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RISK PERFORMANCES OF THE BIAS CORRECTED 

FEASIBLE MINIMUM MEAN SQUARED ERROR 

ESTIMATORS UNDER BALANCED LOSS 

By KAZUHIRO OHTANI 

In this paper, we examine the risk performances of the bias corrected variants of the 
feasible minimum mean squared error (FMMSE) estimator and the adjusted FMMSE es
timator under balanced loss. It is shown by numerical evaluations that although the 
bias correction can be effective under balanced loss for some cases, the bias correction 
is not effective for other cases. 

1. Introduction 

Consider a linear regression model, 

y = Xj3+ E, E ~ N(O, a2In) , (1) 

where y is an n X 1 vector of observations on a dependent variable, X is an n X k ma
trix of full column rank of observations on non-stochastic independent variables, 13 is a 
k X 1 vector of coefficients, and E is an n X 1 vector of normal error terms with 
E[E] = 0 and E[EE'] = a2In. 

The ordinary least squares (OLS) estimator of 13 is 

b = S-lX'y, (2) 

where S = X' X. If we use the quadratic loss function defined as 
L (/3; /3) = (/3 - 13)' s (/3 - 13), where /3 is any estimator of 13, then E [L (/3; ;3)] is called 
the predictive mean squared error (PMSE). In terms of PMSE, the OLS estimator is 
dominated by a family of the Stein-rule estimators. [See, for example, Stein (1956), 
James and Stein (1961), Baranchik (1971), Judge and Bock (1976), and Ohtani (2000).] 

As one of the improved estimators of 13, Theil (1971) considered the minimum mean 
squared error (MMSE) estimator. However, since Theil's (1971) MMSE estimator in
cludes unknown parameters, Farebrother (1975) proposed a feasible MMSE (FMMSE) 
estimator defined as 

( 
b'Sb ) 

bFMM = b'Sb+e'e/v b, 
(3) 

where v = n - k. There are many studies on large and small sample properties of the 
FMMSE estimator and its heterogeneous variants. Some examples are Vinod (1976), 
Dwivedi and Srivastava (1978), Stahlecker and Trenkler (1985), Liski et a1. (1993), and 
Tracy and Srivastava (1994). 
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Since the FMMSE estimator satisfies Baranchik's (1971, example 2) condition, the 
FMMSE estimator dominates the OLS estimator in terms of PMSE when k 2 3. Al
though the family of the Stein-rule estimators cannot be defined when k ~ 2, the 
FMMSE estimator is still valid even when k < 2. Since the OLS estimator is admissi
ble in terms of PMSE when k < 2, the FMMSE estimator does not dominate the OLS es
timator. However, Ohtani (1996a) showed by numerical evaluations that when k = 2, 
the gain in PMSE when using the FMMSE estimator instead of the OLS estimator is 
larger than the loss. 

Since the degrees of freedom of b'Sb, which is a component of the FMMSE estima
tor, is k, Ohtani (1996b) considered the following adjusted FMMSE (AFMMSE) estima
tor: 

b = ( b'Sb/k )b 
AFM b'Sb/k+e'e/v' 

(4) 

Since the AFMMSE estimator does not meet Baranchik's (1971) condition, there is no 
theoretical guarantee for the AFMMSE estimator to dominate the OLS estimator. To ex
amine the PMSE performance of the AFMMSE estimator, he derived the exact for
mula for the PMSE of b AFM, and showed by numerical evaluations that the AFMMSE 
estimator has the smaller PMSE than the family of the Stein-rule estimators in a wide re
gion of the noncentrality parameter. His numerical results also show that although the 
AFMMSE estimator does not dominate the OLS estimator when k ~ 5, the AFMMSE 
estimator dominates the OLS estimator when k > 6. 

Kadiyala (1984) proposed a class of bias corrected shrinkage estimators, and showed 
that this class of estimators is not only bias corrected but also more efficient than the 
OLS estimator in terms of PMSE. However, since Kadiyala's (1984) bias corrected esti
mators include unknown parameters, several authors haye examined the sampling proper
ties of operational variants of the bias corrected shrinkage estimators. For example, 
Ohtani (1986), Singh et al. (1986) and Nomura (1988) examined the sampling proper
ties of the operational variants of the bias corrected estimators based on the ridge regres
sion estimators proposed by Hoerl and Kennard (1970). Also, Akdeniz and Ka~iranlar 
(1995) examined the sampling properties of the operational variant of the bias cor
rected estimator based on the Liu estimator proposed by Kejian (1993). Ohtani (2001) ex
amined the sampling properties of the bias corrected estimators based on the FMMSE 
and AFMMSE estimators, and showed by numerical evaluations that although the bias 
can be corrected significantly when the bias correction term is incorporated, the PMSE 
increases conversely. Since the PMSE is a risk function when the loss function is quad
ratic, Ohtani's (2001) results show that the risk performance worsens under quadratic 
loss when the bias correction term is incorporated in the FMMSE and AFMMSE estima
tors. 

When the bias correction term is incorporated in estimators, a researcher may 



RISK PERFORMANCES OF THE BIAS CORRECTED FEASIDLE MINIMUM MEAN SQUARED ERROR ESTIMATORS UNDER BALANCED LOSS 3 

consider that a reduction of bias is important as well as precision of estimation. The bal
anced loss function proposed by Zellner (1994) allow for both goodness of fit (i.e., 

bias) and precision of estimation. Thus, when the bias correction term is incorporated, 
the balanced loss function may be more appropriate in risk comparison than the quad
ratic loss function, since the quadratic loss function allows for precision of estimation 
only. In this paper, using the balanced loss function, we examine the risk performances 
of the bias corrected FMMSE and AFMMSE estimators. In section 2 we derive the ex
plicit formula for the risk functions of the bias corrected FMMSE and AFMMSE estima
tors, and in section 3 we compare the risk performances of the bias corrected FMMSE 
and AFMMSE estimators with those of the original MMSE and AFMMSE estimators 
by numerical evaluations. 

2. Balanced Loss Function 

First, we define the following formally general estimator: 

A ( b'Sb ) 
/3a = b'Sb+ae'e b. 

(5) 

Then, as is shown in Ohtani (2001), the bias corrected estimator based on Sa is 

S: = Sa + ( , ae' e , )Sa 
b Sb+ae e 

= [b'Sb+2ae'eJ(b'Sb) b. (6) 
(b'Sb+ae'e)2 

It is easy to see that Sa reduces to the bias corrected FMMSE estimator when a = 1/ v, 
and to the bias corrected AFMMSE estimator when a = k/v. Although a in Sa can 
take an arbitrary real value, our concern is just in the cases of a = 1/ v and a = k/ v. 

To allow for both goodness of fit (i.e., unbiasedness) and precision of estimation, 
Zellner (1994) proposed the following balanced loss function: 

LB(S, /3) = w(y- XS)'(y- XS) + (l-w) (S-/3)'S(i3-/3), (7) 

where w (0 S W < 1) is a nonstochastic weight of goodness of fit. The risk function 
of S; under balanced loss is 

R(S;) = E[LB(S;, /3)J 

= wE[(y- xS;),(y- XS;)J 

+ (1- w )E[(S; -/3)'S(S; -/3)]. (8) 

Since the second expectation in (8) is the PMSE itself, its formula has been obtained in 
Ohtani (2001). Thus, we evaluate the first expectation in (8). 

Noting that X'e = 0, we obtain 
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E[(y- XS;)'(y- XS;)] 

= E[b'Sb-2[ (b'Sb)3+ 2a (b'Sb)2(e'e)] +e'e 

(b'Sb +ae'e)2 

+ (b'Sb)5+ 4a (b'Sb)4(e'e)+4a 2(b'Sb)3(e'e)2]. 

(b'Sb+ae'e)4 
(9) 

Following Ohtani (2001), we define the functions H(p, q, r; a) and ](p, q, r; a) as 

[ 
(b'Sb)P(e'e)q] 

H(p, q, r; a) = E (b'Sb+ae'eY , (10) 

] ( r' a) = E[ (b'Sb)P(e'e)Q(/3'Sb)]. (11) 
p, q, , (b'Sb+ae'eY 

As is shown in Ohtani (2001), the explicit formulas of H(p, q, r; a) and ](p, q, r; a) 
are 

00 

H(p, q, r; a) = (2a2)P+Q~r L: Wi(A)Ci(p, q, r; a), (12) 
i=O 

](p, q, r; a) = (/3'S/3) (2a 2y+q-r I; W/A) CHI (p, q, r; a), (13) 
i=O 

where Wi(A) = exp( - A/2) (A/2)i/i!, A = /3'S/3/a 2 and 
r( (k+ v )/2+i+ p+q-r) 

Ci(p, q, r; a) = r(k/2+i)r(v/2) 

. 1 tk/2+HP-l(I_t)V/2+Q-l 
X 10 dt. (14) 

o [a+ (l-a)tY 

Noting that E[b'Sb/a2] = k+A and E[e'e/a2
] = v, and using ](p, q, r; a) and 

H(p, q, r; a), we obtain 

E[(y- xS;Y(y- XS;)] 

= a 2(k+A-2[H(3, 0, 2; a)+2aH(2, 1,2; a)] +v 

+ [H(5, 0, 4; a) +4aH(4, 1,4; a) +4a2H(3, 2, 4; a)]). (15) 

Substituting (18) given in Ohtani (2001) and (15) in (8), we obtain the risk function of 
S; under the balanced loss function. Since the theoretical analysis of the risk function 
of S; is difficult, we examine the risk performances by numerical evaluations in the 
next section. 

3. Numerical Analysis 

The parameter values used in the numerical evaluations were k =3, 5, 8, v = 10, 20, 
30, W =0.1, 0.3, 0.5, 0.7, 0.9, and various values for A. The numerical evaluations were 
executed on a personal computer, using the FORTRAN code. Since the formula for 
Ci(p, q, r; a) given in (14) is expressed by an integral, we used Simpson's 3/8 rule 
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with 200 equal subdivisions. Also, the infinite series in H(p, q, r; a) and J(p, q, r; a) 
were judged to converge when the increment of the series became less than 10-12• The typi
cal numerical results are shown in Tables 1 and 2. Since the entries in the Tables are 
the values of the relative risk of ~: to the OLS estimator, ~: has the smaller risk than 
the OLS estimator when the entry in the Tables is less than unity. 

We see from Table 1 that when k = 3 and w = 0.1 (i.e., the precision of estimation 
is much more important), the FMMSE estimator dominates the OLS estimator though 
the other estimators do not dominate the OLS estimator. Comparing the FMMSE estima
tor and the bias corrected FMMSE (AFMMSE) estimator, the former has smaller risk 
than the latter. This indicates that the bias correction has a negative effect on the risk per
formance of the FMMSE estimator when k = 3 and w = 0.1. Although the risk of the 
AFMMSE estimator is smaller than that of the bias corrected AFMMSE estimator for 
A ~ 10.0, the risk performance is reversed for A > 15.0. 

When k = 3 and w = 0.5, all the estimators considered here do not dominate the 
OLS estimator. The FMMSE has the better risk performance than the bias corrected 
FMMSE estimator as a whole. However, although the risk of the AFMMSE estimator, 
is smaller than that of the bias corrected AFMMSE estimator for A < 2.0, the risk per
formance is reversed for A :2 5.0. 

When k = 3 and w = 0.7, all the estimators considered here do not dominate the 
OLS estimator. Although the risk of the FMMSE estimator is smaller than that of the 
bias corrected FMMSE estimator for A ~ 5.0, the risk performance is reversed for 
A :2 10.0. Since the bias corrected AFMMSE estimator dominates the AFMMSE estima
tor, the bias correction has a positive effect on the risk performance of the AFMMSE es
timator. 

When k = 3 and w = 0.9 (i.e., the goodness of fit is much more important), the 
FMMSE and AFMMSE estimators have larger risk than the OLS estimator as a whole. 
Since the bias corrected FMMSE and AFMMSE estimators have slightly smaller risk 
than the FMMSE and AFMMSE estimators, the bias correction seems to be slightly ef
fective. 

We see from Table 2 that when k = 8 and w = 0.1 (i.e., the precision of estimation 
is much more important), all the four estimators dominate the OLS estimator. In particu
lar, the AFMMSE estimator seems to have the best risk performance among the estima
tors considered here. Also, when w = 0.1, the FMMSE and AFMMSE estimators have 
smaller risk than the bias corrected counterparts. This indicates that the bias correction 
is not effective even if the balanced loss function is used. When w = 0.3, the results are 
similar to the case of w = 0.1. 

When k = 8 and w = 0.5, the FMMSE estimator and the bias corrected FMMSE esti
mator dominate the OLS estimator. However, since the risk of the bias corrected 
FMMSE estimator is larger than that of the FMMSE estimator, the bias correction has 
a negative effect on the risk performance of the FMMSE estimator. Although the 
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TABLE 1. Risks under balanced loss for v = 20 and k = 3 

bias corrected 

w A FMMSE AFMMSE FMMSE AFMMSE 

0.1 .0 .7936 .6476 .9347 .8073 

.1 .7990 .6561 .9374 .8137 

.5 .8190 .6883 .9473 .8373 

1.0 .8407 .7241 .9576 .8627 

2.0 .8755 .7835 .9727 .9025 

5.0 .9354 .8950 .9937 .9669 

10.0 .9718 .9716 1.0007 .9981 

15.0 .9840 .9981 1.0011 1.0036 

20.0 .9892 1.0080 1.0008 1.0039 

25.0 .9920 1.0118 1.0006 1.0033 

30.0 .9936 1.0131 1.0004 1.0027 

35.0 .9947 1.0134 1.0003 1.0022 

40.0 .9955 1.0131 1.0003 1.0018 

50.0 .9965 1.0122 1.0002 1.0012 

75.0 .9978 1.0096 1.0001 1.0006 

100.0 .9984 1.0078 1.0000 1.0003 

0.5 .0 .9604 .9438 .9865 .9641 

.1 .9616 .9458 .9871 .9654 

.5 .9659 .9533 .9892 .9704 

1.0 .9706 .9616 .9913 .9756 

2.0 .9779 .9752 .9945 .9837 

5.0 .9902 .9991 .9989 .9962 

10.0 .9969 1.0129 1.0003 1.0013 

15.0 .9988 1.0156 1.0003 1.0017 

20.0 .9995 1.0154 1.0002 1.0014 

25.0 .9998 1.0144 1.0001 1.0010 

30.0 .9999 1.0132 1.0001 1.0008 

35.0 1.0000 1.0121 1.0001 1.0006 

40.0 1.0000 1.0111 1.0001 1.0005 

50.0 1.0000 1.0095 1.0000 1.0003 

75.0 1.0001 1.0069 1.0000 1.0001 

100.0 1.0001 1.0054 1.0000 1.0001 
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TABLE 1. (continued) 

bias corrected 

w A FMMSE AFMMSE FMMSE AFMMSE 

0.7 .0 .9868 .9905 .9946 .9888 

.1 .9873 .9915 .9949 .9894 

.5 .9891 .9951 .9958 .9914 

1.0 .9911 .9991 .9967 .9934 

2.0 .9941 1.0054 .9980 .9965 

5.0 .9988 1.0155 .9997 1.0008 

10.0 1.0009 1.0194 1.0002 1.0018 

15.0 1.0012 1.0184 1.0002 1.0014 

20.0 1.0011 1.0166 1.0001 1.0009 

25.0 1.0010 1.0148 1.0001 1.0007 

30.0 1.0009 1.0132 1.0000 1.0005 

35.0 1.0008 1.0119 1.0000 1.0004 

40.0 1.0007 1.0108 1.0000 1.0003 

50.0 1.0006 1.0091 1.0000 1.0002 

75.0 1.0004 1.0064 1.0000 1.0001 

100.0 1.0003 1.0050 1.0000 1.0000 

0.9 .0 1.0033 1.0199 .9998 1.0044 

.1 1.0034 1.0202 .9998 1.0044 

.5 1.0037 1.0214 .9999 1.0045 

1.0 1.0039 1.0226 1.0000 1.0046 

2.0 1.0042 1.0244 1.0002 1.0046 

5.0 1.0042 1.0258 1.0002 1.0037 

10.0 1.0034 1.0235 1.0001 1.0021 

15.0 1.0026 1.0201 1.0001 1.0012 

20.0 1.0021 1.0173 1.0000 1.0007 

25.0 1.0018 1.0150 1.0000 1.0004 

30.0 1.0015 1.0132 1.0000 1.0003 

35.0 1.0013 1.0117 1.0000 1.0002 

40.0 1.0012 1.0106 1.0000 1.0001 

50.0 1.0009 1.0088 1.0000 1.0001 

75.0 1.0006 1.0062 1.0000 1.0000 

100.0 1.0005 1.0047 1.0000 1.0000 
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TABLE 2. Risks under balanced loss for v = 20 and k = 8 

bias corrected 

w Ie FMMSE AFMMSE FMMSE AFMMSE 

0.1 .0 .8456 .4793 .9774 .7015 

.1 .8473 .4840 .9779 .7052 

.5 .8538 .5020 .9796 .7193 

1.0 .8612 .5233 .9815 .7358 

2.0 .8744 .5621 .9848 .7651 

5.0 .9035 .6543 .9910 .8306 

10.0 .9318 .7544 .9956 .8940 

15.0 .9478 .8160 .9975 .9284 

20.0 .9579 .8562 .9984 .9487 

25.0 .9648 .8839 .9989 .9615 

30.0 .9698 .9038 .9992 .9701 

35.0 .9735 .9185 .9994 .9760 

40.0 .9765 .9298 .9995 .9804 

50.0 .9807 .9457 .9997 .9862 

75.0 .9868 .9664 .9999 .9929 

100.0 .9899 .9762 .9999 .9957 

0.5 .0 .9474 .8680 .9919 .9085 

.1 .9480 .8698 .9921 .9097 

.5 .9502 .8765 .9927 .9143 

1.0 .9528 .8844 .9934 .9197 

2.0 .9573 .8986 .9945 .9291 

5.0 .9674 .9313 .9968 .9498 

10.0 .9771 .9644 .9984 .9691 

15.0 .9825 .9827 .9991 .9792 

20.0 .9859 .9934 .9994 .9850 

25.0 .9882 .9999 .9996 .9887 

30.0 .9899 1.0039 .9997 .9911 

35.0 .9912 1.0064 .9998 .9928 

40.0 .9922 1.0080 .9998 .9940 

50.0 .9936 1.0096 .9999 .9957 

75.0 .9956 1.0101 .9999 .9977 

100.0 .9966 1.0092 1.0000 .9986 
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TABLE 2. (continued) 

bias corrected 

w A FMMSE AFMMSE FMMSE AFMMSE 

0.7 .0 .9759 .9771 .9960 .9665 

.1 .9762 .9780 .9961 .9670 

.5 .9773 .9816 .9964 .9690 

1.0 .9785 .9857 .9967 .9712 

2.0 .9806 .9930 .9973 .9751 

5.0 .9853 1.0090 .9984 .9832 

10.0 .9898 1.0233 .9992 .9902 

15.0 .9922 1.0295 .9995 .9935 

20.0 .9938 1.0319 .9997 .9952 

25.0 .9948 1.0324 .9998 .9963 

30.0 .9956 1.0320 .9999 .9970 

35.0 .9961 1.0310 .9999 .9975 

40.0 .9966 1.0299 .9999 .9978 

50.0 .9972 1.0275 .9999 .9984 

75.0 .9981 1.0223 1.0000 .9991 

100.0 .9985 1.0185 1.0000 .9994 

0.9 .0 .9972 1.0583 .9990 1.0098 

.1 .9972 1.0586 .9990 1.0098 

.5 .9974 1.0598 .9991 1.0097 

1.0 .9976 1.0611 .9992 1.0096 

2.0 .9979 1.0633 .9993 1.0094 

5.0 .9986 1.0669 .9996 1.0081 

10.0 .9992 1.0672 .9998 1.0059 

15.0 .9995 1.0644 .9999 1.0041 

20.0 .9996 1.0606 .9999 1.0028 

25.0 .9997 1.0566 .9999 1.0019 

30.0 .9998 1.0529 1.0000 1.0014 

35.0 .9998 1.0494 1.0000 1.0010 

40.0 .9998 1.0463 1.0000 1.0007 

50.0 .9999 1.0409 1.0000 1.0004 

75.0 .9999 1.0314 1.0000 1.0001 

100.0 .9999 1.0254 1.0000 1.0000 
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AFMMSE estimator does not dominate the OLS estimator, the bias corrected 
AFMMSE estimator dominates the OLS estimator. However, since the risk of the 
AFMMSE estimator for it < 10.0 is smaller than that of the bias corrected AFMMSE es
timator, the effect of the bias correction on the risk performance of the AFMMSE esti
mator is ambiguous. 

When k = 8 and w = 0.7, the risk performances of the FMMSE estimator and the 
bias corrected FMMSE estimator are similar to the case of w = 0.5. However, when w 
increases from 0.5 to 0.7, the risk of the bias corrected AFMMSE estimator is smaller 
than that of the AFMMSE estimator. This indicates that the bias correction has a posi
tive effect on the risk performance of the AFMMSE estimator. 

When k = 8 and w = 0.9 (i.e., the goodness of fit is much more important), the 
FMMSE estimator and the bias corrected FMMSE estimator dominate the OLS estima
tor. However, both the bias corrected AFMMSE estimator and the AFMMSE estima
tor are dominated by the OLS estimator. Comparing the AFMMSE estimator and the 
bias corrected AFMMSE estimator, the bias correction is slightly effective. However, 
since the risk of the bias corrected FMMSE estimator is larger than that of the 
FMMSE estimator, the bias correction has a negative effect on the risk performance of 
the FMMSE estimator. When w = 0.9, the risks are very close to unity. This indicates 
that using the FMMSE estimator may be meaningless when the goodness of fit is much 
more important than the precision of estimation. 
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