

PDF issue: 2025-05-13

電気分解電極中におけるLi同位体の核反応分析

能見, 貴佳

杉原, 拓真

谷池,晃

古山, 雄一

北村,晃

(Citation) 神戸大学大学院海事科学研究科紀要,05 <商船・理工論篇>:33-40

(Issue Date) 2008-07

(Resource Type) departmental bulletin paper

(Version) Version of Record

(JaLCDOI) https://doi.org/10.24546/81001092

(URL) https://hdl.handle.net/20.500.14094/81001092

電気分解電極中における Li 同位体の核反応分析

Nuclear reaction analysis of Li isotopes in a Ni cathode used in electrolysis of aqueous Li₂SO₄ solution

能見 貴佳、杉原 拓真、谷池 晃、古山 雄一、北村 晃 Takayoshi NOHMI, Takuma SUGIHARA, Akira TANIIKE, Yuichi FURUYAMA, Akira KITAMURA

(2007年4月25日受理)

Abstruct

A successful application of the electrostatic accelerator, 1.7-MV Tandem Pelletron 5SDH-2, is demonstrated. Nuclear reaction analyses (NRA) using reactions ⁷Li(p,2 α) and ⁶Li(d,2 α) have been performed to reveal reliable isotopic abundance ratio of ⁶Li/⁷Li in Ni thin-film electrodes deposited on PTFE sheets which had been employed as the cathodes in electrolysis of aqueous Li₂SO₄ solution. The reliable conclusion was obtained by simultaneously analyzing Li₂CO₃ and PTFE sheets as reference samples, the former having Li with natural abundance ratio and the latter producing α particles by ¹⁹F(p, α)¹⁶O or ¹⁹F(d, α)¹⁷O reaction which could disturb the charged particle spectra to be analyzed.

(Received April 25, 2008)

1. 序論

岩手大学工学部電気電子工学科山田弘教授よ り電気分解電極試料中の Li 同位体分析を依頼 された。当該試料は Li 化合物を電解質とする水 溶液の電気分解陰極として用いられた Ni 蒸着 PTFE(テフロン)板である。使用後、Ni 蒸着 膜の組成分析を TOF-SIMS(飛行時間型二次イ オン質量分析法)によって行ったところ、Ni 蒸 着膜陰極に取り込まれた Li の同位体組成が自 然界のそれと異なることを示唆する結果が得ら れた^[1]というものである。

Li 同位体組成分析には MeV イオンビームを 用いた核反応分析法(Nuclear Reaction Analysis; NRA)が最適であり、本研究科のタンデム静電 加速器 PELLETRON 5SDH-2 の汎用分析ステー ションにそのためのハードウェア及びソフトウ ェアが整備されている。そこで、依頼された 4 枚の試料、即ち 2 枚の電気分解電極試料 (a1:Nif12E と a2:Nif14E)、及びそれらの対照試 料(b1:Nif11R と b2:Nif13R)のほか、Li 標準試 料として炭酸リチウム(Li₂CO₃)、並びに PTFE 板を対照試料として、Li同位体組成分析を行っ た。実験は二度にわたり、(a1,b1)試料は第一次 分析、(a2,b2)試料は第二次分析において行った。

Li₂CO₃標準試料は、Liの同位体組成が天然組成(⁶Li;7.59%、⁷Li;92.41%)であり、測定結果から分析試料のより正確な⁶Liと⁷Liの同位体比を求める為に使用する。テフロン板は NRA 分析における Li 起源荷電粒子スペクトルに対する¹⁹F(p, α)反応や¹⁹F(d, α)反応生成粒子の影響を確認する為の比較試料である。

2. 実験装置と試料

2-1. 加速器分析体系

本研究では Ni 薄膜電気分解電極試料中の Li 同位体組成分析のために、二種類の核反応を利 用する。即ち、⁶Li の分析のためには⁶Li(d,2α) 反応、⁷Li の分析には⁷Li(p,2α)反応を用いる。

Fig.1 に NRA の分析体系を示す。タンデム・ バンデグラーフ型静電加速器によって加速され

Fig.1. Schematic of Apparatus for accelerator analysis.

た陽子ビーム、或いは重陽子ビームは、MB0 真 空容器入口で円形アパーチャによって直径 0.5mmに整形される。

試料から放出される勧乱粒子と核反応生成粒 子のエネルギー分布を測定するため、シリコン 表面障壁型検出器(SSBD)が+90°(NRA-SSBD) と+165°(RBS-SSBD)に設置されている。 NRA-SSBDの前面にはAIフィルタが設置され ている。試料台はチェンバー中央に配置されて おり、試料台を回転させることにより入射角を 自由に変化させることが可能になっている。

イオンビーム照射時には試料から多数の二次 電子が発生する。電流値測定による人射拉子数 計測に影響を与えないように、二次電子を吸収 するための二次電子吸収管を設置している。第 一次分析における SSBD の有効立体角はこの吸 収管に取り付けられた 2.0mm#(RBS-SSBD)又 は 3.1mm#(NRA-SSBD)のアパーチャで決ま り、それぞれ 8.7×10⁴sr と 21×10⁴srである。第 二次分析の 1.i分析においては、大きな立体角 で NRA を行うためにこの二次電子吸収置を取 り外して 1.8×10⁴sr とし、一方 RBS-SSBD はペ イルアップを極力抑えたスペクトルを得るため に検出器前面に 0.3mmgアパーチャを設置して 7.9×10⁻⁶sr とした。

2-2.分析的科

分析対象は岩手大学より委託された4つの試 料 Nifl 2E、Nifl 1R、Nifl 4E、及び Nifl 3R に加 え、本研究室で用意した Li_xCO₂ 標準試料と PIFE 板の計 6 つの試料である。委託された分 析試料は Ni でニッケル、f でfoil, E で Electrolysis、 R で Reference を意味して命名されている。つま り Nifl 2E と Nifl 4E 試料は、ニッケル基着を行 いかつ硫酸リチウム (Li_xSO₄) 軽水溶液中で電 気分解を行った試料であり、Nifl 1R と Nifl 3R 試料は、ニッケル基着は行ったが Li_xSO₄ 電解液 に浸漬しただけで電気分解を行わなかった参照 試料であることを意味している。

Nill 2E 試料はLi,SO。軽水溶液中で2週間電気

分解を行った際の陰極である。テフロン基板 (8×8×1mm)上に約 15nm の厚さのニッケル蒸着 が行われている。同様にして製作され電気分解 に供された試料は岩手大学において TOF-SIMS による Li 分析が行われている。電気分解実験の 前後における Li 量の差が陰極の Nif12E に付着 していると仮定すると、試料表面に付着してい る Li の面密度はおよそ 5.9×10¹⁹ cm⁻² と予測され ている。

一方 Nif14E 試料は Nif12E 試料とは別の時期 に作製され同様の実験で用いられた試料である。 電気分解の期間は Nif12E 試料より長い、17 日 間である。付着 Li 面密度は 1.9×10²⁰ cm⁻² と予測 されている。

これらの対照試料として Nifl1R と Nifl3R は それぞれ Nifl2E、Nifl4E と同条件で作製されて いるが、Li₂SO₄軽水溶液に 2 週間浸漬するのみ で電気分解は行われていない。これらの試料に 関して付着 Li 量は不明とされている。

後述するように、測定スペクトルには ¹⁹F(p,α)¹⁶O反応や¹⁹F(d,α)¹⁷O反応に起因する α 粒子スペクトルが観測され、分析・測定条件によっては、目的とする⁷Li($p,2\alpha$)、⁶Li($d,2\alpha$)反応生成 α 粒子スペクトルを妨害し得る。分析条件を最適化してその影響を最小化しなければならないが、その際対照試料として 8mm×8mm×1mmt の PTFE 板を用いてバックグラウンドスペクトルを取得する。

また、天然同位体組成のLiをもつ参照試料と してLi₂CO₃は、粉末状市販試薬(純度 99%)を $8mm\phi \times 2mmt$ のボタン状に加圧整形したもので ある。

3. 第一次分析

3-1. 分析条件

第一次試料分析の分析対象は Nifl1R、Nifl2E、 Li₂CO₃標準試料、そして PTFE の4 つである。 ⁶Li と ⁷Li の測定はそれぞれ独立に行う。照射ポ イント数と入射粒子電荷量は Table 1 及び Table 2 の通りである。

まず始めに、2.2MeV 陽子ビームにより ⁷Li(p,2 α)核反応による⁷Liの分析を行った。検出 角と SSBD 前面 Al フィルタ厚さはそれぞれ 90deg と 25 μ m である。その後イオン源のスパ ッタカソードを交換して照射粒子を 1.0MeV 重 陽子に換え、⁶Li(d,2 α)核反応による⁶Liの分析を 行った。検出角は同じであるが検出器前面 Al フィルタの厚さは 12 μ m である。これらのビー ムの入射角度は両者とも 45 度を選択している。

なお、後者の⁶Li 分析については、当初、反 応断面積の信頼性が高い 3.0MeV-d ビームを用 いた。その場合、量的に圧倒的に多い¹⁹F がも たらす¹⁹F(d, α)¹⁷O 反応生成 α スペクトルのパイ ルアップ成分が⁶Li(d,2 α)に重なるため、非常に バックグラウンドの高い測定となり、信頼性が 著しく低い分析結果となった。そこで、 ¹⁹F(d, α)¹⁷O 反応断面積が小さくなるエネルギー として上記の 1.0MeV を選んだ。

次に照射対象である試料台の詳細を Fig.3 に 示す。基板及び留め板は AI 製で、乳化性液状金 属磨き(日本磨料工業株式会社製)で磨き、そ の後、アセトン中で超音波洗浄を行った。ビー ム径は 0.5mm 程度であり、照射ポイントの確認 は感熱紙を使用して行った。

Table 1. Parameters for analysis with protons in the 1st series of analysis.

Sample	Total charge of incident beam ions (μC)	Number of analyzed point
PTFE	150	1
Nif12E	250	1
Nifl 1R	250	1
Li ₂ CO ₃	150	1

Table 2. Parameters for analysis with deuterium in the 1st series of analysis.

Sample	Total charge of incident beam ions (uC)	Number of analyzed point
PTFE	150	1
Nif12E	1000	1
Nif11R	1000	1
Li ₂ CO ₃	150	1

Fig. 3. Schematic of substrates on the sample holder in the 1st series of analysis.

3-2. NRA スペクトル

p-NRA において得られたスペクトルと d-NRA スペクトルをそれぞれ Fig.4 と Fig.5 に示 す。縦軸はカウント数、横軸は検出粒子エネル ギーである。Li₂CO₃ 標準試料の p-NRA におい て約 6.5MeV を最大エネルギーとするスペクト ル部分と、d-NRA において約 10.3MeV を最大エ ネルギーとするスペクトル部分がそれぞれ試料 中の⁷Li(p,2 α)と⁶Li(d,2 α)核反応による α 粒子に よるものである。また、PTFE の場合に見られ るように、¹⁹F(p, α)¹⁶O 反応生成 α 粒子は 4.6MeV を最大エネルギーとする平坦なスペクトルであ り、殆どパイルアップ成分を持たない。

Nif12E と Nif11R については、⁷Li(p,2 α)も ⁶Li(d,2 α)も共にモノエナジーの単一ピークにな っており、それは Li を含む層がかなり薄いこと を示している。しかも ¹⁹F(p, α)¹⁶O 反応生成 α 粒

Fig. 4. p-NRA spectra for the samples in the 1st series of analysis.

analysis. Sample Incident SSD Al filter thickness

Table 3. Parameters used in the 1st series of

Sample	Incident particle	SSD detector	Al filter thickness
Nif11P	2.2MeV-p	90°	25µm
INIIIIK	1.0MeV-d	90°	12µm
Nif12E	2.2MeV-p	90°	25µm
INIT 215	1.0MeV-d	90°	12µm

子スペクトルと重ならず、S/N 比の高い測定が 実現できていることが確認される。これは ¹⁹F(p,α)¹⁶O 反応生成α粒子の妨害を防ぐための 入射陽子のエネルギーの選択が正しかったこと を示している。

3-3. Nif 試料の Li 同位体比測定

ここでの立体角は 2.1msr、核反応微分断面積 は ⁷Li(p,2 α) が 2.2MeV 陽子に対して 3.87×10⁻³b/sr^[2]、⁶Li(d,2 α)が 1.0MeV 重陽子に対 して 4.97×10⁻³b/sr^[3]である。試料に付着している Li の量は極めて微量かつ数 nm という微小な深 さに存在しているので、核反応微分断面積が膜 中では一定であると考えて面密度および Li 同 位体比を導出する方法を用いた。

また、参照試料である Nif11R の同位体組成を 天然のそれ(⁶Li;7.59%、⁷Li;92.41%)と考えて収量 の補正を行う。つまり求められた Nif11R におけ る同位体組成を天然のものに等置するために必

Fig. 5. d-NRA spectra for the samples in the 1st series of analysis.

Sampla	Areal density (cm ⁻²)	
Sample	⁷ Li ⁶ Li	
Nif11R	(3.7±0.2)×10 ¹⁶	$(3.0\pm0.3)\times10^{15}$
Nif12E	(6.5±0.2)×10 ¹⁵	$(3.6\pm0.3)\times10^{15}$

Table 4. Comparison of areal densities measured in the 1st series of analysis.

Table 5. Isotopic abundance measured in the 1st series of analysis.

Course 1a	Isotopic abundance	
Sample	⁷ Li	⁶ Li
Nif11R	92.4±1.0 %	7.6±1.0%
Nif12E	94.8±0.7 %	5.2±0.7 %

要な係数を Nifl2E に対して得られた収量にも 適用して、同位体組成を算出する。本分析にお ける命題は Nifl1R と Nifl2E との有意差を確認 することであり、絶対値の測定は意図していな い。

導出した Nif 試料の面密度およびその誤差範 囲の比較を Table 4 に、そこから求めた Li 同位 体組成を Table 5 に示す。誤差範囲は収量Nの 統計的誤差 $\sigma = \sqrt{N}$ を取っている。

3-4.考察

Nif11R の同位体比は自明のこととして全て 天然存在比になっている。Nif12E に関しては、 ⁷Li の面密度は(6.45±0.24)×10¹⁶cm⁻²、⁶Li の面密 度は(3.6±0.28)×10¹⁵cm⁻² で、同位体組成は(⁷Li, ⁶Li) = (94.8±0.7%, 5.2±0.7%)となっており、天然 組成(⁷Li;92.41%, ⁶Li;7.59%)と数%のズレが見ら れる。但し、ここでは誤差として統計的誤差の みを考慮している。文献[1]での分析結果とは逆 に、一見 ⁶Li / ⁷Li の割合が電気分解後減少する という結果になっている。また、Li 面密度は文 献[1]で予想されていた値より3桁近く低い値と なっている点が指摘される。

第二次分析では、以上の結果を考慮して、さ らに改良を施した体系で分析を行った。

4. 第二次分析

4-1. 分析条件

第二次試料分析の分析対象は Nifl 3R、Nifl 4E、 Li₂CO₃標準試料、そして PTFE の 4 つである。 照射ポイント数と入射粒子電荷量は Table 6 及 び Table 7 の通りである。

第一次分析は、Nif 試料に対して照射ポイン トは一ヶ所のみで、分析試料位置別のLi収量を 調査しなかった。しかし、試料の場所によりLi の付着量に差がある可能性がある上に、各測定 において照射位置が微妙にずれる可能性がある。 そこで第二次分析では、照射ポイントにより得 られるスペクトルが異なる可能性を考慮して、 Nif 試料それぞれに対し照射ポイントを3 点取 る多点分析を行った。また、測定効率を向上す るために入射角を75 度に変更した。

また第二次分析では、RBS 測定をも補正の手 段として用いることを目的として、RBS-SSBD の立体角をパイルアップが生じないような大き さ (7.9×10⁻⁶sr) に変更した。第一次分析と同様、 RBS-SSBD の検出器ではフィルタを使用しない。 ⁷Li の測定における NRA-SSBD 検出器では第一 次分析におけるより高度に分離したスペクトル

Table 6. Parameters for analysis with protons in the 2^{nd} series of analysis.

Sample	Total charge of incident beam ions (μC)	Number of analyzed point
PTFE	10	1
Nif12E	75	3
Nif11R	75	3
Li ₂ CO ₃	10	1

Table 7. Parameters for analysis with deuterium in the 2nd series of analysis.

Sample	Total charge of incident beam ions (μC)	Number of analyzed point
PTFE	150	1
Nif12E	250	3
Nif11R	250	3
Li ₂ CO ₃	150	1

を得ることを目前として A1 薄膜フィルタの厚 さは 36μm に変更した。

第二節で述べたように Li の分析に関しては 二次電子吸収管を使用せずに照射を行った。こ れは、検出器を分析対象により近づけることに より立体角を増加し、計測効率を向上すること を目前としている。検出器までの距離を 60mm から 37mm へと近づけ、さらに検出器の有感面 積を 9.6mm²から 25mm² に拡げることで、立体 角を 2.1msr から 18.3msr へと増加、計測効率を およそ9倍向上させた。これは、前回とほぼ同 等の収量を得るために必要な入射粒子電荷量。

従って分析所要時間を大幅に短縮するためであ る。この場合は[®]Li(d,20)のエネルギーが十分高 くて他のα粒子スペクトルと混合してしまう可 能性が低いので、NRA-SSBD 検出器の Al 薄膜 フィルタは散乱重陽子のみを阻止する厚さとし て 12μmとした。

Table 8. Parameters use in the 2nd series of analysis.

Sample	Incident particle	NRA- SSD detector	Al filter thickness
MOULD	2.2MeV-p	90°	25µm
MILLER	1.0MeV-d	90°	12µm
MATOR	2.2MeV-p	90°	25µm
HUISE	1.0MeV-d	90°	12µm

Fig δ. Schematic of substrates on the sample holder in the 2rd series of analysis.

試料台の詳細を Fig6 に示す。第一次分析と は別の試料台を新たに作製した。作製後は前回 同様、乳化性液状金属磨きで磨き、その後、ア セトン中で超音波洗浄を行った。

42 NRA スペクトル

p-NRA スペクトルを Fg.7に、d-NRA スペク トルを Fig.8に示す。縦軸はカウント数、横軸 は検出粒子エネルギーである。p-NRA において AI フィルタが厚くなったことを反映して ²Lip,200によるの粒子は約4.9MeV に移動してい る。d-NRA スペクトルに注目すると、第一次分 析と比較して全体的なスペクトルの拡がりが見 られ、Li₂CO₂ 標準試料の⁴Li(d,200)核反応スペク トル部においては、スペクトルの拡がりのため に正確な⁴Li の分布計算が困難となっている。

Fig.7. p-NRA spectra for the samples in the 2^{ed} series of analysis.

Fig 8. d-NRA spectra for the samples in the 2rd series of analysis.

これは、吸収管をはずして立体角を増加させた ために検出角が幅をもってしまったためである。

4-3. Nif 試料の Li 同位体組成測定

Fig.7 と Fig.8 から面密度及び Li 同位体比を 求める。第一次分析と同様に参照試料である Nif13R 試料の同位体組成を天然組成(⁶Li;7.59%、 ⁷Li;92.41%) とみなして、前者を後者に等置す るために必要な係数を Nif14E 試料にも適用し て、同位体組成を算出する。

Table 9 に面密度及びその誤差範囲を、Table 10 に Li 同位体組成を示す。これらの結果は照 射ポイント別収量の平均値から求めた同位体組 成である。照射位置別の結果は、最終節のまと めにおいて、第一次分析結果と共に論ずる。

4-4. 考察

以上の第二次分析により得られた結果は Table 9、Table 10 のとおりである。

Nif14Eの3ポイントにおける同位体組成の平 均値は誤差範囲を考慮すると天然同位体組成と 一致した。但し、誤差範囲は収量 N の誤差 $\sigma = \sqrt{N}$ のみ考慮している。第一次分析のよう な一見して ⁷Li が増加しているかに見える傾向 は見られず、また Nif13R 試料と Nif14E 試料の 間に有意な差は見られないという結論になる。

5. まとめ

第一次分析では、電気分解電極試料がリファ レンス用試料と比較して⁶Li/⁷Liの割合が減少 していることを示唆する結果が得られた。一方、 第二次分析では、電気分解電極試料とリファレ ンス用試料との間には有意な差は見られなかっ たと結論している。ここでは、第一次分析での Nif11R 試料と Nif112E 試料における差異が有意 であるという結論が妥当かどうかを、第二次分 析での照射位置別の結果と照らし合わせて、改 めて考察する。

Fig.9に、照射位置別の⁷Li同位体組成の結果 を示す。照射は試料台位置-0.5cm、1.0cm、2.5cm の3ポイントに行っている。

第二次分析における電気分解電極試料の⁷Li 同位体含有率に関して照射位置によって、最大 で 94.7%、最小で 87.5%という差が見られる。 このように、照射位置による面密度のバラつき、 ひいては同位体組成のバラつきが起こる原因と しては、統計的誤差よりも大きい系統的誤差に が考えられる。そのうち最も大きい因子として 試料面の Li 密度分布の非一様性が考えられる。

前節で示したようにこれら照射位置別の結果 を平均化して Nif14E のLi 同位体組成を導くと、 は Table 10 で示されたように誤差範囲内に天然 存在組成が含まれる結果となり、一つのポイン トで取得したデータから導いた結論はこれとは 異なる可能性があることが分かる。このことか

Table 9. Comparison of areal densities measured in the 2nd series of analysis. Isotopic abundance

Consta		
Sample	⁷ Li	⁶ Li
Nif13R	(6.1±1.3)×10 ¹⁶	(5.0±0.3)×10 ¹⁵
Nif14E	(4.5±1.1)×10 ¹⁶	(3.6±0.2)×10 ¹⁵

Table 10. Isotopic abundance measured in the 2nd series of analysis.

G 1	Isotopic abundance	
Sample	⁷ Li	⁶ Li
Nif13R	92.4±0.5 %	7.6±0.5%
Nif14E	92.6±0.5 %	7.4±0.5 %

Fig.9. Isotopic abundance ratio of ⁷Li both in the 1st series of analysis and the 2nd series of analysis.

ら1ポイント照射のみの分析では、当然のこと とは言え、信頼性の高いデータを得ることはで きないことが分かった。

第一次分析の結果は、この立場に立てば、第 二次分析試料台-0.5cm における結果のように ¹Liの比率が高いポイントに照射した可能性、も しくは¹Li測定時の照射位置と⁶Li測定時の照射 位置が微妙にずれていたという可能性も否めな い。さらに第二次分析で、照射位置により⁷Li 含有率が最大 94.4%、最小で 88.9%というバラ つきがある。この最大値が第一次分析結果とほ ば同等の値を示している。また、Table 10 にお ける誤差範囲は収量 N の誤差 $\sigma = \sqrt{N}$ のみで あるが、これらの照射位置による違いを系統的 誤差に包含するなら、第一次分析で示された結 果においても、Nif12E の同位体組成は誤差範囲 内で天然存在組成と一致していると結論付ける ことができる。

以上により Nif11R と Nif12E の間に有意な差 は存在しない、と結論することが合理的である。 文献[1]の電気分解電極試料における、⁷Li: ⁶Li=43.2:56.8 という同位体組成変化を示唆す る TOF-SIMS の結果とは異なり、電気分解陰極 試料中の同位体組成の変化は見られないという 結論を得た。

謝辞

試料提供を頂いた岩手大学教授山田弘教授に 感謝いたします。また、炭酸リチウム標準試料 の作製及び測定において助力頂いた大学院生河 津翔氏に感謝します。

参考文献

- [1] Y. Yamada, et al., private communication.
- [2] P. Paul and K. P. Lieb, J. Nucl. Phys. 36 (1962) 465: Data retrieved from EXFOR F0025002.
- [3] J. R. Tesmer, et. al,: HANDBOOK OF MODERN ION BEAM MATERIALS ANALYSIS (MATERIALS RESEARCH SOCIETY, 1995)