHIRO OHTANI

In this paper, we examine the risk performances of the bias corrected variants of the
feasible minimum mean squared error (FMMSE) estimator and the adjusted FMMSE es-
timator under balanced loss. It is shown by numerical evaluations that although the
bias correction can be effective under balanced loss for some cases, the bias correction
is not effective for other cases.

1. Introduction

Consider a linear regression model,
y = XB+e, € ~ N, o’l), | (D)

where y is an n X1 vector of observations on a dependent variable, X is an 7 Xk ma-
trix of full column rank of observations on non-stochastic independent variables, 5 is a
kX1 vector of coefficients, and € is an n X1 vector of normal error terms with
Ele] = 0and Ele€’] = 0'I,.
The ordinary least squares (OLS) estimator of 8 is

b=S"X, (2)
where S=X'X. If we wuse the quadratic loss function defined  as
L(B; B) = (B—B)'S(B—pB), where 5 is any estimator of 3, then E[L(3; 8)] is called
the predictive mean squared error (PMSE). In terms of PMSE, the OLS estimator is
dominated by a family of the Stein-rule estimators. [See, for example, Stein (1956),
James and Stein (1961), Baranchik (1971), Judge and Bock (1976), and Ohtani (2000).]

As one of the improved estimators of 3, Theil (1971) considered the minimum mean
squared error (MMSE) estimator. However, since Theil's (1971) MMSE estimator in-
cludes unknown parameters, Farebrother (1975) proposed a feasible MMSE (FMMSE)
estimator defined as
b'Sb

Oraae = ( b'Sb+e'e/v >b’ , @)
where v = n—k. There are many studies on large and small sample properties of the
FMMSE estimator and its heterogeneous variants. Some examples are Vinod (1976),
Dwivedi and Srivastava (1978), Stahlecker and Trenkler (1985), Liski et al. (1993), and
Tracy and Srivastava (1994).
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Since the FMMSE estimator satisfies Baranchik’s (1971, example 2) condition, the
FMMSE estimator dominates the OLS estimator in terms of PMSE when £ > 3. Al-
though the family of the Stein-rule estimators cannot be defined when k£ < 2, the
FMMSE estimator is still valid even when &k < 2. Since the OLS estimator is admissi-
ble in terms of PMSE when k < 2, the FMMSE estimator does not dominate the OLS es-
timator. However, Ohtani (1996a) showed by numerical evaluations that when k = 2,
the gain in PMSE when using the FMMSE estimator instead of the OLS estimator is
larger than the loss.

Since the degrees of freedom of 4’Sh, which is a component of the FMMSE estima-
tor, is k£, Ohtani (1996b) considered the following adjusted FMMSE (AFMMSE) estima-

tor:
b'Sb/k >
By = b. . 4

AEM (b’Sb/k+e’e/v @

Since the AFMMSE estimator does not meet Baranchik’s (1971) condition, there is no
theoretical guarantee for the AFMMSE estimator to dominate the OLS estimator. To ex-
amine the PMSE performance of the AFMMSE estimator, he derived the exact for-
mula for the PMSE of b,,,, and showed by numerical evaluations that the AFMMSE
estimator has the smaller PMSE than the family of the Stein-rule estimators in a wide re-
gion of the noncentrality parameter. His numerical results also show that although the
AFMMSE estimator does not dominate the OLS estimator when k < 5, the AFMMSE
estimator dominates the OLS estimator when k > 6. .

Kadiyala (1984) proposed a class of bias corrected shrinkage estimators, and showed
that this class of estimators is not only bias corrected but also more efficient than the
OLS estimator in terms of PMSE. However, since Kadiyala’s (1984) bias corrected esti-
mators include unknown parameters, several authors have examined the sampling proper-
ties of operational variants of the bias corrected shrinkage estimators. For example,
Ohtani (1986), Singh et al. (1986) and Nomura (1988) examined the sampling proper-
ties of the operational variants of the bias corrected estimators based on the ridge regres-
sion estimators proposed by Hoerl and Kennard (1970). Also, Akdeniz and Kaciranlar
(1995) examined the sampling properties of the operational variant of the bias cor-
rected estimator based on the Liu estimator proposed by Kejian (1993). Ohtani (2001) ex-
amined the sampling properties of the bias corrected estimators based on the FMMSE
and AFMMSE estimators, and showed by numerical evaluations that although the bias
can be corrected significantly when the bias correction term is incorporated, the PMSE
increases conversely. Since the PMSE is a risk function when the loss function is quad-
ratic, Ohtani’s (2001) results show that the risk performance worsens under quadratic
loss when the bias correction term is incorporated in the FMMSE and AFMMSE estima-
tors.

When the bias correction term is incorporated in estimators, a researcher may
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consider that a reduction of bias is important as well as precision of estimation. The bal-
anced loss function proposed by Zellner (1994) allow for both goodness of fit (ie.,
bias) and precision of estimation. Thus, when the bias correction term is incorporated,
the balanced loss function may be more appropriate in risk comparison than the quad-
ratic loss function, since the quadratic loss function allows for precision of estimation
only. In this paper, using the balanced loss function, we examine the risk performances
of the bias corrected FMMSE and AFMMSE estimators. In section 2 we derive the ex-
plicit formula for the risk functions of the bias corrected FMMSE and AFMMSE estima-
tors, and in section 3 we compare the risk performances of the bias corrected FMMSE
and AFMMSE estimators with those of the original MMSE and AFMMSE estimators
by numerical evaluations.

2. Balanced Loss Function

First, we define the following formally general estimator:
A b’Sh )
=\ )b (5)
P ( b'Sb+ae'e
Then, as is shown in Ohtani (2001), the bias corrected estimator based on Ba is

g = B+<—>B
b'Sb+aec’e
['Sb+2ae’e] (b'SH) b
(b'Sb+ae’e)’ .
It is easy to see that 3, reduces to the bias corrected FMMSE estimator when a = 1/v,
and to the bias corrected AFMMSE estimator when a = k/v. Although « in 8, can
take an arbitrary real value, our concern is just in the cases of @ = 1/v and @ = k/v.

To allow for both goodness of fit (i.e., unbiasedness) and precision of estimation,
Zellner (1994) proposed the following balanced loss function:

LB, B) = wy—XB)' (y—XB)+(1—w)(B—B)'S(B—A), (D

where w (0 < w < 1) is a nonstochastic weight of goodness of fit. The risk function
of B2 under balanced loss is

R(BY) = E[Ly(B, B]
= wE[(y—XBY) (y—XB)]
+(1—w)E(B;—B)'S(Br —B)]. (8

Since the second expectation in (8) is the PMSE itself, its formula has been obtained in
Ohtani (2001). Thus, we evaluate the first expectation in (8).
Noting that X’e = 0, we obtain

(6)
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EL(y—XB;) (y—XB))]
_ E[b,Sb_2[(b'Sb)3+2a(b'Sb)2(e’e)}_e,e
' (b'Sb+ae’e)?
L (0'Sb)Y°+4a(b'Sh)*(¢e) +4a*(b'Sb)*(ee)’ }
(b'Sb+ae’e)*
Following Ohtani (2001), we define the functions H(p, g, r; @) and J(p, q, 7; o) as

€)

DN (b'SH)?(e'e)? }
Hp.q. 7 a) E[ (b'Sb+ace) ) (10)
DN — (b'Sb)p(e'e)q(B'Sb)}
J(p,q, 75 ) E[ (b'Sbracey ) (1D

As is shown in Ohtani (2001), the explicit formulas of H(p, q, r; @) and J(p, q, 7; a)
are ‘

H(p,q, r;a) = (202)”“’*’?0 w (A G(p, g, 7; ), (12)

Jb, g, 7 a) = (B’SB)(Zaz)“q”’éo w; (1) Gy (D, q, 7; @), (13)

where w;(1) = exp(—2/2)(2/2)'/i!, » = B’SB/0”* and
oy TWk+v)/2+i+pt+qg—r)
b, g, 730) = = DT (0/2)
’ . tk/2+i+p_1(1_t>v/2+q—1
0 la+(1—a)t]
Noting that E[b'Sb/0*] = k+ 2 and E[e’e/o*] = v, and using J(p, g, 7; @) and
H(p, q, r; a), we obtain

E[(y—XB)) (y—XB))]
= o"(k+2—2[H(3,0,2 a)+2aH(2, 1,2 a)]+v
+[H(5,0,4; @) +4aH (4,1, 4 @) +42’H(3, 2, 4 ) ]). (15)
Substituting (18) given in Ohtani (2001) and (15) in (8), we obtain the risk function of
B under the balanced loss function. Since the theoretical analysis of the risk function

of A, is difficult, we examine the risk performances by numerical evaluations in the
next section.

dt. (14)

3. Numerical Analysis

The parameter values used in the numerical evaluations were % =3, 5, 8, v =10, 20,
30, w =0.1, 0.3, 0.5, 0.7, 0.9, and various values for 1. The numerical evaluations were
executed on a personal computer, using the FORTRAN code. Since the formula for
G,(p, g, 7; @) given in (14) is expressed by an integral, we used Simpson’s 3/8 rule
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with 200 equal subdivisions. Also, the infinite series in H(p, g, 7; ) and J(p, q, 7; a)
were judged to converge when the increment of the series became less than 10”2 The typi-
cal numerical results are shown in Tables 1 and 2. Since the entries in the Tables are
the values of the relative risk of 8 to the OLS estimator, B has the smaller risk than
the OLS estimator when the entry in the Tables is less than unity.

We see from Table 1 that when k£ = 3 and w = 0.1 (i.e., the precision of estimation
is much more important), the FMMSE estimator dominates the OLS estimator though
the other estimators do not dominate the OLS estimator. Comparing the FMMSE estima-
tor and the bias corrected FMMSE (AFMMSE) estimator, the former has smaller risk
than the latter. This indicates that the bias correction has a negative effect on the risk per-
formance of the FMMSE estimator when £ = 3 and w = 0.1. Although the risk of the
AFMMSE estimator is smaller than that of the bias corrected AFMMSE estimator for
A < 10.0, the risk performance is reversed for A > 15.0.

When k = 3 and w = 0.5, all the estimators considered here do not dominate the
OLS estimator. The FMMSE has the better risk performance than the bias corrected
FMMSE estimator as a whole. However, although the risk of the AFMMSE estimator.
is smaller than that of the bias corrected AFMMSE estimator for A < 2.0, the risk per-
formance is reversed for A > 5.0.

When k = 3 and w = 0.7, all the estimators considered here do not dominate the
OLS estimator. Although the risk of the FMMSE estimator is smaller than that of the
bias corrected FMMSE estimator for A < 5.0, the risk performance is reversed for
A > 10.0. Since the bias corrected AFMMSE estimator dominates the AFMMSE estima-
tor, the bias correction has a positive effect on the risk performance of the AFMMSE es-
timator.

When £ = 3 and w = 0.9 (i.e., the goodness of fit is much more important), the
FMMSE and AFMMSE estimators have larger risk than the OLS estimator as a whole.
Since the bias corrected FMMSE and AFMMSE estimators have slightly smaller risk
than the FMMSE and AFMMSE estimators, the bias correction seems to be slightly ef-
fective.

We see from Table 2 that when k£ = 8 and w = 0.1 (i.e., the precision of estimation
is much more important), all the four estimators dominate the OLS estimator. In particu-
lar, the AFMMSE estimator seems to have the best risk performance among the estima-
tors considered here. Also, when w = 0.1, the FMMSE and AFMMSE estimators have
smaller risk than the bias corrected counterparts. This indicates that the bias correction
is not effective even if the balanced loss function is used. When w = 0.3, the results are
similar to the case of w = 0.1.

When k& = 8 and w = 0.5, the FMMSE estimator and the bias corrected FMMSE esti-
mator dominate the OLS estimator. However, since the risk of the bias corrected
FMMSE estimator is larger than that of the FMMSE estimator, the bias correction has
a negative effect on the risk performance of the FMMSE estimator. Although the
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TABLE 1. Risks under balanced loss for v = 20 and k = 3

bias corrected
w A FMMSE AFMMSE | FMMSE AFMMSE
0.1 .0 7936 6476 9347 .8073
1 7990 .6561 9374 .8137
) .8190 .6883 9473 .8373
1.0 .8407 7241 .9576 8627
2.0 .8755 .7835 9727 .9025
5.0 9354 .8950 9937 9669
10.0 9718 9716 1.0007 9981
15.0 9840 9981 1.0011 1.0036
20.0 9892 1.0080 1.0008 1.0039
25.0 9920 1.0118 1.0006 1.0033
30.0 9936 1.0131 1.0004 1.0027
35.0 9947 1.0134 1.0003 1.0022
40.0 9955 1.0131 1.0003 1.0018
50.0 9965 1.0122 1.0002 1.0012
75.0 9978 1.0096 1.0001 1.0006
100.0 9984 1.0078 1.0000 1.0003
0.5 .0 .9604 9438 .9865 9641
1 9616 9458 9871 9654
5 9659 9533 .9892 9704
1.0 9706 9616 9913 9756
20| -~ 9779 9752 9945 9837
5.0 .9902 9991 9989 9962
10.0 9969 1.0129 1.0003 1.0013
15.0 .9988 1.0156 1.0003 1.0017
20.0 9995 1.0154 1.0002 1.0014
25.0 9998 1.0144 1.0001 1.0010
30.0 .9999 1.0132 1.0001 1.0008
35.0 1.0000 1.0121 1.0001 1.0006
40.0 1.0000 1.0111 1.0001 1.0005
50.0 1.0000 1.0095 1.0000 1.0003
75.0 1.0001 1.0069 1.0000 1.0001
100.0 1.0001 1.0054 1.0000 1.0001
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TABLE 1. (continued)

bias corrected

w A |FMMSE AFMMSE | FMMSE AFMMSE
07 0| 9868 9905 | 9946 9888
1 9873 9915 | 9949 9894
5| .9891 9951 | 9958 9914
10|  .9911 9991 9967 9934
20| 9941 1.0054 | 9980 9965
50|  .9988 1.0155 | 9997 1.0008
100 | 1.0009 1.0194 |  1.0002 1.0018
150 | 1.0012 1.0184 |  1.0002 1.0014
200 | 1.0011 1.0166 |  1.0001 1.0009
250 1.0010 1.0148 |  1.0001 1.0007
300 | 1.0009 1.0132 |  1.0000 1.0005
350 | 1.0008 1.0119 | 1.0000 1.0004
400 | 1.0007 1.0108 |  1.0000 1.0003
50.0 | 1.0006 1.0091 |  1.0000 1.0002
750 |  1.0004 1.0064 | 1.0000 1.0001
100.0 |  1.0003 1.0050 |  1.0000 1.0000
09 0| 1.0033 10199 | 9998 1.0044
1| 1.0034 10202 | 9998 1.0044
5| 1.0037 1.0214 | 9999 1.0045
10| 1.0039 1.0226 |  1.0000 1.0046
20|  1.0042 1.0244 | 1.0002 1.0046
50| 1.0042 1.0258 | 1.0002 1.0037
100 | 1.0034 10235 | 1.0001 1.0021
150 | 1.0026 1.0201 | 1.0001 1.0012
200 1.0021 1.0173 |  1.0000 1.0007
250 | 1.0018 1.0150 |  1.0000 1.0004
300 1.0015 1.0132 | 1.0000 1.0003
350 10013 1.0117 |  1.0000 1.0002
400 | 1.0012 1.0106 |  1.0000 1.0001
50.0 | 1.0009 1.0088 | 1.0000 1.0001
75.0 | 1.0006 1.0062 |  1.0000 1.0000
100.0 |  1.0005 1.0047 | 1.0000 1.0000

7



KAZUHIRO OHTANI

TABLE 2. Risks under balanced loss for v = 20 and k = 8

bias corrected
w A FMMSE AFMMSE | FMMSE AFMMSE
0.1 0 8456 . 4793 9774 .7015
1 .8473 4840 9779 7052
5 .8538 .5020 9796 7193
1.0 8612 .5233 9815 .7358
2.0 8744 5621 9848 7651
5.0 .9035 6543 9910 .8306
10.0 9318 7544 9956 .8940
15.0 9478 .8160 9975 .9284
20.0 9579 .8562 9984 9487
25.0 .9648 .8839 9989 9615
30.0 9698 .9038 9992 9701
35.0 9735 9185 9994 9760
40.0 9765 9298 9995 9804
50.0 .9807 .9457 9997 9862
75.0 .9868 9664 9999 9929
100.0 .9899 9762 .9999 9957
0.5 .0 9474 .8680 9919 9085
1 .9480 .8698 9921 9097
5 .9502 .8765 9927 9143
1.0 | = .9528 .8844 9934 9197
2.0 9573 .8986 .9945 9291
5.0 9674 9313 9968 9498
10.0 9771 .9644 9984 9691
15.0 .9825 - .9827 9991 9792
20.0 .9859 .9934 9994 .9850
25.0 9882 .9999 9996 .9887
30.0 .9899 1.0039 9997 9911
35.0 9912 1.0064 .9998 9928
40.0 9922 1.0080 9998 9940
50.0 9936 1.0096 9999 9957
75.0 9956 1.0101 9999 9977
100.0 9966 -1.0092 1.0000 9986




RISK PERFORMANCES OF THE BIAS CORRECTED FEASIBLE MINIMUM MEAN SQUARED ERROR ESTIMATORS UNDER BALANCED LOSS 9

TABLE 2. (continued)

bias corrected
w A FMMSE AFMMSE | FMMSE AFMMSE
0.7 .0 9759 9771 9960 9665
A 9762 9780 9961 9670
5 9773 9816 9964 9690
1.0 9785 9857 .9967 9712
2.0 9806 9930 9973 9751
5.0 9853 1.0090 .9984 9832
10.0 9898 1.0233 9992 9902
15.0 9922 1.0295 9995 9935
20.0 .9938 1.0319 9997 9952
25.0 .9948 1.0324 9998 9963
30.0 9956 1.0320 9999 _ 9970
35.0 9961 1.0310 9999 9975
40.0 9966 1.0299 9999 9978
50.0 9972 1.0275 .9999 9984
75.0 .9981 1.0223 1.0000 9991
100.0 9985 1.0185 1.0000 9994
0.9 0 9972 1.0583 .9990 1.0098
1 9972 1.0586 9990 1.0098
S5 9974 1.0598 9991 1.0097
1.0 9976 1.0611 9992 1.0096
2.0 9979 1.0633 9993 1.0094
5.0 .9986 1.0669 9996 1.0081
10.0 9992 1.0672 .9998 1.0059
15.0 .9995 1.0644 9999 1.0041
20.0 9996 1.0606 9999 1.0028
25.0 9997 1.0566 9999 1.0019
30.0 .9998 1.0529 1.0000 1.0014
35.0 .9998 1.0494 1.0000 1.0010
40.0 9998 1.0463 1.0000 1.0007
50.0 9999 1.0409 1.0000 1.0004
75.0 9999 | 1.0314 1.0000 1.0001
100.0 .9999 1.0254 1.0000 1.0000
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AFMMSE estimator does not dominate the OLS estimator, the bias corrected
AFMMSE estimator dominates the OLS estimator. However, since the risk of the
AFMMSE estimator for 2 < 10.0 is smaller than that of the bias corrected AFMMSE es-
timator, the effect of the bias correction on the risk performance of the AFMMSE esti-
mator is ambiguous. ' ;

When k£ = 8 and w = 0.7, the risk performances of the FMMSE estimator and the
bias corrected FMMSE estimator are similar to the case of w = 0.5. However, when w
increases from 0.5 to 0.7, the risk of the bias corrected AFMMSE estimator is smaller
than that of the AFMMSE estimator. This indicates that the bias correction has a posi-
tive effect on the risk performance of the AFMMSE estimator.

When k = 8 and w = 0.9 (i.e., the goodness of fit is much more important), the
FMMSE estimator and the bias corrected FMMSE estimator dominate the OLS estima-
tor. However, both the bias corrected AFMMSE estimator and the AFMMSE estima-
tor are dominated by the OLS estimator. Comparing the AFMMSE estimator and the
bias corrected AFMMSE estimator, the bias correction is slightly effective. However,
since the risk of the bias corrected FMMSE estimator is larger than that of the
FMMSE estimator, the bias correction has a negative effect on the risk performance of
the FMMSE estimator. When w = 0.9, the risks are very close to unity. This indicates
that using the FMMSE estimator may be meaningless when the goodness of fit is much
more important than the precision of estimation. ’
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