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Abstract

In this paper, we derive asymptotic theorems for the Petrin (2002) extension of the Berry, Levinsohn, and

Pakes (BLP, 1995) framework to estimate demand-supply models with micro moments. The micro moments

contain the information relating the consumer demographics to the characteristics of the products they

purchase. With additional assumptions, the extended estimator is shown to be CAN and more efficient than

the BLP estimator. We discuss the conditions under which these asymptotic theorems hold for the random

coefficient logit model. We implement extensive simulation studies and confirm the benefit of the micro

moments in estimating the random coefficient logit model.
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1 Introduction

Some recent empirical studies in the industrial organization and marketing extend the framework proposed

by BLP (1995, henceforth BLP (1995)) and try to integrate the information on consumer demographics

to the utility functions in order to make their models more realistic and convincing. For example, Nevo’s

examination on price competition in the ready-to-eat cereal industry (Nevo 2001) uses individual’s income,

age and a dummy variable indicating the individual has a child or not in the utility function. Sudhir (2001)

includes household’s income to model the U.S. automobile demand in the study of competitive interactions

among firms in different market segments. The background behind these is that public sources of information

such as Current Population Survey (CPS) and Integrated Public Use Microdata Series (IPUMS) are widely

available. Those sources give us information on the joint distribution of the U.S. household’s demographics

such as income, age of household’s head, and family size.

In the analysis of the U.S. automobile market, Petrin (2002) goes further and tries to link demographics

of new-vehicle purchasers to the vehicles they purchased. Specifically, given a purchasing pattern such as

“buying a minivan,” he proposes to match the model-predicted average consumer’s demographics with the

average consumer’s demographics from Consumer Expenditure Survey (CEX) automobile supplement in

the GMM estimation. Petrin’s framework presupposes the market information on the population average,

which is readily accessible through public sources.3 He claims that “the extra information plays the same

role as consumer-level data, allowing estimated substitution patterns and (thus) welfare to directly reflect

demographic-driven differences in tastes for observed characteristics (page, 706, lines 22-25).” His intention,

it seems, is to reduce the bias associated with “a heavy dependence on the idiosyncratic logit “taste”

error”(page 707, lines 5-6). If so, his contention that a source of his idea is from Imbens and Lancaster

(1994) is unfortunate, because Imbens and Lancaster use micro moments to improve the efficiency.4

Petrin adds the set of functions of the expected value of consumer’ demographics given specific product

characteristics consumers choose (e.g., expected family size of households that purchased minivans) as ad-

ditional moments in the GMM estimation, where the original moment conditions used in BLP (1995) are

orthogonal conditions of the unobserved quality ξj and the unobserved cost shifter ωj with the correspond-

ing instrumental variables zd
j and zc

j for product j. To evaluate the additional moments, individuals are

sampled from the population. So Petrin’s additional moments are sample average over individuals, while

3Berry, Levinsohn, and Pakes (2004), on the other hand, uses detailed consumer-level data, which include not only individuals’

choices but also the choices they would have made had their first choice products not been available. Although the proposed

method should improve the out-of-sample model’s prediction, it requires proprietary consumer-level data, which are not readily

available to researchers, as the authors themselves acknowledged in the paper: the CAMIP data “are generally not available to

researchers outside of the company” (page 79, line 30).
4The efficiency argument in the Imbens and Lancaster’s (1994) estimation is basically supported by that of maximum

likelihood estimate (MLE), but this is not the case for Petrin’s approach; BLP framework does not use any distributional

assumption on the product-level error terms (ξj and ωj) other than mean independent condition and thus the functional form

of the score functions are unknown.
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BLP moments are over products.

It should be noted that these new moments are subject to the simulation and sampling errors in the

BLP estimation. This is because the expectations of consumer demographics are evaluated conditional on

the product characteristics (X, ξ), where the ξ includes the simulation and the sampling errors induced

through the BLP’s contraction mapping. In addition, the additional market information itself contain

another type of sampling error. This is because the additional market information is typically an estimate

for the population average demographics obtained from the sample of consumers (e.g., CEX sample) and

this is separate from the one from which the observed market share sn is calculated. This error also affect

the evaluation of the new moments. In summary each of the four errors (the simulation error, the sampling

error in the observed market shares, the sampling error induced when researcher evaluates the additional

moments, and the sampling error in the additional information itself ) as well as the stochastic nature of

the product characteristics will affect the evaluation of the additional moments. The estimator proposed by

Petrin appears to assume that we are able to control the impacts from the first four errors. Moreover, it

is not apparent if Petrin samples another set of individuals to evaluate additional moments, independent of

those used to simulate the market shares of products. Unfortunately, Petrin (2002) does not provide any

asymptotic theorems for the estimator.

We write this paper to generalize the GMM estimator extended by Petrin (2002) and provide the con-

ditions under which this estimator not only has the CAN properties, but is more efficient than the original

BLP estimator. We assume the econometrician samples two sets of individuals independent of each other,

one to simulate the market share of products and the other to evaluate the additional moments, in order

to avoid intractable correlations between the two sets of individuals. We also assume the given additional

information on demographics of consumers are calculated from the sample independent of these two sam-

ples. We follow the rigorous work of Berry, Linton, and Pakes (2004) (hereinafter, BLP (2004)) in which the

authors presented the asymptotic theorems applicable to the random coefficient logit models of demand in

BLP (1995). Then we implement extensive simulation studies and confirm the benefit of the micro moments

in estimating the random coefficient logit model.

This paper is organized as follows. In section 2, we operationalize the Petrin’s extension to the BLP

framework which utilizes the additional micro moments and define the sampling and simulation errors in

the GMM objective function. In section 3, we provide assumptions for these errors and the structure of the

product space to follow and then give the outline of the proofs of the asymptotic theorems for the extension.

In section 4, we derive rates at which the numbers of two distinct samples (one to calculate the observed

market shares and the other to compute the additional information data) and the number of simulation

draws must grow relative to the number of products in the market to guarantee our asymptotic theorems

to hold for the random coefficient logit model. Results from the extensive Monte Carlo experiments are

presented in section 5. Finally, in section 6, we give concluding remarks and briefly discuss the case where

the two samples, one is used for simulating market shares of products and other is from which the additional
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information is derived, are correlated. Detail of the proofs are given in appendix.

2 System of Demand and Supply with Micro Moments

In this section, we give precise definition to the product space, refocusing the estimation procedure of BLP

framework in combining the demand and the supply side moment conditions, and construct the additional

moment conditions which relate consumer demographics to the characteristics of products they purchase.

Since our approach extends BLP (2004), notations and the most of definitions are kept as identical as possible

to those in BLP (2004).

2.1 Demand Side Model

The discrete choice differentiated product demand model formulates that the utility of consumer i for prod-

uct j is a function of demand side parameters θd, observed product characteristics xj , unobserved (by the

econometrician) product characteristics ξj , and random consumer tastes νij . Given the product characteris-

tics (xj , ξj) for all (J) products marketed, consumers either buy one of the products or choose the “outside”

good. Each consumer makes the choice to maximize his/her utility. Different consumers assign different

utility to the same choices because their tastes are different. The tastes follow the distribution P 0.

Although most product characteristics are not correlated with the unobserved product characteristics

ξj ∈ <, j = 1, . . . , J , some of them (e.g., price) are. We denote the vector of observed product characteristics

xj = (x′1j , x
′
2j)

′ where x1j ∈ <K1 are exogenous and not correlated with ξj , while x2j ∈ <K2 are endogenous

and correlated with ξj . We assume the set of exogenous product characteristics (x1j , ξj), j = 1, . . . , J are

random sample of product characteristics of size J from the underlying population of product characteristics.

Thus, (x1j , ξj) are assumed independent across j, while x2j are not in general across j since they are

endogenously determined in the market as functions of others’ and its own product characteristics. The ξj ’s

are assumed to be mean independent of X1 = (x11, . . . , x1J)′ and to have a finite conditional variance as

E[ξj |X1] = 0 and sup
1≤j≤J

E[ξ2
j |x1j ] < ∞(1)

with probability one. The set of observed product characteristics for all the products is denoted by X =

(x1, . . . , xJ)′.

The conditional purchase probability σij of product j is a map from consumer i’s tastes νi ∈ <v, a

demand side parameter vector θd ∈ Θd, and the set of characteristics of all products (X, ξ), and is thus

denoted as σij(X, ξ,νi; θd). BLP (1995) framework generates the vector of market shares, σ(X, ξ,θd, P ),

by aggregating over the individual choice probability with the distribution P of the consumer tastes νi as

σj(X, ξ,θd, P ) =
∫

σij(X, ξ,νi; θd)dP (νi)
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where P is typically the empirical distribution of the tastes from a random sample drawn from P 0. Note

that these market shares are still random variables due to the stochastic nature of the product characteristics

X and ξ. If we evaluate σj(X, ξ,θd, P ) at (θ0
d, P

0), where θ0
d is the true value, we have the “conditionally

true” market shares s0 given the product characteristics (X, ξ) in the population, i.e., σ(X, ξ, θ0
d, P

0) ≡ s0.

Equation in the form of σ(X, ξ,θd, P ) = s can, in theory, be solved for ξ as a function of (X, θd, s, P ).

BLP (1995) provides general conditions under which there is a unique solution for

s− σ(X, ξ,θd, P ) = 0(2)

for every (X,θd, s, P ) ∈ X ×Θd×SJ ×P, where X is a space for the product characteristics X, and P is a

family of probability measures. If we solve (2) at any (θd, s, P ) 6= (θ0
d, s

0, P 0), the independence assumption

for the resulting ξj(X, θd, s, P ) no longer holds because the two factors deciding the ξj—the market share

sj and the endogenous product characteristics x2j for product j—are endogenously determined through the

market equilibrium (e.g., Nash in prices or quantities) as a function of the product characteristics not only

of its own but also of its competitors. However, if we solve the identity σ(X, ξ,θ0
d, P

0) = s0 with respect

to ξ under the conditions to guarantee the uniqueness of the ξ in (2), we are able to retrieve the original

ξj(X, θ0
d, s

0, P 0) which we assume are independent across j.

2.2 Supply Side Model

In this paper we take into account supply side moment condition unlike BLP (2004). The framework is

based on BLP (1995). Here, we give the model and define notations.

The supply side model formulates the pricing equations for the J products marketed. We assume an

oligopolistic market where a finite number of suppliers provide multiple products. Suppliers (m = 1, . . . , F )

are maximizers of the profit from the combination of products they produce. By assuming the Bertrand-Nash

pricing for supplier’s strategy, the first order condition for the product j of the manufacturer m is

σj(X, ξ, θd, P ) +
∑

l∈Jm

(pl − cl)∂σl(X, ξ, θd, P )/∂pj = 0 for j ∈ Jm,

where Jm denotes the set of products provided by the manufacturer m, and these pj and cj are respectively

the price and the marginal cost of the product j. This equation can be expressed in matrix form

σ(X, ξ,θd, P ) + ∆(p− c) = 0(3)

where ∆ is the J × J non-singular gradient matrix of σ(X, ξ,θd, P ) with respect to p whose (j, k) element

is defined by

∆jk =





∂σk(X, ξ, θd, P )/∂pj , if the products j and k are produced by the same firm;

0, otherwise.
(4)
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We define the marginal cost cj as a function of the observed cost shifters wj and the unobserved (by the

econometrician) cost shifters ωj as

g(cj) = w′
jθc + ωj(5)

where g(·) is a monotonic function and θc ∈ Θc is a cost side parameter vector. While the choice of g(·)
depends on application, we assume g(·) is continuously differentiable with a finite derivative for all realizable

values of cost. Suppose that the observed cost shifters wj consist of exogenous w1j ∈ <L1 as well as

endogenous w2j ∈ <L2 , and thus we write wj = (w′
1j ,w

′
2j)

′ and W = (w1, . . . ,wJ)′. The exogenous

cost shifters include not only the cost variables determined outside the market under consideration (e.g.

factor price), but also the product design characteristics suppliers cannot immediately change in response

to consumer’s demand. The cost variables determined at the market equilibrium (e.g. production scale) are

treated as endogenous cost shifters. As in the formulation of (x1j , ξj) on the demand side, we assume the set

of exogenous cost shifters (w1j , ωj) is a random sample of cost shifters from the underlying population of cost

shifters. Thus (w1j , ωj) are assumed to be independent across j, while w2j are in general not independent

across j as they are determined in the market as functions of cost shifters of other products. Similar to

the demand side unobservables, the unobserved cost shifters ωj are assumed to be mean independent of the

exogenous cost shifters W1 = (w11, . . . ,w1J)′, and satisfy with probability one,

E[ωj |W1] = 0, and sup
1≤j≤J

E[ω2
j |w1j ] < ∞.(6)

Define g(x) ≡ (g(x1), . . . , g(xJ)). Solving the first order condition (3) with respect to c and substituting

for (5) give the vector of the unobserved cost shifters

ω(θ, s, P ) = g(p−mg(ξ(X, θd, s, P ), θd, P ))−Wθc,(7)

where

mg ≡ −∆−1σ(X, ξ,θd, P )(8)

represents the vector of the profit margins for all the products in the market. Hereafter, we suppress the

dependence of ξj and ωj on X and W to express ξj(θd, s, P ) and ωj(θ, s, P ) respectively for notational

simplicity. Notice that the parameter vector θ in ω contains both the demand and supply side parameters,

i.e., θ = (θ′d, θ
′
c)′. Since the profit margin mgj(ξ,θd, P ) for product j is determined not only by its unob-

served product characteristics ξj , but by those of the other products on the market, these ωj are in general

dependent across j when (θ, s, P ) 6= (θ0, s0, P 0). However, when (7) is evaluated at (θ, s, P ) = (θ0, s0, P 0),

we are able to recover the original ωj , j = 1, . . . , J , and they are assumed independent across j.

6



2.3 GMM Estimation with Micro Moments

Let us define the J ×M1 demand side instrument matrix Zd = (zd
1, . . . , z

d
J)′ whose components zd

j can be

written as zd
j (x11, . . . , x1J) ∈ <M1 , where zd

j (·) : <K1×J → <M1 for j = 1, . . . , J . It should be noted that

the demand side instruments zd
j for product j are assumed to be a function of the exogenous characteristics

not only of its own, but of the other products in the market. This is because the instruments by definition

must correlate with the product characteristics x2j , and these endogenous variables x2j (e.g. price) are

determined by both its own and its competitors’ product characteristics.

Similar to the demand side, we define the J×M2 supply side instrumental variables Zc = (zc
1, . . . , z

c
J )′ as

a function of the exogenous cost shifters (w11, . . . ,w1J ) of all the products. Here, zc
j(w11, . . . ,w1J ) ∈ <M2

and zc
j(·) : <L1×J → <M2 for j = 1, . . . , J .

Assume for moment, that we know the underlying taste distribution of P 0 and that we are able to observe

the true market share s0. Considering stochastic nature of the product characteristics X1 and ξ, we set

forth the demand side restriction as

Ex1,ξ

[
zd

j ξj(θd, s
0, P 0)

]
= 0(9)

at θd = θ0
d where the expectation is taken with respect not only to ξ, but also to X1. Supply side restriction

we use is

Ew1,ω

[
zc

jωj(θ, s0, P 0)
]

= 0(10)

at θ = θ0. The BLP(1995) framework uses the orthogonal conditions between the unobserved product

characteristics (ξj , ωj) and the exogenous instrumental variables (zd
j , z

c
j) as moment conditions to obtain

the GMM estimate of the parameter θ. The sample moments for the demand and supply systems are

GJ(θ, s0, P 0) =




Gd
J (θd, s

0, P 0)

Gc
J(θ, s0, P 0)


 =




∑
j zd

j ξj(θd, s
0, P 0)/J

∑
j zc

jωj(θ, s0, P 0)/J


 .(11)

For some markets, market summaries are publicly available such as average demographics of consumers

who purchased a specific type of products, even if their detailed individual-level data such as their purchasing

histories are not. In the U.S. automobile market, for instance, we can obtain the data on the median income

of consumers who purchased domestic, European, or Japanese vehicles from publications such as the Ward’s

Motor Vehicle Facts & Figures.

We now operationalize the idea given by Petrin (2002), which extends the BLP (1995) framework by

adding moment conditions constructed from the market summary data. First we define some words and

notations. Discriminating attribute is the product characteristic or the product attribute that enables con-

sumers to discriminate some products from others. When we say consumer i chooses discriminating attribute

q, this means that consumer chooses a product from a group of products whose characteristic or attribute
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have discriminating attribute q. Discriminating attribute q is assumed to be a function of observed product

characteristics X. An automobile attribute “import” is one such discriminating attribute. When we say a

consumer chooses this attribute, what we mean is that the consumer purchases an imported vehicle. Simi-

larly, “minivan” and “costing between $20,000 to $30,000” are examples of the discriminating attribute. On

the other hand, unobservable consumer’s proximity to a dealership is a function of ξ only and may not be

regarded as a discriminating attribute as defined. We consider a finite number of discriminating attributes

(q = 1, . . . , Np) and denote a set of all the products that have attribute q as Qq. We assume the market

share of products with discriminating attribute is positive (i.e., Pr[Ci ∈ Qq|X, ξ(θd, s
0, P 0)] > 0, where Ci

denotes the choice of randomly sampled consumer i).

We next consider expectation of consumer’s demographics conditional on a specific discriminating at-

tribute. Suppose that the consumer i’s demographics can be decomposed into observable and unobservable

components νi = (νobs
i , νunobs

i ). The joint densities of νi and νobs
i are respectively denoted as P 0(dνi) and

P 0(dνobs
i ). Observable demographic variables such as age, family size, or, income, is already numerical,

but for other demographics such as household with children, belonging to a certain age group, choice of

residential area, can be numerically expressed using indicators. We denote this numerically represented D

dimensional demographics as νobs
i = (νobs

i1 , . . . , νobs
iD )′. We assume that the joint density of demographics

νobs
i is of bounded support. The consumer i’s d-th observed demographic νobs

id , d = 1, . . . , D is averaged over

all consumers choosing discriminating attribute q in the population to obtain the conditional expectation

η0
dq = E[νobs

id |Ci ∈ Qq, X, ξ(θ0
d, s

0, P 0)]. An example of this conditional expectation would be the expected

value of income of consumers in the population P 0 who purchased imported vehicles. We assume η0
dq has a

finite mean and variance for all J , i.e., Ex,ξ[η0
dq] < ∞ and Vx,ξ[η0

dq] < ∞ for d = 1, . . . , D, q = 1, . . . , Np.

Let Pr[dνobs
id |Ci ∈ Qq,X, ξ(θd, s

0, P 0)] be the conditional density of consumer i’s demographics νobs
id

given his/her choise of discriminating attribute q and product characteristics (X, ξ(θd, s
0, P 0)). Since the

conditional expectation η0
dq can be written as

E[νobs
id |Ci ∈ Qq,X, ξ(θd, s

0, P 0)](12)

=
∫

νobs
id Pr[dνobs

id |Ci ∈ Qq, X, ξ(θd, s
0, P 0)]

=
∫

νobs
id Pr[Ci ∈ Qq|X, ξ(θd, s

0, P 0), νobs
id ]P 0(dνobs

id )
Pr[Ci ∈ Qq|X, ξ(θd, s0, P 0)]

=
∫

νobs
id Pr[Ci ∈ Qq|X, ξ(θd, s

0, P 0), νi]P 0(dνi)
Pr[Ci ∈ Qq|X, ξ(θd, s0, P 0)]

=
∫

νobs
id

∑
j∈Qq

σij(X, ξ(θd, s
0, P 0),νi; θd)∑

j∈Qq
σj(X, ξ(θd, s0, P 0),θd, P 0)

P 0(dνi),

we can form an identity, which is the basis for additional moment conditions

η0
dq −

∫
νobs

id

∑
j∈Qq

σij(X, ξ(θ0
d, s

0, P 0),νi; θ0
d)∑

j∈Qq
σj(X, ξ(θ0

d, s
0, P 0), θ0

d, P
0)

P 0(dνi) ≡ 0(13)

8



for q = 1, . . . , Np, d = 1, . . . , D.

Although P 0 is so far assumed known, we typically are not able to calculate the second term on the

left-hand side of (13) analytically and will have to approximate it by using the empirical distribution PT

of i.i.d. sample νt, t = 1, . . . , T from the underlying distribution P 0. The corresponding sample moments

Ga
J,T (θd, s

0, P 0,η0) (a on the shoulder stands for additional) are

Ga
J,T (θd, s

0, P 0, η0) = η0 − 1
T

T∑
t=1

νobs
t ⊗ψt(ξ(θd, s

0, P 0), θd, P
0)(14)

where

η0 = (η0
11, . . . , η0

1Np
, . . . , η0

D1, . . . , η0
DNp

)′, ψt(ξ,θd, P ) =




∑
j∈Q1

σtj(X,‰,�t;„d)∑
j∈Q1

σj(X,‰,„d,P )

...∑
j∈QNp

σtj(X,‰,�t;„d)

∑
j∈QNp

σj(X,‰,„d,P )




.(15)

The symbol⊗ denotes the Kronecker product. The quantity ψt(ξ, θd, P ) is the consumer t’s model-calculated

purchasing probability of products with discriminating attribute q relative to the model-calculated market

share of the same products. Note that these additional moments are again conditional on product charac-

teristics (X, ξ(θd, s
0, P 0)), and thus depend on the indices J and T .

We use the set of the three moments, two from (11) and from (14) as

GJ,T (θ, s0, P 0, η0) =




Gd
J (θd, s

0, P 0)

Gc
J(θ, s0, P 0)

Ga
J,T (θd, s

0, P 0,η0)




(16)

to estimate θ in theory. As pointed out in BLP (2004), we have two issues when evaluating ||GJ,T (θ, s0, P 0, η0)||.
First, we assume P 0 is known so far, we typically are not able to calculate σ(X, ξ,θd, P

0) analytically and

have to approximate it by a simulator, say σ(X, ξ, θd, P
R), where PR is the empirical measure of i.i.d. sample

ν1, . . . , νR from the underlying distribution P 0, and the sample is independent of the sample νt, t = 1, . . . , T

in (14) for evaluating the additional moments. Simulated market shares are then given by

σj(X, ξ, θd, P
R) =

∫
σij(X, ξ,νi; θd)dPR(νi) ≡ 1

R

R∑
r=1

σrj(X, ξ,νr;θd).(17)

Second, we are not necessarily able to observe the true market shares s0. Instead, the vector of given

observed market shares, sn, are typically constructed from n i.i.d. draws from the population of consumers,

and hence is not equal to the population value s0 in general. The observed market share of product j is

sn
j =

1
n

n∑

i=1

1(Ci = j),(18)

9



where the indicator variable 1(Ci = j) takes one if Ci = j and zero otherwise. Since Ci denotes the choice

of randomly sampled consumer i, they are i.i.d. across i.

We substitute ξ(θd, s
n, PR) given as a solution of sn − σ(X, ξ,θd, P

R) = 0 for (11) to obtain

Gd
J(θd, s

n, PR) = J−1
J∑

j=1

zd
j ξj(θd, s

n, PR).(19)

Furthermore, substituting ω(θ, sn, PR) = (ω1(θ, sn, PR), . . . , ωJ(θ, sn, PR))′ obtained from evaluating (7)

at ξ = ξ(θd, s
n, PR) and P = PR for (11) gives

Gc
J(θ, sn, PR) = J−1

J∑

j=1

zc
jωj(θ, sn, PR).(20)

In addition, we have another issue when evaluating the additional moments in (14). In general, we do not

know the conditional expectation of demographics η0
dq, instead, we have its estimate ηN

dq from independent

sources, which is typically estimated from the sample of N consumers. The sample counterparts we can

calculate for the additional moments are thus

Ga
J,T (θd, s

n, PR, ηN ) = ηN − 1
T

T∑
t=1

νobs
t ⊗ψt(ξ(θd, s

n, PR), θd, P
R)(21)

for θd ∈ Θd. As a result, the actual sample-based objective function we minimize in the GMM estimation is

the sum of norm of Gd
J(θd, s

n, PR), Gc
J(θ, sn, PR), and Ga

J,T (θd, s
n, PR,ηN ), that is, the norm of

GJ,T (θ, sn, PR, ηN ) =




Gd
J(θd, s

n, PR)

Gc
J(θ, sn, PR)

Ga
J,T (θd, s

n, PR, ηN )




.(22)

Notice that the first two moments Gd
J and Gc

J in (22) are sample moments averaged over products j =

1, . . . , J , while the third moment Ga
J,T is averaged over consumers t = 1, . . . , T . Note also that in the

expression GJ,T (θ, sn, PR,ηN ), there exist five distinct randomness: one from the draws of the product

characteristics (x1j , ξj ,w1j , ωj), two from the sampling processes not controlled by the econometrician of

consumers for sn and ηN , two from the empirical distributions PR and PT employed by the econometrician.

The impact of these randomness on the estimate of θ are decided by the relative size of the sample—J , n,

N , R and T . Now we are going to operationalize the sampling and the simulation errors in the following.

2.4 The sampling and simulation errors

The sampling error, εn, is defined as the difference between the observed market shares sn and the true

market share s0. Specifically, its component εn
j for the product j is

εn
j ≡ sn

j − s0
j =

1
n

n∑

i=1

{
1(Ci = j)− s0

j

}
=

1
n

n∑

i=1

εji(23)
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for j = 1, . . . , J , where εji ≡ 1(Ci = j)− s0
j , i = 1, . . . , n are the differences of the sampled consumer’s choice

from the population market share (s0
j ) of the same choice and are assumed independent across i.

Note that from (2), for any θd ∈ Θd, the unique solutions ξ for sn − σ(X, ξ, θd, P
R) = 0 and s0 −

σ(X, ξ, θd, P
0) = 0 are written as ξ(θd, s

n, PR) and ξ(θd, s
0, P 0) respectively. So, substituting these ξs back

into σ(X, ξ, θd, P
R) and σ(X, ξ, θd, P

0) retrieves sn and s0 respectively, or sn = σ(X, ξ(θd, s
n, PR), θd, P

R)

and s0 = σ(X, ξ(θd, s
0, P 0), θd, P

0) for any θd ∈ Θd. Similarly, if we evaluate (2) with the observed

(true) market share sn (s0) and the underlying (empirical) population P 0 (PR) of consumers, the resulting

ξ(θd, s
n, P 0) (ξ(θd, s

0, PR)) satisfies sn = σ(X, ξ(θd, s
n, P 0), θd, P

0) (s0 = σ(X, ξ(θd, s
0, PR),θd, P

R))

for all θd ∈ Θd. These facts are used to define the simulation errors below.

The simulation process generates the simulation error εR(θd), which is for any θd the difference between

the simulated market shares in (17) from the PR and those from the P 0. The simulation error εR
j for product

j with sample of R consumers is defined as follows.

εR
j (θd) ≡ σj(X, ξ(θd, s

0, P 0),θd, P
R)− σj(X, ξ(θd, s

0, P 0),θd, P
0)(24)

=
1
R

R∑
r=1

ε∗jr(X, ξ(θd, s
0, P 0),θd)

for j = 1, . . . , J , where ε∗jr(X, ξ, θd) = σrj(X, ξ, νr; θd) − σj(X, ξ,θd, P
0), r = 1, . . . , R are independent

across r conditional on (X, ξ) by the simulating process.

We also assume N independent consumer draws with their purchasing histories are used to construct

the additional information ηN = (ηN
11, . . . , η

N
1Np

, . . . , ηN
D1, . . . , η

N
DNp

)′ and define the sampling error εN in the

additional information ηN itself as follows.

εN ≡ ηN − η0 =
1
N

N∑

i′=1

ε#
i′ .(25)

In short, we assume here that ηN is the average of N conditionally independent random variables given the

set of product characteristics (X, ξ) of all products.

Since we use the sample of T draws of consumer to evaluate the additional moments, this also induces

the sampling error in Ga
J,T (θd, s

n, PR, ηN ) in (21). Note that quantities n and N are are normally beyond

the control of the econometrician. On the other hand quantities R and T are are both chosen by the

econometrician.

2.5 Metrics, Neighborhoods, and Notations

The metrics, neighborhoods, notations are kept as identical as possible to those in BLP (2004). We work

with the product space Θ × SJ × P. The parameter space Θ is a compact subset of <K and we use the

Euclidean metric on Θ, ρE(θ,θ∗) = ||θ− θ∗||. The space for the market share vector s is J + 1 dimensional

unit simplex SJ , SJ = {(s0, . . . , sJ )′| 0 < sj < 1 for j = 0, . . . , J, and
∑J

j=0 sj = 1}. Since the market
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share sj tends to shrink as the number J of the products on the market increases, we need to make sure the

speed at which the sj converges to the true share s0
j be faster than the speed at which s0

j converges to zero.

Hence, we use the metric ρs0(s, s∗) = max0≤j≤J |(sj − s∗j )/s0
j | on SJ .

The P is the set of probability measures of consumer’s tastes. The L∞ metric ρP (P, P ∗) = supB∈B |P (B)−
P ∗(B)| is adopted on P, where B is the class of all Borel sets on <v, where v is the dimension of νi in the

purchasing probability. This metric measures the distance between the empirical distribution PR and the

underlying distribution P 0 of νi.

Since the dimension of the unobserved product characteristics ξ increases as the number J of products

increases, element by element convergence of ξ to ξ∗ does not necessarily guarantee that ||ξ − ξ∗|| = op(1).

What we need is the convergence of the unobserved product characteristics ξ as a vector to another vector

ξ∗, not an element by element convergence. Hence we use the averaged Euclidean metric ρξ(ξ, ξ∗) =

J−1||ξ − ξ∗||2 = J−1
∑J

j=1(ξj − ξ∗j )2, which allows for the possibility that a finite number of elements in ξ

do not converge to the corresponding elements in ξ∗.

With these metrics, we define the δ neighborhoods for θ0, s0, and P 0 respectively as Nθ0(δ) = {θ :

ρE(θ, θ0) ≤ δ}, Ns0(δ) = {s : ρs(s, s0) ≤ δ}, and NP 0(δ) = {P : ρP (P, P 0) ≤ δ}. Also for each θ, the δ

neighborhood of ξ(θd, s
0, P 0) is defined by Nξ0(θd; δ) = {ξ : ρξ(ξ, ξ(θd, s

0, P 0)) ≤ δ}.
The notation we use for the Euclidean norm of any m × n matrix A is ||A|| = {tr(A′A)}1/2. We use

the Op(·) and op(·) notation of Mann and Wald (1944) to denote the stochastic order of magnitude. When

applied to vectors and matrices, they measure element by element magnitude. If x is a k× 1 vector, diag[x]

denotes a k × k diagonal matrix with the element of x along its principle diagonal.

3 Asymptotic Properties of the GMM estimator

In the this section, we derive the asymptotic theorems for the GMM estimator θ̂ which minimizes the norm

of GJ,T (θ, sn, PR,ηN ) in (22). With some additional assumptions, we extend theorems in BLP (2004) to

show that the suggested estimator has CAN properties. The proofs are in Appendix.

3.1 Consistency

The consistency argument is established by showing that

(1-i) the estimator θ̃ defined as any sequence that satisfies ||GJ,T (θ̃, s0, P 0, η0)|| = infθ∈Θ ||GJ,T (θ, s0, P 0, η0)||+
op(1) is consistent for θ0, and

(1-ii) supθ∈Θ ||GJ,T (θ, sn, PR,ηN )−GJ,T (θ, s0, P 0, η0)|| = op(1).

A consequence of (1-ii) is that ||GJ,T (θ, sn, PR,ηN )|| and ||GJ,T (θ, s0, P 0, η0)|| have the same asymptotic

distribution uniformly in θ, and thus the estimator θ̂ which minimizes the former is very close to the θ̃ that

minimizes the latter. Therefore θ̂ is consistent for θ0 from (1-i).
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In what follows, we explain the roles of assumptions play to obtain the consistency as we present them.

Assumptions A1–A9 govern the limiting behavior of the random components both in the demand, supply

and additional moments. They include assumptions A1–A6 in BLP (2004) on the demand side.

Assumptions A1 are on various errors. In Assumption A1(a), we assume the observed market shares

sn
j for product j are multinomial random variables averaged over the n sampled consumers (i = 1, . . . , n).

Assumption A1(b) guarantees that the simulation error ε∗jr in (24) relative to the number R of the simulation

draws is of the same order as the sampling error εji relative to the number n of the sample. With assump-

tion A1(c), ηN
dq is unbiased conditional on (X, ξ) and N1/2 consistent for the true η0

dq. These assumptions

are used to control the magnitudes of the respective errors. Note that A1(a) and (c) are assumptions on

the consumer behaviors because sn and s0 are the results of actual consumers’ choices, and the consumers

are assumed to be able to observe the true unobserved product characteristics, ξ(θ0
d, s

0, P 0). As a result,

for A1(a) and (c) we can condition on X and on ξ(θ0
d, s

0, P 0), but not on a general ξ when evaluating the

moments of the difference sn − s0. On the other hand, A1(b) is an assumption on consumer behaviors from

the econometrician’s point of view because σ(X, ξ, θd, P
R) and σ(X, ξ,θd, P

0), both of which are model-

calculated shares, are the devices the econometrician uses and s/he is not able to observe the unobserved

product characteristics, true or otherwise. As a result, we need to condition on general unobserved ξ along

with on the X. Formally,

Assumption A1 (a) Given the set of product characteristics (X, ξ(θ0
d, s

0, P 0)), the difference sn − s0

between the observed market share sn and the “conditionally” true market share s0 has conditional mean

Eε|x,ξ[sn−s0|X, ξ(θ0
d, s

0, P 0)] = 0 with the conditional variance-covariance matrix V 2 = Eε|x,ξ[(sn−s0)(sn−
s0)′|X, ξ(θ0

d, s
0, P 0)] = (diag[s0]− s0s0′)/n.

(b) For each θd, given the set of product characteristics (X, ξ), the difference σ(X, ξ, θd, P
R)−σ(X, ξ,θd, P

0)

has conditional mean Eε∗|x,ξ[σ(X, ξ,θd, P
R) − σ(X, ξ, θd, P

0)|X, ξ] = 0 with the conditional variance-

covariance matrix V 3 = Eε∗|x,ξ[{σ(X, ξ, θd, P
R)−σ(X, ξ,θd, P

0)}·{σ(X, ξ,θd, P
R)−σ(X, ξ, θd, P

0)}′|X, ξ]

whose order of magnitude relative to R is the same as that of V 2 relative to n or, R ·O(V 3) = n ·O(V 2).

(c) For all observed consumer’s demographics d = 1, . . . , D and for all discriminating attributes q =

1, . . . , Np, the sampling error ηN
dq − η0

dq has conditional mean Eε#|x,ξ[ηN
dq − η0

dq|X, ξ(θ0
d, s

0, P 0)] = 0 with

the conditional variance V 4 = Vε#|x,ξ[ηN
dq − η0

dq|X, ξ(θ0
d, s

0, P 0)] whose order of magnitude is 1/N .

Assumption A2 is a smoothness or regularity condition for the share function. In A2(a), we first assume the

model-calculated market share σj(X, ξ, θd, P ) for product j does not abruptly change as the unobserved

product quality ξk for product k changes. We further assume the H = ∂σ/∂ξ′ is invertible, and this

means one can measure the change in unobserved product quality ∂ξj for product j(j = 1, . . . , J) associated

with the change in the model-calculated market share ∂σk for product k(k = 1, . . . , J). Assumption A2(b)

stipulates how the model-calculated market share σj(X, ξ,θd, P ) for product j is affected by the changes in

unobserved product quality for product k. It is positively affected by the improvement of its own unobserved
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quality, but adversely influenced by those of the other products. Assumptions A2(a) and (b) are sufficient

for the existence of a unique solution ξ to (2) for every (θd, s, P ) (See appendix in Berry (1994) for detail).

It looks as if we need a similar setup for the supply side unobserved cost shifter ωj relative to the model-

calculated market share σk. This is not so, however, because as clearly seen in (7), the ωj(θ, s, P ) can be

obtained as a function of ξ(θd, s, P ) with the observed (pj ,wj) and the given parameters (θd, θc) once we

decide to choose on which (s, P ) it is evaluated. This enables the characteristics of ξ(θd, s, P ) to transmit

to ωj(θ, s, P ) if there exists a profit margin mgj(ξ(θd, s, P ), θd, P ) in (8) that is at least locally smooth

with respect to ξ(θd, s, P ) along with smoothness in g(·). Assumption A2(c) guarantees the existence of

∆−1, which in turn guarantees the existence of mgj(ξ(θd, s, P ), θd, P ) in (8). We place local smoothness of

mgj(ξ(θd, s, P ),θd, P ) relative to ξ(θd, s, P ) in the form to appear in assumption A7. As for smoothness of

g(·), we reiterate that the single argument function g(·) is monotonic and continuously differentiable with

finite derivative for all realizable values of cost. We choose not to include this in the assumptions simply

because this does not rise to the same level as the other assumptions are. Therefore,

Assumption A2 (a) For every finite J , for all θd ∈ Θd, and for all P in a neighborhood of P 0, ∂σj(X, ξ, θd, P )/∂ξk

exists, and is continuously differentiable both in ξ and θd. The matrix H(ξ, θd, P ) = ∂σ(X, ξ, θd, P )/∂ξ′

is invertible for all J .

(b) For every (X, ξ, θd, P ), ∂σj(X, ξ,θd, P )/∂ξj > 0 for j = 1, . . . , J , and ∂σj(X, ξ, θd, P )/∂ξk < 0 for

k, j = 1, . . . , J, k 6= j.

(c) For every finite J , for all θd ∈ Θd, and for all P in a neighborhood of P 0, ∂σj(X, ξ, θd, P )/∂pk exists for

j, k = 1, . . . , J , and the matrix ∆ whose (j, k) element is defined in (4) is invertible for all J and continuously

differentiable both in ξ and θd.

In cases we consider here, the number J of the products in the market increases. This means that

each component of the “conditionally” true market share s0 and also of the theoretical market share

σ(X, ξ, θd, P
0) generally approaches to zero as J grows large. Assumptions A3(a),(b) guarantee that sn

and σ(X, ξ,θd, P
R) respectively converge to s0 and σ(X, ξ,θd, P

0) faster than the speed at which each

component of s0 and of σ(X, ξ, θd, P
0) converges to zero.

Assumption A3 The observed market shares sn are consistent with respect to s0, i.e., for any δ > 0,

(a) ρs0(sn, s0) = max0≤j≤J

∣∣(sn
j − s0

j )/s0
j

∣∣ = op(1).

Similarly, the simulated market shares σ(X, ξ,θd, P
R) are consistent with respect to σ(X, ξ, θd, P

0) uni-

formly over ξ and θd ∈ Θd, i.e., for any ξ and θd ∈ Θd,

(b) ρσ(X, ξ, θd, P
0)(σ(X, ξ, θd, P

R), σ(X, ξ, θd, P
0)) = max0≤j≤J

∣∣∣σj(X ,ξ,θd,P R)−σj(X ,ξ,θd,P 0)

σj(X ,ξ,θd,P 0)

∣∣∣ = op(1).

Assumption A4 is on instrumental variables. Throughout the paper, we treat the product characteristics

x1j as exogenous and so do the demand side instruments zd
j . We impose in A4(a) stochastic boundedness

and uniformly integrability on zd
j . In assumption A4(b), the same restrictions are imposed on the supply

side instruments zc
j .
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Assumption A4 (a) The demand side instrumental variables are such that the matrix Z ′
dZd/J is stochasti-

cally bounded, i.e., for all ε > 0 there exists an Mε such that Pr[||Z ′
dZd/J || > Mε] < ε. Moreover, we suppose

||Z ′
dZd/J || is uniformly integrable in J , i.e., limα→∞ supJ

∫ ||Z ′
dZd/J ||{||Z ′

dZd/J || > α}dPx1(X1) = 0

where Px1(·) is the joint distribution of X1.

(b) The supply side instrumental variables are such that the matrix Z ′
cZc/J is stochastically bounded and

uniformly integrable in J .

Assumption A5 is a condition that bounds ||GJ(θ, s0, P 0)|| away from ||GJ(θ0, s0, P 0)|| (which converges

to zero in probability) over θ outside of a neighborhood of θ0.

Assumption A5 For all δ > 0, there exists C(δ) such that

lim
J→∞

Pr
[

inf
θ 6∈Nθ0 (δ)

||GJ(θ, s0, P 0)−GJ(θ0, s0, P 0)|| ≥ C(δ)
]

= 1.

For all θd, the value of ξ = ξ(θd, s
0, P 0) that satisfies the equation σ(X, ξ, θd, P

0) = s0 is assumed

unique. Since the sum of the market shares including that of the outside good s0
0, is unity, this ξ(θd, s

0, P 0)

also satisfies σ(X, ξ, θd, P
0)/σ0(X, ξ,θd, P

0) = s0/s0
0. Define a function τ J(·) : <J → <J such that

τ J(s) = (log(s1/s0), . . . , log(sJ/s0)). Then, the relation is equivalent to saying that τ J(σ(X, ξ, θd, P
0)) =

τ J(s0) = τ J (σ(X, ξ(θd, s
0, P 0),θd, P

0)) at ξ = ξ(θd, s
0, P 0) for all θd. Assumption A6 guarantees that any

ξ outside the δ neighborhood of the ξ(θd, s
0, P 0) cannot make τ J(σ(X, ξ,θd, P

0)) close to τ J(s0) within

the range of C(δ) in terms of the averaged Euclidean distance with probability tending to one. The choice

of this metric is necessary because we need to allow for the fact that the dimension of the model-calculated

market share σ increases as the number J of products increases. The particular form of τ J makes this

assumption easier to verify for logit-like demand models.

Assumption A6 For all δ > 0, there exists C(δ) such that

lim
J→∞

Pr

[
inf

θd ∈ Θd

inf
ξ 6∈ Nξ0(θd; δ)

J−
1
2 ||τ J(σ(X, ξ,θd, P

0))− τ J (σ(X, ξ(θd, s
0, P 0), θd, P

0))|| > C(δ)

]
= 1.

The following assumption A7 is one that we additionally impose on the profit margin for the vector of

products, because we incorporate the supply side as well. In assumption A7, we assume the profit margins

J−
1
2 mg(ξ(θd, s, P ), θd, P ) have stochastically equicontinuity-like characteristics in (ξ, P ) at (ξ(θd, s

0, P 0), P 0)

for any θd ∈ Θd. As seen in the consistency proof of BLP (2004), Pr[ξ(θd, s
n, PR) 6∈ Nξ0(θd, δ)] → 0 and

Pr[PR 6∈ NP 0(δ)] → 0 for δ > 0 as J grows large. With these convergence in probability results along

with assumption A7, we are able to show the averaged Euclidean distance between mg(ξ(θd, s
0, P 0),θd, P

0)

and mg(ξ(θd, s
n, PR), θd, P

R) is close uniformly in θd ∈ Θd. We should note that assumption A7 is not

stochastic equicontinuity as normally defined because the dimension of ξ(θd, s
0, P 0) grows large as J grows,

though ξ(θd, s
n, PR) converges to ξ(θd, s

0, P 0) in probability in averaged Euclidean metric.5

5One more comment on the behavior of the dimension increasing ‰(„d, s0, P 0). It should be noted that when evaluated at

the true parameter value „0
d as J increases, say, from 100 to 500, the first 100 elements of ‰(„0

d, s0, P 0) at J = 500 must be
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Assumption A7 For all δ > 0 and for any θd ∈ Θd,

lim
J→∞

Pr

[
sup

(ξ, P ) ∈ Nξ0(θd; δ)×NP 0(δ)
J−

1
2 ||mg(ξ, θd, P )−mg(ξ(θd, s

0, P 0), θd, P
0)|| > δ

]
= 0.

In assumption A8, we assume an asymptotic property the discriminating attributes q, q = 1, . . . , Np must

obey. We guarantee non-zero aggregate market share for the products with discriminating attribute q when

the number of products J grows large. With this assumption, the additional moment defined in (14) has

finite variance at θd = θ0
d.

Assumption A8 For all discriminating attributes q = 1, . . . , Np, {
∑

j∈Qq
σj(X, ξ(θ0

d, s
0, P 0), θ0

d, P
0)}−2

has a finite mean and variance for every J .

Assumption A9 is on ψt(ξ, θd, P ), the model-calculated purchasing probabilities of consumer t of prod-

ucts with discriminating attribute q relative to the model-calculated market share of the same products

t relative to the population P . We assume that the average absolute distance between ψt(ξ,θd, P ) and

ψt(ξ(θd, s
0, P 0),θd, P

0) converges to zero in probability within the δ neighborhood of ξ(θd, s
0, P 0) for

any θd ∈ Θd. This assumption will be used to bring the sample analogue of the additional moments,

Ga
J,T (θd, s

n, PR,ηN ) close enough to Ga
J,T (θd, s

0, P 0, ηN ) for any θd.

Assumption A9 For any θd ∈ Θd, and for all δ > 0,

lim
J,T→∞

Pr
[

sup
(ξ, P ) ∈ Nξ0(θd; δ)×NP 0(δ)

T−1/2||Ψ(ξ, θd, P )−Ψ(ξ(θd, s
0, P 0),θd, P

0)|| > δ

]
= 0,

where Ψ(ξ, θd, P ) = (ψ1(ξ, θd, P ), . . . , ψT (ξ, θd, P ))′.

Now we are ready to state the consistency of the Petrin estimator with the additional moments:

Theorem 1 (Consistency of θ̂) Suppose that A1–A9 hold for some n(J, T ), R(J, T ), and N , all of which

grow infinitely as J and T grow infinitely. Then, θ̂
p→ θ0.

3.2 Asymptotic Normality

To establish asymptotic normality, we first approximate GJ,T (θ, sn, PR, ηN ) in (22) by GJ,T (θ) = (GJ (θ)′, Ga
J,T (θd)′)′

within δ neighborhood of θ0, where GJ,T (θ) is GJ,T (θ, s0, P 0, η0) plus the terms associated with sampling

and simulation errors. Then, we show that

(2-i) sup||θ−θ0||≤δJ,T

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
J

1
2 [GJ(θ)−GJ (θ, sn, PR)]

T
1
2 [Ga

J,T (θd)−Ga
J,T (θd, s

n, PR, ηN )]

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
p→ 0 when δJ,T → 0, and

(2-ii) an estimator that minimizes ||GJ,T (θ)|| over θ ∈ Θ; (1) is asymptotically normal at the rate J
1
2

assuming T goes to infinity faster than J , and (2) has a variance-covariance matrix which is the sum of

equal to the all 100 elements of ‰(„0
d, s0, P 0) at J = 100. This fact does not hold in general when evaluated at „d 6= „0

d. For

instance there is no guarantee that the first 100 elements of ‰(„d, s0, P 0) at J = 500 are equal to ‰(„d, s0, P 0) at J = 100.
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three mutually uncorrelated terms (one resulting from randomness in the draws on exogenous variables

(x1j , ξj ,w1j , ωj), one from sampling errors εn
j , and one from simulation error εR

j (θd)).

Given consistency, a consequence of (2-i) is that the estimator obtained from minimizing ||GJ,T (θ)||, has the

same limiting distribution as our estimator that minimizes ||GJ,T (θ, sn, PR,ηN )||.
As in BLP (2004), we first decompose the unobserved quality ξ(θd, s

n, PR) into three random terms—the

unobserved quality ξ(θd, s
0, P 0), the term generated from the sampling error εn, and the term generated

from the simulation error εR(θd). This allows us to express the demand side moment Gd
J(θd, s

n, PR) in (19)

as the sum of the three conditionally independent terms as

Gd
J(θd, s

n, PR)(26)

= J−1Z ′
dξ(θd, s

n, PR)

= J−1Z ′
d

[
ξ(θd, s

0, P 0) +
{
ξ(θd, s

n, PR)− ξ(θd, s
0, PR)

}
+

{
ξ(θd, s

0, PR)− ξ(θd, s
0, P 0)

} ]

= Gd
J(θd, s

0, P 0) + J−1Z ′
d

{
H−1(ξ̄,θd, P

R)εn −H−1(ξ,θd, P
R)εR(θd)

}

where ξ̄ ≡ (ξ̄1, . . . , ξ̄J) is a set of J × 1 vectors of the values between ξ(θd, s
n, PR) and ξ(θd, s

0, PR), and

so is ξ ≡ (ξ
1
, . . . , ξ

J
) between ξ(θd, s

0, PR) and ξ(θd, s
0, P 0) with the notation

H(ξ̄, θd, P ) =




∂σ1
∂ξ1

∣∣∣
ξ̄1

· · · ∂σ1
∂ξJ

∣∣∣
ξ̄1

...
. . .

...

∂σJ

∂ξ1

∣∣∣
ξ̄J

· · · ∂σJ

∂ξJ

∣∣∣
ξ̄J




and H(ξ, θd, P ) =




∂σ1
∂ξ1

∣∣∣
ξ
1

· · · ∂σ1
∂ξJ

∣∣∣
ξ
1

...
. . .

...

∂σJ

∂ξ1

∣∣∣
ξ

J

· · · ∂σJ

∂ξJ

∣∣∣
ξ

J




.

Using the similar decomposition of the cost side unobservable ω(θ, sn, PR), the cost side moment Gc
J(θ, sn, PR)

in (20) can be expressed as

Gc
J(θ, sn, PR)(27)

= J−1Z ′
cω(θ, sn, PR)

= J−1Z ′
c

[
ω(θ, s0, P 0) + {ω(θ, sn, PR)− ω(θ, s0, PR)}+ {ω(θ, s0, PR)− ω(θ, s0, P 0)}

]

= Gc
J(θ, s0, P 0)

+J−1Z ′
c

{
g(p−mg(ξ(θd, s

0, P 0),θd, P
R))− g(p−mg(ξ(θd, s

0, P 0), θd, P
0))

}

−J−1Z ′
cL(¯̄ξ, θd, P

R)M(¯̄ξ, θd, P
R)H−1(ξ̄,θd, P

R)εn

+J−1Z ′
cL(ξ, θd, P

R)M(ξ, θd, P
R)H−1(ξ,θd, P

R)εR(θd)

where ¯̄ξ is between ξ(θd, s
n, PR) and ξ(θd, s

0, PR), and so is ξ between ξ(θd, s
0, PR) and ξ(θd, s

0, P 0)

with the notation L(ξ,θd, P ) = diag[ġ(p1 − mg1(ξ,θd, P )), . . . , ġ(pJ − mgJ(ξ,θd, P ))] and M(ξ, θd, P ) =

∂mg(ξ, θd, P )/∂ξ′. Actually, J × J matrices L(¯̄ξ,θd, P
R) and M(¯̄ξ, θd, P

R) contain ¯̄ξ1, . . . ,
¯̄ξJ in its 1st to

the Jth rows, all of which can be distinct, but we here suppress this fact for notational simplicity.
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As for the additional moments, we rewrite (21) in the following form:

Ga
J,T (θd, s

n, PR,ηN )(28)

= Ga
J,T (θd, s

0, P 0, η0)− 1
T

T∑
t=1

νobs
t ⊗

{
ψt(ξ(θd, s

0, P 0),θd, P
R)−ψt(ξ(θd, s

0, P 0), θd, P
0)

+Υt(ξ†,θd, P
R)H−1(ξ̄, θd, P

R)εn −Υt(ξ‡, θd, P
R)H−1(ξ, θd, P

R)εR(θd)
}

+ εN

where ξ† ≡ (ξ†1, . . . , ξ
†
J ) is a set of intermediate vectors between ξ(θd, s

n, PR) and ξ(θd, s
0, PR), and so are

ξ‡ ≡ (ξ‡1, . . . , ξ
‡
J ) between ξ(θd, s

0, PR) and ξ(θd, s
0, P 0) with the notation Υt(ξ, θd, P ) ≡ ∂ψt(ξ,θd, P )/∂ξ′.

We approximate Gd
J(θd, s

n, PR), Gc
J(θ, sn, PR), and Ga

J,T (θd, s
n, PR, ηN ) within the neighborhood of

θ0 respectively by the following functions.




Gd
J (θd)

Gc
J(θ)

Ga
J,T (θd)




=




Gd
J (θd, s

0, P 0) + J−1Z ′
dH

−1
0

{
εn − εR(θ0

d)
}

Gc
J (θ, s0, P 0)− J−1Z ′

cL0M0H
−1
0

{
εn − εR(θ0

d)
}

Ga
J,T (θd, s

0, P 0, η0)− 1
T

∑T
t=1ν

obs
t ⊗Υ0

t H
−1
0 {εn − εR(θ0

d)}+ εN




.(29)

where H0 = H(ξ(θ0
d, s

0, P 0), θ0
d, P

0), L0 = L(ξ(θ0
d, s

0, P 0), θ0
d, P

0), M0 = M(ξ(θ0
d, s

0, P 0), θ0
d, P

0) and

Υ0
t ≡ Υt(ξ(θ0

d, s
0, P 0), θ0

d, P
0). Let GJ (θ) ≡ (Gd

J(θd)′,Gc
J(θ)′)′ and GJ,T (θ) ≡ (GJ(θ)′,Ga

J,T (θd)′)′. The

first terms on the right hand side of (29) are the sample moments evaluated at (s, P, η) = (s0, P 0, η0) as in

(16) and thus contains neither the sampling nor simulation errors, while the remaining terms are approxima-

tions to the differences between GJ,T (θ, sn, PR, ηN ) and GJ,T (θ, s0, P 0, η0). Each term in (29) obviously

has zero expectation at the true parameter values under assumptions A1 because of the orthogonality con-

ditions of the demand, supply and additional moments. This property will transmit to the estimator that

minimizes the norm of (29).

Note that the three components in GJ,T (θ)—those involving εn, εR(θ0
d), and εN—are not jointly inde-

pendent because they all include the product characteristics X as well as the unobserved product quality

ξ(θd, s
0, P 0), both of which are random. However they are uncorrelated if evaluated at θ = θ0 since εn,

εR(θ0
d), and εN are generated by the distinct sampling processes conditional on (X, ξ(θ0

d, s
0, P 0)) as in as-

sumption A1(a), (b) and (c). These facts together enable us to calculate the asymptotic variance-covariance

matrix of (J1/2GJ(θ0), T 1/2Ga
J,T (θd)) as the sum of the variance-covariance matrices, each derived from

these separate components in GJ,T (θ0). To make this even more clearly, let us first define

(ad
1(ξ, θd, P ), . . . , ad

J(ξ, θd, P )) ≡ Z ′
dH

−1(ξ, θd, P ),

(ac
1(ξ, θd, P ), . . . , ac

J(ξ, θd, P )) ≡ −Z ′
cL(ξ,θd, P )M(ξ, θd, P )H−1(ξ, θd, P ),

(aa
1(ξ, θd, P ), . . . , aa

J(ξ, θd, P )) ≡ −
T∑

t=1

νobs
t ⊗Υt(ξ, θd, P )H−1(ξ, θd, P ),
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and further define Y JT i(ξ,θd, P ) and Y ∗
JTr(ξ, θd, P ) using ad

j (ξ,θd, P ), ac
j(ξ, θd, P ), and aa

j (ξ,θd, P ) as

Y JT i(ξ,θd, P ) ≡




1
nJ1/2

∑J
j=1a

d
j (ξ, θd, P )εji

1
nJ1/2

∑J
j=1a

c
j(ξ,θd, P )εji

1
nT 1/2

∑J
j=1a

a
j (ξ, θd, P )εji




, Y ∗
JTr(ξ, θd, P ) ≡




1
RJ1/2

∑J
j=1a

d
j (ξ, θd, P )ε∗jr(X, ξ,θd)

1
RJ1/2

∑J
j=1a

c
j(ξ, θd, P )ε∗jr(X, ξ, θd)

1
RT 1/2

∑J
j=1a

a
j (ξ,θd, P )ε∗jr(X, ξ, θd)




.

Then, we can conveniently re-express (29) with the associated size indices J1/2 and T 1/2 as the sum of

the four terms involving the stochastic exogenous variables (x1j , ξj ,w1j , ωj), the sampling error εn
j , the

simulation error εR
j (θd)), and the sampling error ε#i′ as




J
1
2 GJ(θ)

T
1
2 Ga

J,T (θd)


 =




J
1
2 GJ (θ, s0, P 0)

T
1
2 Ga

J,T (θd, s
0, P 0,η0)


 +

n∑
i=1

Y JT i +
R∑

r=1
Y ∗

JTr +
N∑

i′=1




0

T
1
2 ε#

i′ /N


 .(30)

The four terms on the right hand side of (30) are separable only when evaluated at θ = θ0. To establish

(2-ii), therefore, we apply Theorem 3.3 in Pakes and Pollard (1989) in which each of the four terms on the

right hand side of (30) are asymptotically normal when J and T simultaneously grow large.

Assumptions B1, B2 and B3 have essentially the same roles as the conditions (v), (ii) and (iii) respectively

in Theorem 3.3 of Pakes and Pollard (1989). Assumption B1 is on the true parameter θ0. Assumption B2

is the differentiability condition (with respect to θ) for the expectation of GJ,T (θ, s0, P 0,η0). Given B2,

assumption B3 implies that GJ,T (θ, s0, P 0,η0) can be approximated by ΓJ,T (θ− θ0) + GJ,T (θ0, s0, P 0, η0)

near θ0, where ΓJ,T is the first-order derivative of E[GJ,T (θ, s0, P 0, η0)] at θ = θ0.

Assumption B1 θ0 is an interior point of Θ.

Assumption B2 For all θ in some δ > 0 neighborhood of θ0,

E[GJ,T (θ, s0, P 0, η0)] =




Ex1,ξ[Gd
J (θd, s

0, P 0)]

Ew1,ω[Gc
J(θ, s0, P 0)]

Ex,ξ,ν [Ga
J,T (θd, s

0, P 0,η0)]




= ΓJ,T (θ − θ0) + o(||θ − θ0||)

uniformly in J and T . The matrix ΓJ,T = (Γd
J

′
,Γc

J
′,Γa

J,T
′)
′ → (Γd′,Γc′,Γa′)

′
as J, T →∞, where ΓJ,T has

full column rank.

Assumption B3 For all sequences of positive numbers δJ,T such that δJ,T → 0,

(a) sup
||θd − θ0

d|| ≤ δJ,T

∣∣∣
∣∣∣J 1

2

{
Gd

J(θd, s
0, P 0)− Ex1,ξ[Gd

J(θd, s
0, P 0)]

}

−J
1
2

{
Gd

J(θ0
d, s

0, P 0)− Ex1,ξ[Gd
J(θ0

d, s
0, P 0)]

}∣∣∣
∣∣∣ = op(1)

(b) sup
||θ − θ0|| ≤ δJ,T

∣∣∣
∣∣∣J 1

2
{
Gc

J(θ, s0, P 0)− Ew1,ω[Gc
J (θ, s0, P 0)]

}

−J
1
2

{
Gc

J(θ0, s0, P 0)− Ew1,ω[Gc
J(θ0, s0, P 0)]

}∣∣∣
∣∣∣ = op(1).
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(c) sup
||θd − θ0

d|| ≤ δJ,T

∣∣∣
∣∣∣T 1

2 {Ga
J,T (θd, s

0, P 0, η0)− E[Ga
J,T (θd, s

0, P 0,η0)]}

−T
1
2 {Ga

J,T (θ0
d, s

0, P 0,η0)− E[Ga
J,T (θ0

d, s
0, P 0,η0)]}

∣∣∣
∣∣∣ = op(1).

Assumptions B4(a)–(d) determine the magnitude of the four components on the right hand side of (30),

while assumptions B4(e)–(h) are the Lyapunov conditions to establish the central limit theorem.

Assumption B4 The following finite positive definite matrices Φ1, Φ2, Φ3, and Φa
4 exist.

(a) lim
J→∞V




J
1
2 GJ(θ, s0, P 0)

T
1
2 Ga

J,T (θ, s0, P 0,η0)


 = Φ1 =




Φ1 Φ12
1

Φ12
1

′
Φa

1


 ,

(b) lim
n,J→∞

n V[Y JTi(ξ(θ0
d, s

0, P 0),θ0
d, P

0)] = Φ2 =




Φ2 Φ12
2

Φ12
2

′
Φa

2


 ,

(c) lim
R,J→∞

R Vε∗,x,ξ[Y ∗
JTr(ξ(θ0

d, s
0, P 0),θ0

d, P
0)] = Φ3 =




Φ3 Φ12
3

Φ12
3

′
Φa

3


 ,

(d) lim
J,T,N→∞

N V[T
1
2 ε#

i′ /N ] = Φa
4

The following Lyapunov conditions hold.

(e)
(J,T )∑

(j,t)=(1,1)
E




∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

zd
j ξj(θ0

d, s
0, P 0)/J

1
2

zc
jωj(θ0, s0, P 0)/J

1
2

(η0 − νobs
t ⊗ψt(ξ(θ0

d, s
0, P 0), θ0

d, P
0))/T

1
2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2+δ


= o(1),

(f) n E[||Y Ji(ξ(θ0
d, s

0, P 0), θ0
d, P

0)||2+δ] = o(1),

(g) R E[||Y ∗
Jr(ξ(θ0

d, s
0, P 0), θ0

d, P
0)||2+δ] = o(1),

(h) N E[||T 1
2 ε#

i′ /N ||2+δ] = o(1)

for some δ > 0.

Assumptions B5(a)–(h) are conditions that enable us to control the differences between

(J1/2GJ (θ, sn, PR), T 1/2Ga
J,T (θd, s

n, PR, ηN )) and (J1/2GJ(θ), T 1/2Ga
J,T (θd)) within the shrinking neigh-

borhood of (ξ(θ0
d, s

0, P 0), θ0
d, P

0). Specifically, in B5(a)-(d),(f) and (g), we assume those differences have

stochastic equicontinuity-like characteristics at (ξ, θd, P ) = (ξ(θ0
d, s

0, P 0),θ0
d, P

0). The assumptions B5(a)

and (b) are respectively on the sampling and the simulation errors in the demand side moments, while

B5(c)-(e) are those for the supply side moments and B5(f)-(h) are for the additional moments.

Assumption B5 For all sequences of positive numbers δJ,T such that δJ,T → 0 as J, T → ∞, we assume

for demand side,

(a) sup
||θd − θ0

d|| ≤ δJ,T

sup
(ξ1, P ) ∈ {Nξ0(θ0

d; δJ,T )}J ×NP 0(δJ,T )

∣∣∣
∣∣∣J− 1

2 Z ′
d

{
H−1(ξ1,θd, P )−H−1

0

}
εn

∣∣∣
∣∣∣ = op(1),
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(b) sup
||θd − θ0

d|| ≤ δJ,T

sup
(ξ1, P ) ∈ {Nξ0(θ0

d; δJ,T )}J ×NP 0(δJ,T )

∣∣∣
∣∣∣J− 1

2 Z ′
d

{
H−1(ξ1,θd, P )εR(θd)−H−1

0 εR(θ0
d)

}∣∣∣
∣∣∣ = op(1).

For supply side,

(c) sup
||θd − θ0

d|| ≤ δJ,T

sup
(ξ1, ξ2, P ) ∈ {Nξ0(θ0

d; δJ,T )}2J ×NP 0(δJ,T )

∣∣∣
∣∣∣J− 1

2 Z ′
c

×{
L(ξ1, θd, P )M(ξ1, θd, P )H−1(ξ2,θd, P )−L0M0H

−1
0

}
εn

∣∣∣
∣∣∣ = op(1),

(d) sup
||θd − θ0

d|| ≤ δJ,T

sup
(ξ1, ξ2, P ) ∈ {Nξ0(θ0

d; δJ,T )}2J ×NP 0(δJ,T )

∣∣∣
∣∣∣J− 1

2 Z ′
c

×{
L(ξ1, θd, P )M(ξ1, θd, P )H−1(ξ2,θd, P )εR(θd)−L0M0H

−1
0 εR(θ0

d)
} ∣∣∣

∣∣∣ = op(1),

(e) sup
||θd − θ0

d|| ≤ δJ,T

sup
P ∈ NP 0(δJ,T )

∣∣∣
∣∣∣J− 1

2 Z ′
c{g(p−mg(ξ(θd, s

0, P 0), θd, P )

−g(p−mg(ξ(θd, s
0, P 0),θd, P

0)}
∣∣∣
∣∣∣ = op(1).

And for the additional moments,

(f) sup
||θd − θ0

d|| < δJ,T

sup
(ξ1, ξ2, P ) ∈ {Nξ0(θ0

d; δJ,T )}2J ×NP 0(δJ,T )

∣∣∣∣
∣∣∣∣T−

1
2

T∑
t=1

[
Υt(ξ1, θd, P )H−1(ξ2,θd, P )εn

−Υt(ξ(θ0
d, s

0, P 0),θ0
d, P

0)H−1(ξ(θ0
d, s

0, P 0), θ0
d, P

0)εn
]∣∣∣∣

∣∣∣∣ = op(1),

(g) sup
||θd − θ0

d|| < δJ,T

sup
(ξ1, ξ2, P ) ∈ {Nξ0(θ0

d; δJ,T )}2J ×NP 0(δJ,T )

∣∣∣∣
∣∣∣∣T−

1
2

T∑
t=1

[
Υt(ξ1, θd, P )H−1(ξ2,θd, P )εR(θd)

−Υt(ξ(θ0
d, s

0, P 0),θ0
d, P

0)H−1(ξ(θ0
d, s

0, P 0), θ0
d, P

0)εR(θ0
d)

]∣∣∣∣
∣∣∣∣ = op(1),

(h) sup
||θd − θ0

d|| < δJ,T

T
1
2

∑

j∈Qq

εR
j (θd) = op(1).

The quantity ξ1 = (ξ11, . . . , ξ1J) and ξ2 = (ξ21, . . . , ξ2J ) are respectively a set of distinct J vectors, each

vector corresponds to each row of J × J matrices L(ξ, θd, P ), M(ξ, θd, P ) and H−1(ξ, θd, P ). The set

{Nξ0(θ0
d; δJ,T )}J indicates J sets of the δJ,T neighborhood of ξ(θ0

d, s
0, P 0).

With these conditions we are ready to state asymptotic normality for the Petrin (2002) extension.

Theorem 2 (Asymptotic Normality of θ̂) Suppose that A1–A9 and B1–B5 hold for some increasing

n(J, T ), R(J, T ) such that J/T → 0 as J →∞, T →∞ and N →∞. Then, the estimator θ̂ that minimizes

||GJ,T (θ, sn, PR, ηN )|| is asymptotically normal at the rate of J
1
2 :

J
1
2 (θ̂ − θ0) w

; N(0, V )

with V = (Γ′Γ + Γa′Γa)−1Γ′ΦΓ(Γ′Γ + Γa′Γa)−1 where Φ = Φ1 + Φ2 + Φ3.

Remark 1 When J/T → c > 0 where c is constant, the variance-covariance matrix V of Theorem 2 becomes

V = (Γ′Γ + Γa′Γa)−1(Γ′ΦΓ + 2c1/2Γ′Φ12Γa + cΓa′ΦaΓa)(Γ′Γ + Γa′Γa)−1(31)

21



where Φ12 = Φ12
1 + Φ12

2 + Φ12
3 is the off-diagonal component of the asymptotic variance covariance matrix

of the (J1/2GJ(θ0)′, T 1/2Ga
J,T (θ0

d)
′)′ and Φa = Φa

1 + Φa
2 + Φa

3 + Φa
4 is the asymptotic variance-covariance

matrix of T 1/2Ga
J,T (θ0

d).

Remark 2 If the sampling error εn and the simulation error εR are negligibly small, the off-diagonal matrix

Φ12 is also close to zero, and the asymptotic variance-covariance matrix V in (31) becomes

V ≈ (Γ′Γ + Γa′Γa)−1(Γ′ΦΓ + cΓa′ΦaΓa)(Γ′Γ + Γa′Γa)−1.

In this case, even when J, T →∞ but J/T → c > 0, we can improve the efficiency of θ̂ by using the optimal

weight matrix to the GMM objective function. With the weight matrix, we minimize ||GJ,T (θ, sn, PR, ηN )||2 =

GJ,T (θ, sn, PR, ηN )′W J,T GJ,T (θ, sn, PR, ηN ) where W J,T = diag(AJ ,Aa
J,T ) is diagonal and non-stochastic

matrix. The asymptotic variance-covariance matrix of θ̂ corresponding to this objective function is thus

Ṽ ≈ (Γ′AJΓ + Γa′Aa
J,T Γa)−1(Γ′AJΦAJΓ + cΓa′Aa

J,T ΦaAa
J,T Γa)(Γ′AJΓ + Γa′Aa

J,T Γa)−1.

Obviously, AJ = Φ−1 and Aa
J,T = (cΦa)−1 are optimal and the Ṽ becomes

Ṽ = (Γ′Φ−1Γ + c−1Γa′(Φa)−1Γa)−1.

Relative to the asymptotic variance-covariance matrix V ∗ = (Γ′ΦΓ)−1 of the GMM estimator without the

additional moments, Ṽ < V ∗. In general, however, making the simulation error negligibly small may not

be tenable given the computational burden, while ignoring the sampling error may be justified if sufficiently

accurate market share data are available.

4 An Example of the Random Coefficient Logit Model of Demand

In estimating the demand model with the simple logit specification, BLP (2004) showed that, if the market

shares of all the products stochastically go to zero at the rate of 1/J , the assumptions in the consistency

and the asymptotic normality are satisfied so long as n grows faster than J and J2 respectively. Notice that

the logit model has the closed-form solution for the equation (2) and thus do not incur the simulation error

in the model, rendering the consideration of R unnecessary.

In what follows, we consider the random coefficient logit model of demand. As discussed in BLP (1995),

this model has useful properties when product characteristics and consumers’ taste are multi-dimensionally

distributed and the nature of competition among products is complex. Unfortunately, the random coefficient

logit model has no closed-form solution for (2) and for the inverse of H(ξ, θd, P ) in assumption A2(a). Thus,

our examination has to rely on its stochastic approximation.
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Without loss of generality, we assume a random coefficient logit model with one random coefficient:

uij = δj + θu
xνx

i xj + νij with δj = θppj + θxxj + ξj(32)

where νx
i represents consumer i’s random preference on the characteristic xj relative to the price. The

parameter θu
x indicates the magnitude of this preference, and when θu

x = 0, the model reduces to the simple

logit model. Provided that νij ’s are i.i.d. extreme value, the probability σij that consumer i with preference

νx
i chooses product j is given by

σij(ξ, νx
i ;θd) =

exp(δj + θu
xνx

i xj)

1 +
∑J

k=1 exp(δk + θu
xνx

i xk)
.(33)

The market share of product j is obtained by integrating (33) in terms of νx
i over the population P 0. We

simulate it with a random sample of R individuals as

σj(ξ, θd, P
R) ≡ 1

R

R∑
r=1

σrj(ξ, νx
r ;θd) =

1
R

R∑
r=1

exp(δj + θu
xνx

r xj)

1 +
∑J

k=1 exp(δk + θu
xνx

r xk)
(34)

If we assume that δj +θu
xνx

r xj is stochastically bounded, the order of magnitudes of the individual’s choice

probability σrj(ξ, νr; θd) and its average σj(ξ, θd, P
R) are both of 1/J . In the following, we put forward a

condition on the magnitude of the individual choice probability. Although the condition makes individual’s

behavior restrictive, this treatment allows us to calculate the rates of n, R, N , and T relative to J , at which

the random coefficient logit model follows our asymptotic theorems.

Condition S(a) For all consumer r with the demographics νx
r , and for all possible value of the product

characteristics (X, ξ), there exists positive finite constants c and c such that with probability one

c

J
≤ inf

θd∈Θd

σrj(ξ, νx
r ; θd) ≤ sup

θd∈Θd

σrj(ξ, νx
r ;θd) ≤ c

J
, j = 0, 1, . . . , J.(35)

(b) The constant c̄ further satisfies the relationship c̄Jm < J for each firm m = 1, . . . , F , where Jm is the

number of products firm m produces in the markets.

With condition S(a), the individual choice probability σrj(ξ, νx
r ; θd) and its inverse are respectively

Op(1/J) and Op(J). Obviously, this condition is sufficient for s0
j to be Op(1/J) for j = 1, . . . , J because

substituting ξ = ξ(θd, s
0, P 0) and integrating both sides of the inequality over the population P 0 immediately

leads to sj = Op(1/J). We assume our two sets of consumer draws, or νx
r , r = 1, . . . , R and νx

t , t = 1, . . . , T ,

satisfy this condition. By condition S(b), we exclude the event that the aggregate market share for any of

firms dominates in the market, i.e.
∑

j∈Jm
s0

j ≤
∑

j∈Jm
c̄/J = c̄Jm/J < 1 at any given J . This guarantees

that the inverse of the aggregate market share for the other firms’ products and the outside good, is finite

and thus its order of magnitude is one, i.e., 1/(1−∑
j∈Jm

s0
j ) = Op(1).

As stated above, the random coefficient logit model has no closed-form solution to the inverse of H.
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However, under condition S, we can approximate it by

H−1(ξ,θd, P
R) = Σ−1(ξ,θd, P

R) +
1

σ0(ξ,θd, PR)
(1 + Op(1/J)) ii′,(36)

where Σ(ξ, θd, P ) = diag(σ1(ξ, θd, P ), . . . , σJ(ξ,θd, P )). In the appendix of BLP (2004, pp.651-652), an

approximation essentially same as this was used to show that, even when we use the random coefficient

logit model, the limiting behavior of the residual term on the sampling error in the demand side moment

(26) is fundamentally similar to that for the logit model. As a result, the random coefficient logit model

requires the same rate J2 for n relative to J as the logit model to guarantee the GMM estimator to follow

asymptotically normal. As for the number R of simulation draws, they presumed that symmetric arguments

hold. Furthermore, we can show that the argument above apply to our supply side specification too.

Now we will examine a case where we have at our disposal additional moment conditions on demographically-

categorized purchasing information. We suppose that we are now interested in estimating the parameter θu
x

in (32) more accurately by using the information on consumers who choose specific sets of discriminating

attributes in products. Denote the set of products having this attribute by Q. Hereinafter, assume that

we have a consistent estimate ηN , which was constructed from N independent consumer draws (not by

researcher) from the population P 0, separate from the n independent draws (again not by researcher) from

P 0 for calculating the observed market share, with the expectation η0 of νx
i conditional on the individual

choosing a product in Q. Given ηN , we will draw T individuals, independent of R simulation draws of

individuals, from the population P 0 to construct an additional moment,

Ga
J,T (θd, s

n, PR, ηN ) = ηN − 1
T

T∑
t=1

νx
t ψt(ξ(θd, s

n, PR), θd, P
R)(37)

where ψt(ξ, θd, P ) =
∑

j∈Q σtj(ξ, νx
t , θd)/

∑
j∈Q σj(ξ,θd, P ).

The limiting behavior of the market shares, both observed and model-calculated, are assumed in A3.

Assumptions A3(a) and (b) control the way in which sn and σ(ξ,θd, P
R) approach to the true market share

s0 and σ(ξ, θd, P
0) respectively. To guarantee assumption A3 to hold, we require conditions on the growth

rates of n and R relative to J as well as on the limiting behavior of the true market share s0. BLP (2004)

showed that Pr[ρs0(sn, s0) > δ] = J Ex,ξ[exp(−δ2Op(n/J))] for any δ > 0 under assumption A1(a) and the

condition s0
j = Op(1/J). This means that required rate of convergence of n is J1+ε/n → 0 for any ε > 0.

Similarly, required rate of convergence of R for A3(b) is J1+ε/R → 0.

To guarantee assumption A5, it is sufficient that the first order derivative matrix of GJ(θ, s0, P 0) in

terms of θ ∈ Θ is of full column rank, since then for all δ > 0, there exist C such that

inf
θ 6∈Nθ0 (δ)

||GJ(θ, s0, P 0)−GJ (θ0, s0, P 0)|| = inf
θ 6∈Nθ0 (δ)

∣∣∣∣
∣∣∣∣
∂GJ(θ∗, s0, P 0)

∂θ′
(θ − θ0)

∣∣∣∣
∣∣∣∣

≥ inf
θ 6∈Nθ0 (δ)

C||θ − θ0|| = Cδ
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in probability tending to one as J →∞. In the following, we examine what it means to have ∂GJ(θ, s0, P 0)/∂θ′

being of full-column rank. We should note that the demand side moment contains only the vector of demand

parameters, θd, while that for cost side contains both of demand and cost side parameter vectors, θd and

θc. This means that the matrix ∂GJ(θ, s0, P 0)/∂θ′ takes the following form

∂GJ(θ, s0, P 0)
∂θ′

=




∂Gd
J(θd, s

0, P 0)/∂θ′d 0

∂Gc
J(θ, s0, P 0)/∂θ′d ∂Gc

J(θ, s0, P 0)/∂θ′c


 .

This matrix is full-column rank if the components ∂Gd
J(θd, s

0, P 0)/∂θ′d and ∂Gc
J(θ, s0, P 0)/∂θ′c are re-

spectively of full-column rank, regardless of the value of ∂Gc
J(θ, s0, P 0)/∂θ′d. Moreover, we know that

∂Gc
J(θ, s0, P 0)/∂θ′c = −J−1Z ′

cW by the definition of the cost side moment in section 2.3 and the assumed

linear dependence of ω on W in (7). By properly choosing the cost side instruments Zc and cost shifter W ,

we can construct ∂Gc
J (θ, s0, P 0)/∂θ′c to be of full-column rank for all J . Therefore we only need to check

∂Gd
J(θd, s

0, P 0)/∂θ′d:

∂Gd
J(θd, s

0, P 0)
∂θ′d

= J−1Z ′
d

∂ξ(θd, s
0, P 0)

∂θ′d
= −J−1Z ′

dH
−1(ξ(θd, s

0, P 0), θd, P
0)

∂σ(ξ(θd, s
0, P 0),θd, P

0)
∂θ′d

where ∂σ(·)/∂ξ′ ·∂ξ/∂θ′d+∂σ(·)/∂θ′d = 0 from the implicit function theorem. Unfortunately, the full-column

rankness of this matrix under the random coefficient logit specification cannot be checked analytically because

of the existence of the inverse of H. Thus we have to rely on numerical computations on a case-by-case

basis. Assumption A6 requires similar argument. Assumption A7, on the other hand, can be verified using

(36) and condition S(b) after tedious calculations.

For assumption A8, we assume the number of products in Q increases as fast as the number of products

in the market, which guarantees both of
∑

j∈Q σj and 1/
∑

j∈Q σj to be Op(1) under condition S(a).

Since the quantity within the probability statement in assumption A9 is bounded from above as

T−1/2||Ψ(ξ(θd, s
n, PR), θd, P

R)−Ψ(ξ(θd, s
0, P 0),θd, P

0)||(38)

≤ T−1/2||Ψ(ξ(θd, s
n, PR),θd, P

R)−Ψ(ξ(θd, s
0, P 0), θd, P

R)||

+T−1/2||Ψ(ξ(θd, s
0, P 0), θd, P

R)−Ψ(ξ(θd, s
0, P 0), θd, P

0)||

where Ψ = (ψ1, . . . , ψT )′ is a T × 1 matrix, we separately evaluate the two terms on the right hand side of

(38). The square of the first term is bounded by

T−1||Ψ(ξ(θd, s
n, PR), θd, P

R)−Ψ(ξ(θd, s
0, P 0), θd, P

R)||2

= T−1

∣∣∣∣
∣∣∣∣
∂Ψ(ξ∗, θd, P

R)
∂ξ′

(ξ(θd, s
n, PR)− ξ(θd, s

0, P 0))
∣∣∣∣
∣∣∣∣
2

≤
(

J

T

) ∣∣∣∣
∣∣∣∣
∂Ψ(ξ∗, θd, P

R)
∂ξ′

∣∣∣∣
∣∣∣∣
2

· J−1||ξ(θd, s
n, PR)− ξ(θd, s

0, P 0)||2
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where ξ∗ is between ξ(θd, s
n, PR) and ξ(θd, s

0, P 0). Since we know that J−1||ξ(θd, s
n, PR)−ξ(θd, s

0, P 0)||2 =

op(1) under assumptions A3 and A6, it remains to show that ||∂Ψ(ξ∗,θd, P
R)/∂ξ′||2 = Op(T/J) to guarantee

this whole term to be op(1). We obtain the jth element of Υt as

{Υt(ξ,θd, P )}j =
∂ψt(ξ,θd, P )

∂ξj
(39)

=
σtj(1{j ∈ Q} − ∑

k∈Q
σtk)

∑
k∈Q

σk
−

∑
k∈Q

σtk

∑
k∈Q

σk
·
1{j ∈ Q} ∫

σrjdP − ∑
k∈Q

∫
σrjσrkdP

∑
k∈Q

σk

where σrj = σrj(ξ, νx
r ,θd), σtj = σtj(ξ, νx

t , θd) and σj = σj(ξ, θd, P ). Under condition S(a), both of σrj and

σj are Op(1/J), and
∑

j∈Q σj and 1/
∑

j∈Q σj are both Op(1). Thus, we have ∂ψt(ξ, θd, P )/∂ξj = Op(1/J),

and so ||∂Ψ(ξ∗, θd, P )/∂ξ′||2 =
∑J

j=1

∑T
t=1(∂ψt(ξ∗,θd, P )/∂ξj)2 = J · T ·Op(1/J)2 = Op(T/J).

The square of the second term on the right hand side of (38) is

T−1||Ψ(ξ(θd, s
0, P 0), θd, P

R)−Ψ(ξ(θd, s
0, P 0),θd, P

0)||2

= T−1 T∑
t=1
{ψt(ξ(θd, s

0, P 0), θd, P
R)− ψt(ξ(θd, s

0, P 0),θd, P
0)}2

= T−1 T∑
t=1





∑
j∈Q

σtj(ξ(θd, s
0, P 0), νx

t , θd)
∑

j∈Q
σj(ξ(θd, s0, P 0), θd, PR)

−
∑

j∈Q
σtj(ξ(θd, s

0, P 0), νx
t , θd)

∑
j∈Q

σj(ξ(θd, s0, P 0), θd, P 0)





2

=





∑
j∈Q
{σj(ξ(θd, s

0, P 0),θd, P
R)− σj(ξ(θd, s

0, P 0), θd, P
0)}

∑
j∈Q

σj(ξ(θd, s0, P 0), θd, PR) · ∑
j∈Q

σj(ξ(θd, s0, P 0), θd, P 0)





2

T−1 T∑
t=1

{
∑

j∈Q
σtj(ξ(θd, s

0, P 0), νx
t ,θd)

}2

=





∑
j∈Q

Op(1/R1/2J1/2)
∑

j∈Q
Op(1/J) · ∑

j∈Q
Op(1/J)





2

T−1 T∑
t=1

{
∑

j∈Q
Op(1/J)

}2

= Op(J/R)

under assumption A1(b) and condition S(a). Therefore, R is required to grow faster than J .

We next move to assumptions in Theorem 2. We start with assumption B4 because B1 through B3 can

be easily verified. In assumption B4(b), we need to keep the variance of
∑n

i=1 Y 0
JTi in terms of the sampling

error bounded. To accomplish this for the random coefficient logit model of demand, BLP (2004) showed that

n and R are necessary to grow at the rate of J2. We focus on those on the additional moments. Let us denote

the component of Y 0
JTi ≡ Y JTi(ξ(θ0

d, s
0, P 0), θ0

d, P
0) that corresponds to the additional moments as Y a0

JTi =
∑J

j=1 aa0
j εji/nT 1/2, and abbreviate σ0

tj = σtj(ξ(θ0
d, s

0, P 0), νx
t , θ0

d) and σ0
j = σj(ξ(θ0

d, s
0, P 0), θ0

d, P
0), then

aa0
j ≡ aa

j (ξ(θ0
d, s

0, P 0),θ0
d, P

0) = {−∑T
t=1 νx

t Υ0
t H

−1
0 }j(40)

= −
∑T

t=1 νx
t σ0

tj(1{j ∈ Q} −
∑

l∈Q σ0
tl)∑

l∈Q s0
l

· 1
s0

j

−
∑T

t=1 νx
t σ0

t0

∑
l∈Q σ0

tl∑
l∈Q s0

l

· 1
s0
0

(1 + Op(1/J))

= α(1 + βj + Op(1/J))

where

α = −
∑T

t=1 νx
t σ0

t0

∑
l∈Q σ0

tl∑
l∈Q s0

l

· 1
s0
0

, βj = −
∑T

t=1 νx
t σ0

tj(1{j ∈ Q} −
∑

l∈Q σ0
tl)∑T

t=1 νx
t σ0

t0

∑
l∈Q σ0

tl

· s0
0

s0
j

.

26



The α and β are respectively Op(T ) and Op(1) under condition S(a). Using this aa0
j we have further,

∑J
j=1(a

a0
j )2s0

j − (
∑J

j=1 aa0
j s0

j )
2

=
∑J

j=1 α2(1 + βj + Op(1/J))2s0
j − {

∑J
j=1 α(1 + βj + Op(1/J))s0

j}2

= α2
[
s0
0(1− s0

0)(1 + Op(1/J))2 + 2(
∑J

j=1 βjs
0
j )s

0
0(1 + Op(1/J)) +

∑J
j=1 β2

j s0
j − (

∑J
j=1 βjs

0
j )

2
]

≤ α2
[
s0
0(1− s0

0)(1 + Op(1/J))2 + 2 maxj |βj | · (
∑J

j=1 s0
j )s

0
0(1 + Op(1/J)) + maxj |βj |2 ·

∑J
j=1 s0

j

]

= α2(1− s0)
[
s0
0(1 + Op(1/J))2 + 2 maxj |βj |s0

0(1 + Op(1/J)) + maxj |βj |2
]

= Op(T )2(1−Op(1/J))
[
Op(1/J)(1 + Op(1/J))2 + 2Op(1)Op(1/J)(1 + Op(1/J)) + Op(1)2

]

= Op(T 2).

where we substitute α = Op(T ) and βj = Op(1). Therefore the variance of
∑n

i=1 Y a0
JTi is

Vε,ν,x,ξ[
∑n

i=1 Y a0
JTi] =

∑n
i=1 Eε,ν,x,ξ[(1/n2T )(

∑J
j=1 aa0

j εji)2]

= (1/nT ) Eν,x,ξ

[∑J
j=1(a

a0
j )2 Eε|x,ξ[ε2ji|X, ξ(θ0

d, s
0, P 0)]

+
∑

j 6=k aa0
j aa0

k Eε|x,ξ[εjiεki|X, ξ(θ0
d, s

0, P 0)]
]

= (1/nT ) Eν,x,ξ

[∑J
j=1(a

a0
j )2s0

j (1− s0
j )−

∑
j 6=k aa0

j aa0
k s0

js
0
k

]

= (1/nT ) Eν,x,ξ

[∑J
j=1(a

a0
j )2s0

j − (
∑J

j=1 aa0
j s0

j )
2
]

= (1/nT ) Eν,x,ξ[Op(T 2)]

= Eν,x,ξ[Op(T/n)].

To keep this variance bounded, n is needed to grow at the same rate as T . Similar calculation holds for

assumption B4(c) and derives that R is required to grow at the same rate as T .

In assumption B4(d), we need to bound the variance of the residual term in the additional moment

T 1/2Ga
J,T (θ0

d) that corresponds to the sampling error in the additional information. The variance is

N Vε#,x,ξ[T
1/2N−1ε#i′ ] = Ex,ξ[Vε#|x,ξ[T

1/2(ηN − η0)|X, ξ(θ0
d, s

0, P 0)]] = Ex,ξ[Op(T/N)].

Thus we require the sample size T of consumer draws in constructing the additional moment in (37) to grow

slower than the sample size N used for constructing the additional information ηN for B4(d) to hold.

Assumption B4(f) gives the Lyapunov condition the residual term
∑n

i=1 Y a0
JTi in the additional moment

must follow. Since aa0
j in (40) is Op(T ) under condition S(a), we obtain

n Eε,ν,x,ξ[|Y a0
JTi|2+δ] = 1

n1+δT (2+δ)/2 Eε,ν,x,ξ[|
∑J

j=1 aa0
j εji|2+δ]

≤ 1
n1+δT (2+δ)/2 Eν,x,ξ[22+δ maxj |aa0

j |2+δ]

= Eν,x,ξ[Op(n−(1+δ)T (2+δ)/2)].
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Substituting n = O(T k) and solving (2 + δ)/2− k(1 + δ) < 0 gives k > 1 for any δ > 0, which means that T

needs to grow slower than n. By similar argument for assumption B4(g) and B4(h), R is required to grow

faster than T , while T needs to grow slower than N .

For assumption B5, we focus on those on the additional moments, B5(f) to B5(h). To have assump-

tion B5(f), it is sufficient to show that both of the norm of T 1/2
∑T

t=1 Υt(ξ, θd, P
R)H−1(ξ, θd, P

R)εn and

T 1/2
∑T

t=1 Υt0H
−1
0 εn are respectively op(1). We abbreviate σR

j = σj(ξ, θd, P
R) and σT

j = σj(ξ, θd, P
T ) and

approximate the jth element of T−1
∑T

t=1 Υt(ξ,θd, P
R)H−1(ξ,θd, P

R) by using H−1 in (36) and ∂ψt/∂ξj

in (39) as follows.

{
T−1

T∑
t=1

Υt(ξ, θd, P
R)H−1(ξ,θd, P

R)

}

j

(41)

= T−1
T∑

t=1

J∑

l=1

∂ψt(ξ, θd, P
R)

∂ξl
H−1

lj (ξ, θd, P
R)

=

[
T−1

∑T
t=1(

∑
l∈Q σtl)σt0∑

l∈Q σR
l

− (
∑

l∈Q σT
l )R−1

∑R
r=1(

∑
l∈Q σrl)σr0

(
∑

l∈Q σR
l )2

]
· 1
σR

0

(1 + Op(1/J))

+

[
σT

j · 1{j ∈ Q} − T−1
∑T

t=1(
∑

l∈Q σtl)σtj∑
l∈Q σR

l

− (
∑

l∈Q σT
l ){σR

j · 1{j ∈ Q} −R−1
∑R

r=1(
∑

l∈Q σrl)σrj}
(
∑

l∈Q σR
l )2

]
· 1
σR

j

.

Therefore, we use this equality to obtain

∣∣∣∣∣

∣∣∣∣∣T
−1

T∑
t=1

Υt(ξ, θd, P
R)H−1(ξ, θd, P

R)εn

∣∣∣∣∣

∣∣∣∣∣

=

∣∣∣∣∣∣

J∑

j=1

{
T−1

T∑
t=1

Υt(ξ,θd, P
R)H−1(ξ,θd, P

R)

}

j

εn
j

∣∣∣∣∣∣

=

∣∣∣∣∣

{
T−1

∑T
t=1(

∑
l∈Q σtl)σt0∑

l∈Q σR
l

− (
∑

l∈Q σT
l )R−1

∑R
r=1(

∑
l∈Q σrl)σr0

(
∑

l∈Q σR
l )2

}∑J
j=1(s

n
j − s0

j )

σR
0

(1 + Op(1/J))

+
J∑

j=1

{
σT

j · 1{j ∈ Q} − T−1
∑T

t=1(
∑

l∈Q σtl)σtj∑
l∈Q σR

l

− (
∑

l∈Q σT
l ){σR

j · 1{j ∈ Q} −R−1
∑R

r=1(
∑

l∈Q σrl)σrj}
(
∑

l∈Q σR
l )2

}
· sn

j − s0
j

σR
j

∣∣∣∣∣

=

∣∣∣∣∣

{
T−1

∑T
t=1 Op(1) ·Op(1/J)

Op(1)
− Op(1)R−1

∑R
r=1 Op(1) ·Op(1/J)
Op(1)2

}∑J
j=1 Op(1/

√
nJ)

Op(1/J)
(1 + Op(1/J))

+
J∑

j=1

{
Op(1/J)Op(1)− T−1

∑T
t=1 Op(1) ·Op(1/J)

Op(1)

−Op(1){Op(1/J)Op(1)−R−1
∑R

r=1 Op(1) ·Op(1/J)}
Op(1)2

}
· Op(1/

√
nJ)

Op(1/J)

∣∣∣∣∣

= Op

(√
J/n

)
.

Similarly, we obtain ||T−1
∑T

t=1 Υ0
t H

−1
0 εn|| = Op(

√
J/n) using (36) and (39) evaluated at (ξ, θd, P ) =
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(ξ(θ0
d, s

0, P 0),θ0
d, P

0). Hence,

∣∣∣∣∣

∣∣∣∣∣T
−1/2

T∑
t=1

{Υt(ξ,θd, P
R)H−1(ξ, θd, P

R)−Υ0
t H

−1
0 )}εn

∣∣∣∣∣

∣∣∣∣∣

≤ T 1/2

∣∣∣∣∣

∣∣∣∣∣T
−1

T∑
t=1

{Υt(ξ, θd, P
R)H−1(ξ, θd, P

R)εn

∣∣∣∣∣

∣∣∣∣∣ + T 1/2

∣∣∣∣∣

∣∣∣∣∣T
−1

T∑
t=1

Υ0
t H

−1
0 )}εn

∣∣∣∣∣

∣∣∣∣∣

= T 1/2Op

(√
J/n

)
+ T 1/2Op

(√
J/n

)

= Op

(√
TJ/n

)
.

Therefore, random drawing of T individuals has to be done so that TJ grows slower than n. As for

assumption B5(g), through a quite similar calculation as the calculation for assumption B5(f), we can show

that the number R of simulation draws needs to grow faster than TJ .

We can easily see that assumption B5(h) requires R to grow faster than TJ as follows.

√
T

∑

j∈Q
εR
j (θd) =

√
T

∑

j∈Q
(σj(ξ(θd, s

0, P 0),θd, P
R)− s0

j ) =
√

T
∑

j∈Q
Op

(
1/

√
JR

)
= Op

(√
TJ/R

)
.

In summary, for the random coefficient logit model, the estimator with the additional moment has consistency

in Theorem 1 so long as n and R grow faster than J . The asymptotic normality in Theorem 2, on the other

hand, requires that n and R to grow faster than J2 and TJ , and N to grow faster than T . If we assume T

grows at the rate of J1+ε1 for ε1 > 0, a slightly faster than J , Theorem 2 requires n and R to grow faster

than J2+ε1 and N to grow faster than J1+ε1 . Table 1 lists the required growth rates of n, R, and N in the

original BLP (1995) framework relative to the Petrin (2002) extension with the additional moments in terms

of J . The table shows that Petrin (2002) extension requires slightly faster growth rates of n and R for the

asymptotic normality to hold than those of the original BLP (1995) framework.

5 Monte Carlo Experiments

In this section, we evaluate Theorems 1 and 2 in section 3 through a series of Monte Carlo simulations

for a version of random coefficient logit model of demand in the presence of oligopolistic suppliers when

additional demographically categorized purchasing pattern data are available. We start with the system of

Table 1: Growth rate of n, R, and N relative to J necessary when T grows at J1+ε1 . Let ε, ε1, ε2 > 0.

Logit Model Random Coefficient Logit Model
BLP (1995) BLP (1995) Petrin (2002)

Consistency Normality Consistency Normality Consistency Normality
n J1+ε J2+ε J1+ε J2+ε J1+ε J2+ε1+ε2

R – – J1+ε J2+ε J1+ε J2+ε1+ε2

T – – – – any rate J1+ε1

N – – – – any rate J1+ε1+ε2
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demand and supply of BLP (1995) in tables 2 and 3. In table 2 we consider cases where only the simulation

errors are involved, and in table 3 we additionally assume that the sampling errors are present in the market

share. We then proceed to the Petrin (2002) extension to the BLP (1995) framework with the additional

moment condition in tables 4, 5, and 6. In table 4 we consider cases where no sampling errors exist in the

additional information itself, and in table 5 we move to cases where the additional information itself contains

another set of sampling errors. Table 6 serves dual purposes, in that it numerically verifies the aymptotic

varinaces presented in Theorem 2 in the presence of all five errors. It also shows the potential benefit of

the Petrin (2002) extension relative to the framework of BLP (1995) in the most realistics case. Since the

simulation errors are under the control of the econometrician but reducing the simulation errors greatly

increases computational burden, the econometrician is inclined to accept some degree of the simulation

errors. Therefore we only consider cases where the simulation errors are present throughout these Monte

Carlo repetitions. On the other hand, presence of the sampling errors in the observed share does not pose

computational burden, and we consider them only in tables 3 and 6.

Throughout in this section, utility of consumer i for product j is

uij = −αpj + βxjν
x
i + ξj + νij(42)

where the unobserved quality ξj and the exogenous product characteristics xj are respectively random draws

from N(0, 1) and N(1, 1). These and other random draws employed in this section are all independent. The

price of product pj is, on the other hand, endogenously determined in the market. The νx
i is the consumer’s

random taste for xj and distributed N(0, 1). The νij ’s are i.i.d. extreme value draws. We set the demand

side parameters as α = 1.0 and β = 1.0. The market share σj is calculated by

σj =
∫

exp(−αpj + βxjν
x
i + ξj)

1 +
∑J

l=1 exp(−αpl + βxlνx
i + ξl)

P (dνx
i ).(43)

The true market share s0
j is obtained by evaluating (43) with the underlying distribution P 0 of νx

i . We draw

10,000 consumers from N(0, 1). They constitute the population.

For the supply side, we assume there exist five oligopolistic suppliers in the market, each producing the

same number J/5 of products. These suppliers are assumed to have the same cost function

cj = xjγ + ωj(44)

where the unobserved cost shifter ωj is a random draw from N(0, 1). For the cost side parameter, we set

γ = 1.5. The true market share s0
j and the price pj are determined at the equilibrium, and thus the values

of pj are obtained by solving f(p) = c − p − ∆−1σ = 0, that is, J dimensional nonlinear simultaneous

equations, which is solved by an iterative Newton-Raphson algorithm.

We first estimate a version of the system of demand and supply of the BLP (1995) framework given in

(43) and (44). We construct the three instruments from xj—xj itself, the company average of xj , and the
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average of xj over the other companies. Table 2 shows the results for the mean of the estimated parameter

values α, β, γ and the associated simulated standard errors for 100 Monte Carlo repetitions when the

observed market shares have no sampling errors, i.e, the market shares are calculated from the population

of 10,000 consumers. Each column corresponds to the number J = 10, 25, 50, 100 of products, while each

row corresponds to the number R = 10, 50, 100, 10J, J2 of consumer draws. In parentheses are the simulated

standard errors—the standard errors of the estimated parameters across the repetitions.

In the table, we observe the simulated standard errors of parameters decrease as J increases. For J

fixed, increasing R also contributes the reduction of the standard errors. Throughout, the standard error

for β is much larger than those for α and for γ for the same pair of (R, J). The β is harder to estimate

because the consumer’s taste for the product characteristics xj is randomly altered by the νx
i and as such

the information regarding the corresponding coefficient β is much harder to extract from the orthogonality

condition between the unobserved quality ξj and the product characteristics xj . In particular, when the

number R of simulation draws is small at 10, the estimated β is found upwardly biased.

Table 3 shows the results when the observed market share sn
j additionally contains the sampling error

while the number of the simulation draws of consumers is set at R = 100 . We construct the observed market

share sn
j from a multinomial sample of size n with the category probabilities (s0

0, . . . , s
0
J). When n is not

large enough, some products are not purchased. Then we remove these products in estimating parameters.

We observe that, the larger the n is, the smaller the simulated standard error is for any fixed J .

We next estimate the system of demand and supply given in (43) and (44) by the Petrin (2002) extension.

We suppose that the information is available on (a) the expected value of νx
i over consumers who choose

products priced higher than the average price; and (b) the expected value of νx
i over consumers who choose

products with xj greater than the average of xj . So the additional moments are

η0
1 = E[νx

i |Ci ∈ Q{pj ≥ p̄}, x, ξ], η0
2 = E[νx

i |Ci ∈ Q{xj ≥ x̄}, x, ξ](45)

where Q{pj ≥ p̄} and Q{xj ≥ x̄} represent respectively the set of products priced higher than the average

p̄, and the set of products whose characteristic x is larger than the average x̄.

Table 4 is the results for cases where we know the expected values in (45) exactly and no sampling

errors exist in the additional information. We draw T consumers from the population separately from the

n and R consumers and then calculate the conditional average of νx
i by using their purchasing probabilities

to calculate the additional moments. Here, we use the true market share s0
j as the observed market share

(n = 10, 000) and fix R = 100. This way, the effect of the additional moments on the accuracy of the

estimates is more transparent.

The result indicates that information in the additional moment reduce the standard error of the random

coefficient β considerably when the number T of consumer draws is large enough. For instance, when

J = 50, T = 1, 000, the standard error of β with the additional moments decreases to 0.137 in table 4
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from 0.363, which is the value without the additional moments in table 2 (R = 100 row, J = 50 column).

Furthermore, when J = 50, if we change the size T of the sample to evaluate the additional moments from

T = 1000 to T = 2500(J2), the standard error of β declines from 0.137 to 0.125. Similarly, when J = 100,

increasing T = 1000 to T = 10000(J2) reduces the standard error of β from 0.134 to 0.087. On the other

hand, when the number T is small, the standard error of β can increase rather than decrease. For example,

the standard error of β at T = 50 and J = 50 increases to 0.392 in table 4 from 0.363 in table 2. These

results show that the number T of consumer draws to evaluate the additional moments plays an important

role in increasing the accuracy of β.

It should be noted that the additional moments have very limited influences on the standard errors of α

and no influences on the standard errors of γ for any value for T . This is because the additional information

is on the consumer’s taste νx
i and contains little information on α and no information on γ.6

We then consider cases where the additional information itself contains another set of the sampling errors.

Drawing N consumers from the population independent of the aforementioned T , n, and R consumers, we

use the following estimators of ηN instead of η0,

ηN
1 =

N∑

i′=1

νx
i′ · 1{Ci′ ∈ Q{pj ≥ p̄}}

Np
, ηN

2 =
N∑

i′=1

νx
i′ · 1{Ci′ ∈ Q{xj ≥ x̄}}

Nx
.(46)

where Np =
∑N

i′=1 1{Ci′ ∈ Q{pj ≥ p̄}} and Nx =
∑N

i′=1 1{Ci′ ∈ Q{xj ≥ x̄}} are respectively the number

of consumers who choose products priced higher than the average price and the number of consumers who

choose products whose characteristic x greater than the average product characteristic x̄. These estimators

are unbiased for η0 conditional on x and ξ.

Table 5 shows the result for this case. The standard errors of β decreases as the size N of consumer draws

to construct the additional information in (46). For instance, at J = 50, when we increase from N = 1000 to

N = ∞ (that is, the population of 10000), the standard error of β decreases from 0.171 to 0.137. Similarly,

when J = 100, increasing from N = 1000 to N = ∞ (10000) reduces the standard error of β from 0.169

to 0.134. These results show that the number N of consumer draws used for constructing the additional

information also plays an important role in improving the accuracy of β. Again, the additional moments

have very limited influences on the standard errors of α and no influences on the standard errors of γ in any

value for N for the reasons aforementioned.

In concluding this section, we evaluate the asymptotic normality in Theorem 2 when we allow for all

of the errors in the estimation. For J = 25, R = 2000, n = 2000, N = 2000, T = 500 fixed, we implement

1000 Monte Carlo repetitions of the estimation of α, β, and γ, and then we calculate their averages and

simulated standard errors. We also numerically calculated the asymptotic variances of the GMM estimates

of α, β, and γ in Theorem 2 in the following manner. For each simulated data, we calculate the moment

conditions and their derivatives in terms of parameters (the parameters are fixed at true values). Then,

6The first order derivatives of the additional moments in terms of α are almost zero, while that for γ is zero.
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by averaging resulting values over the simulated data, we obtain the estimate for the expected value of

ΓJ,T in assumption B2 and Φ respectively to estimate the asymptotic variance of the parameters. Similar

calculations are implemented also for the original BLP (1995) framework in which the asymptotic variance

matrix is (Γ′Γ)−1Γ′ΦΓ(Γ′Γ)−1. Table 6 shows the result. The simulated standard errors of estimates seem

Table 6: Simulated and Estimated Standard Errors, J = 25, n = 2000, R = 2000, N = 2000, T = 500.

α (1.0) β (1.0) γ (1.5)
BLP (1995) Framework Mean 0.976 0.900 1.552

Monte Carlo Std. Error 0.090 0.533 0.157
Asymptotic Std. Error 0.088 0.393 0.186

Petrin (2002) Extension Mean 0.996 1.022 1.570
Monte Carlo Std. Error 0.077 0.254 0.149
Asymptotic Std. Error 0.074 0.221 0.184

to be consistent with the asymptotic standard errors except those of β in BLP (1995) framework. It seems

that difficulty in estimating correct β is even more pronounced for the BLP (1995) framework. This table

shows the potential benefit of additional information in improving the accuracy of the random coefficient

estimate.

We make density estimates for the estimated parameters from the 1000 estimates used in table 6. (To

make these plots, we use the density-plot command in the S-plus package with default options.) The solid

Figure 1: Kernel Density Estimate of Parameters, BLP (1995) Framework, J=25, n=2000, R=2000.
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lines in Figures 1 and 2 show the densities of the estimated parameters, while the dotted lines show their

asymptotic distributions using the true parameter values and the associated asymptotic variances in Table 6
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Figure 2: Kernel Density Estimate of Parameters, the Petrin (2002) Extension, J=25, n=2000, R=2000,
T=500, N=2000.
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as mean and variance. From these plots, we observe that the simulated distributions of the estimates for the

demand parameters α and β seem to improve significantly by the additional moments, while we also observe

that the additional moments do not contribute at all in estimating the supply side parameter γ.

6 Conclusion and Discussion

In this paper, we generalize the GMM estimator extended by Petrin (2002) and provide the conditions under

which this estimator not only has the CAN properties, but also is more efficient than the original BLP (1995)

estimator. We sample two sets of individuals independent of each other, one to simulate the market share

of products and the other to evaluate the additional moments, in order to avoid intractable correlations

between these two sets of individuals. We also assume that the additional information on demographics

of consumers are constructed from the sample independent of these two samples. With some additional

assumptions, the suggested estimator is shown to have the CAN properties and to be more efficient than the

BLP (1995) estimator.

We do not believe that the independent-source requirement is so restrictive or unrealistic. For instance,

in analysing the U.S. automobile market we could sample individuals from the IPUMS-CPS to simulate the

market shares of products, while the additional market information can be obtained from sources independent

of the IPUMS-CPS such as J.D. Power and Associates.

In implementation, Petrin (2002) used the CEX to approximate the empirical distribution of demograph-

38



ics and he also used the CEX automobile supplement to link demographics of purchasers of new vehicles

to the vehicles they purchase. We are not certain how the CEX automobile supplement was compiled, but

the information of U.S. household purchasing patterns and demographics of purchasers of new vehicles may

have been originated from the same Interview Survey of the CEX (Chapter 16, Consumer Expenditures and

Income, The US Bureau of Labor Statistics, April, 2007). Therefore, the sample (PR) used to simulate the

market share of products and the sample used to obtain the additional market information may have been

highly correlated. If so, the simulation error εR and the sampling error εN may have been correlated and

Petrin’s treatment of his data may not have satisfied our independent-sources requirement.

If this is to be the case, there is no guarantee that the estimator is asymptotically normal although its

consistency remains valid.7 Asymptotic normality may not hold because the key part of the proof of the

asymptotic normality relies on the fact that the three error terms (εn, εR, and εN ) enter into the moment

condition GJ,T (θ) in additively separable and linear way, and if they are correlated, the sum of these terms

in general does not weakly converge to the normal distribution even when each of them does so.

A Proofs

Proof of (1-i)

We will show (1-i) by using Theorem 3.1 of Pakes and Pollard (1989) which gives a sufficient condition under which

an optimization estimator can be consistent for the true parameter value. The theorem guarantees that an estimator

„̃ that satisfies ||GJ,T („̃, s0, P 0,”0)|| = infθ∈Θ ||GJ,T („, s0, P 0,”0)||+ op(1) is consistent for „0 if

(1-i-a) GJ,T („0, s0, P 0,”0) = op(1), and

(1-i-b) supθ 6∈N
θ0 (δ) ||GJ,T („, s0, P 0,”0)||−1 = Op(1) for each δ > 0.

(1-i-a)

We show (i-a) by applying the Bernoulli’s weak law of large numbers to each row ofGJ,T („0, s0, P 0,”0) = (Gd
J(„0

d, s0, P 0)′,

Gc
J(„0, s0, P 0)′,GJ,T („0

d, s0, P 0,”0)′)′. We illustrate how this can be done using the demand side sample moments.

The m-th element of the demand side sample moments Gd
J(„0, s0, P 0) is the average of zd

jmξj(„
0
d, s0, P 0) over j

where zd
jmξj(„

0
d, s0, P 0) are not independent across j due to the interdependence of zd

jm—zd
jmξj(„

0
d, s0, P 0) are just

conditionally independent given X1. The Bernoulli’s weak law of large numbers does not require independence

nor identical distributedness among the zd
jmξj(„

0
d, s0, P 0), but requires the variance of J−1

∑J

j=1
zd

jmξj(„
0
d, s0, P 0)

to converge to zero as J goes to infinity. Since zd
jm are functions of X1 and the conditional expectation of

ξj(„
0
d, s0, P 0) given X1 is zero in (1), the expectation and variance of J−1

∑J

j=1
zd

jmξj(„
0
d, s0, P 0) are respectively 0

7Consistency remains valid because our consistency proof of the GMM estimator with the additional moments does not

require additional assumption even when the two error terms (εR and εN ) are correlated. In the proof, (1-i) is only concerned

with the behavior of GJ,T around the true value of market shares, demographics from population distribution, and additional

information without errors. To establish (1-ii), we do not require independent-source assumption either because the relevant

part supθd∈Θd
||Ga

J,T („d, sn, P R,”N )−Ga
J,T („d, s0, P 0,”0)|| can be shown op(1) only using A1(c) and A9.
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and Ex1 [J
−2

∑J

j=1
(zd

jm)2 Eξ|x1 [ξ
2
j („0

d, s0, P 0)|X1]]. Since the conditional variance of ξj is bounded in (1) by some con-

stant M > 0 or Eξ|x1 [ξ
2
j („0, s0, P 0)|X1] < M with probability one, we have J−2

∑J

j=1
(zd

jm)2 Eξ|x1 [ξ
2
j („0

d, s0, P 0)|X1] ≤
(1/J)(

∑J

j=1
(zd

jm)2/J)M . We know that
∑J

j=1
(zd

jm)2/J is Op(1) and uniformly integrable by A4(a). Uniform inte-

grability guarantees that the order of magnitude does not change after taking expectation, and this enable us to claim

Ex1 [
∑J

j=1
(zd

jm)2/J ] = O(1). Hence Vx1,ξ[J
−1

∑J

j=1
zd

jmξj(„
0
d, s0, P 0)] = Ex1 [J

−2
∑J

j=1
(zd

jm)2 Eξ|x1 [ξ
2
j („0

d, s0, P 0)|X1]]

≤ (M/J) Ex1 [
∑J

j=1
(zd

jm)2/J ] = (M/J) · O(1) → 0 as J → ∞. Bernoulli’s weak law of large numbers en-

sures that the m-th element of Gd
J(„0

d, s0, P 0) converges to 0 in probability, i.e., limJ→∞ Pr[|{Gd
J(„0

d, s0, P 0)}m| >

ε] = limJ→∞ Pr[|∑J

j=1
zd

jmξj(„
0
d, s0, P 0)/J | > ε] ≤ limJ→∞Vx1,ξ[

∑J

j=1
zd

jmξj(„
0
d, s0, P 0)/J ]/ε2 ≤ limJ→∞(M/J) ·

O(1)/ε2 = 0. Thus ||Gd
J(„0

d, s0, P 0)|| = op(1). Similarly, we can show that the supply side moments Gc
J(„0, s0, P 0)

converge to Ew1,ω[Gc
J(„0, s0, P 0)] = 0 in probability by (6) and A4(b).

We denote the element of the additional moments Ga
J,T („d, s, P,”) corresponding to consumer’s demograph-

ics d and discriminating attribute q as {Ga
J,T („d, s, P,”)}d,q. By the definition of η0

dq in (13), the expectation of

{Ga
J,T („0

d, s0, P 0,”0)}d,q is zero, while the variance can be rewritten as follows.

V[{Ga
J,T („0

d, s0, P 0,”0)}d,q]

= Ex,ξ

[
Vν|x,ξ

[
{Ga

J,T („0
d, s0, P 0,”0)}d,q

]]

=
1

T
Ex,ξ

[
Eν|x,ξ

[{
νobs

td
∑

j∈Qq

σtj(X, ‰(„0
d, s0, P 0),�t;„

0
d)

}2
]/{

∑
j∈Qq

σj(X, ‰(„0
d, s0, P 0),„0

d, P 0)

}2
]
− 1

T
Ex,ξ

[(
η0

dq

)2
]

≤ (1/T ) Ex,ξ

[
Eν|x,ξ

[(
νobs

td

)2
]/{∑

j∈Qq
σj(X, ‰(„0

d, s0, P 0),„0
d, P 0)

}2
]
− (1/T ) Ex,ξ

[(
η0

dq

)2
]

where we abbreviate the vector (X, ‰(„0
d, s0, P 0)) in the conditional expectation for notational simplicity. Assump-

tion A8 guarantees that Ex,ξ[1/{∑
j∈Qq

σj(X, ‰(„0
d, s0, P 0),„0

d, P 0)}2] = O(1). Since the support of consumer’s

demographics distribution is assumed bounded, its second moment is finite, i.e., Eν|x,ξ[(ν
obs
td )2|X, ‰(„0

d, s0, P 0)] =

Eν [(νobs
td )2] ≤ M for some constant M < ∞. Moreover, we assume Ex,ξ

[(
η0

dq

)2
]

= O(1). Therefore, the variance

of the additional moment is V[{Ga
J,T („0

d, s0, P 0,”0)}d,q] ≤ (1/T ) Ex,ξ[M/{∑
j∈Qq

σj(X, ‰(„0
d, s0, P 0),„0

d, P 0)}2] −
(1/T ) Ex,ξ[(η

0
dq)

2] ≤ O(1/T )+O(1/T ) = o(1). Thus the Bernoulli’s law of large number ensures thatGa
J,T („0

d, s0, P 0,”0) =

op(1) as T →∞ (and hence J →∞).

(1-i-b)

For every (ε, δ) > (0, 0) and any positive function of δ, C(δ), the following relationship holds in general.

{
inf

θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)−GJ,T („0, s0, P 0,”0)|| ≥ C(δ)

}
(B.1)

⊂
{

inf
θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)||+ ||GJ,T („0, s0, P 0,”0)|| ≥ C(δ)

}

⊂
{

inf
θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)|| ≥ C(δ)− ε

2

}
∪

{
||GJ,T („0, s0, P 0,”0)|| ≥ ε

2

}
.

Taking probabilities and rearranging both sides of (B.1) give

Pr

[
inf

θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)|| ≥ C(δ)− ε

2

]
(B.2)
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≥ Pr

[
inf

θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)−GJ,T („0, s0, P 0,”0)|| ≥ C(δ)

]
− Pr

[
||GJ,T („0, s0, P 0,”0)|| ≥ ε

2

]
.

For the second term on the right hand side of (B.2), since GJ,T („0, s0, P 0,”0) = op(1), for any ε > 0, there exist

J1(ε) and T1(ε) such that when J > J1 and T > T1

Pr
[
||GJ,T („0, s0, P 0,”0)|| ≥ ε/2

]
≤ ε/2.(B.3)

From assumption A5, for the ε and for any δ > 0, there exist C2(δ) and J2(ε, δ) such that when J > J2

Pr
[

inf
θ 6∈ Nθ0(δ)

||GJ(„, s0, P 0)−GJ(„0, s0, P 0)||2 < C2(δ)
]

<
ε

2
.

Thus, when J > J2, we have

Pr
[

inf
θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)−GJ,T („0, s0, P 0,”0)||2 < C2(δ)
]

= Pr
[

inf
θ 6∈ Nθ0(δ)

{||GJ(„, s0, P 0)−GJ(„0, s0, P 0)||2 + ||Ga
J,T („, s0, P 0,”0)−Ga

J,T („0, s0, P 0,”0)||2} < C2(δ)
]

≤ Pr
[

inf
θ 6∈ Nθ0(δ)

||GJ(„, s0, P 0)−GJ(„0, s0, P 0)||2 < C2(δ)
]
≤ ε/2.

Therefore, by setting C(δ) = C2(δ)
1/2, for the first term on the right hand side of (B.2), we have

Pr

[
inf

θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)−GJ,T („0, s0, P 0,”0)|| ≥ C(δ)

]
≥ 1− ε

2
.(B.4)

By substituting (B.3) and (B.4) for (B.2), for J > max(J1, J2) and T > T1,

Pr

[
inf

θ 6∈ Nθ0(δ)

||GJ,T („, s0, P 0,”0)|| ≥ C(δ)− ε/2

]
≥ 1− ε

2
− ε

2
= 1− ε.

Then we have lim supJ,T Pr
[
inf θ 6∈ Nθ0(δ) ||GJ,T („, s0, P 0,”0)|| > C∗(ε, δ)

]
≥ 1 − ε for C∗(ε, δ) = C(δ) − ε/2 and hence

(1-i-b) is shown.

Proof of (1-ii)

We will show supθ∈Θ ||GJ,T („, sn, P R,”N )−GJ(„, s0, P 0,”0)|| = op(1). From the definitions of GJ,T („, sn, P R,”N )

and GJ,T („, s0, P 0,”0), we have

sup
θ∈Θ

||GJ(„, sn, P R)−GJ(„, s0, P 0)||2

≤ sup
θd∈Θd

||J−1Z′d{‰(„d, sn, P R)− ‰(„d, s0, P 0)}||2 + sup
θ∈Θ

||J−1Z′c{!(„, sn, P R)− !(„, s0, P 0)}||2

+ sup
θd∈Θd

||Ga
J,T („d, sn, P R,”N )−Ga

J,T („d, s0, P 0,”0)||

≤ J−1||Z′dZd|| × sup
θd∈Θd

J−1||‰(„d, sn, P R)− ‰(„d, s0, P 0)||2 + J−1||Z′cZc|| × sup
θ∈Θ

J−1||!(„, sn, P R)− !(„, s0, P 0)||2

+ sup
θd∈Θd

||Ga
J,T („d, sn, P R,”N )−Ga

J,T („d, s0, P 0,”0)||
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where the terms ||Z′dZd||/J and ||Z′cZc||/J are respectively Op(1) by assumptions A4(a) and A4(b). Thus it remains

to show that

sup
θd∈Θd

J−1||‰(„d, sn, P R)− ‰(„d, s0, P 0)||2 = op(1),(B.5)

sup
θ∈Θ

J−1||!(„, sn, P R)− !(„, s0, P 0)||2 = op(1),(B.6)

sup
θd∈Θd

||Ga
J,T („d, sn, P R,”N )−Ga

J,T („d, s0, P 0,”0)|| = op(1).(B.7)

Since the demand side condition (B.5) is established in BLP (2004) by A3 and A6, we will work on (B.6) and (B.7).

Proof of (B.6)

The Glivenko-Cantelli theorem gives Pr[P R 6∈ NP0(δ)] → 0 for δ > 0 as R →∞. With (B.5) already established, we

have Pr[(‰(„d, sn, P R), P R) ∈ Nξ0(„d; δ) × NP0(δ)] → 1 for given δ > 0. Thus assumption A7 guarantees that the

differences in the profit margin behave uniformly over „d ∈ Θd as

sup
θd∈Θd

J−
1
2 ||mg(‰(„d, sn, P R),„d, P R)−mg(‰(„d, s0, P 0),„d, P 0)|| = op(1).(B.8)

Since ġ(·) is assumed finite for all realizable values of cost, we derive (B.6) by using (B.8) in the following inequality

with the definition of ωj(„, s, P ) in (7).

sup
θ∈Θ

J−1||!(„, sn, P R)− !(„, s0, P 0)||2

= sup
θd∈Θd

J−1

J∑
j=1

{
g(pj −mgj(‰(„d, sn, P R),„d, P R))− g(pj −mgj(‰(„d, s0, P 0),„d, P 0))

}2

= sup
θd∈Θd

J−1

J∑
j=1

[
ġ(pj −mgj)

{
mgj(‰(„d, sn, P R),„d, P R)−mgj(‰(„d, s0, P 0),„d, P 0)

}]2

≤ sup
θd∈Θd

sup
1≤j≤J

|ġ(pj −mgj)|2 · sup
θd∈Θd

J−1

J∑
j=1

{
mgj(‰(„d, sn, P R),„d, P R)−mgj(‰(„d, s0, P 0),„d, P 0)

}2

= sup
θd∈Θd

sup
1≤j≤J

|ġ(pj −mgj)|2 · sup
θd∈Θd

J−1||mg(‰(„d, sn, P R),„d, P R)−mg(‰(„d, s0, P 0),„d, P 0)||2

= op(1)

where mgj are between mgj(‰(„d, sn, P R),„d, P R) and mgj(‰(„d, s0, P 0),„d, P 0). We should note that the difference

between !(„, sn, P R) and !(„, s0, P 0) includes only the demand side parameters „d because of the linear dependence

of !(„, s, P ) on the supply side parameters „c as seen in (7).

Proof of (B.7)

We show (B.7) as follows.

sup
θd∈Θd

||Ga
J,T („d, sn, P R,”N )−Ga

J,T („d, s0, P 0,”0)||

= sup
θd∈Θd

||”N − T−1 ∑T

t=1
�obs

t ⊗ t(‰(„d, sn, P R),„d, P R),„d, P R)

−{”0 − T−1 ∑T

t=1
�obs

t ⊗ t(‰(„d, s0, P 0),„d, P 0),„d, P 0)}||
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≤ ||”N − ”0||+ sup
θd∈Θd

∣∣∣∣T−1 ∑T

t=1
�obs

t ⊗ { t(‰(„d, sn, P R),„d, P R)− t(‰(„d, s0, P 0),„d, P 0)}
∣∣∣∣

= ||”N − ”0||+ sup
θd∈Θd

T−1||(�obs)′{Ψ(‰(„d, sn, P R),„d, P R)−Ψ(‰(„d, s0, P 0),„d, P 0)}||

≤ ||”N − ”0||+ T−1/2||�obs|| · sup
θd∈Θd

T−1/2||Ψ(‰(„d, sn, P R),„d, P R)−Ψ(‰(„d, s0, P 0),„d, P 0)||,

= Op(N−1/2) + Op(1) · op(1) = op(1)

where Ψ(‰,„d, P ) = ( 1(‰,„d, P ), . . . , T (‰,„d, P ))′ and �obs = (�obs
1 , . . . ,�obs

T )′. In the last equality above, ||”N −
”0|| = Op(N−1/2) comes from A1(c), and T−1/2||�obs|| = Op(1) is because the observed consumer demographics �obs

t

are assumed bounded. The op(1) term follows from the next inequality with assumption A9:

Pr

[
sup
θd ∈ Θd

T−1/2||Ψ(‰(„d, sn, P R),„d, P R)−Ψ(‰(„d, s0, P 0),„d, P 0)|| > δ

]

≤ Pr

[
sup
θd ∈ Θd

sup
(ξ, P ) ∈ Nξ0(θd;δ) ×NP0(δ)

T−1/2||Ψ(‰,„d, P )−Ψ(‰(„d, s0, P 0),„d, P 0)|| > δ

]

+Pr[‰(„d, sn, P R) 6∈ Nξ0(θd;δ)] + Pr[P R 6∈ NP0(δ)]

→ 0.

Derivation of (26), (27), and (28)

Using the Taylor series approximation of ff(‰,„d, P ) up to the first order, BLP (2004) showed

‰(„d, sn, P R)− ‰(„d, s0, P R) = H−1(‰̄,„d, P R)›n,(B.9)

‰(„d, s0, P R)− ‰(„d, s0, P 0) = −H−1(‰,„d, P R)›R(„d).(B.10)

These expressions allow us to derive the demand side moments Gd
J(„d, sn, P R) in (26). The cost side derivation is

performed using the demand side unobservables. Since g(·) is assumed to be continuously differentiable, the j-th

element of !(„, sn, P R)− !(„, s0, P R) can be written by the mean value theorem as

ωj(„, s
n, P R)− ωj(„, s

0, P R) = g(pj −mgj(‰(„d, sn, P R),„d, P R))− g(pj −mgj(‰(„d, s0, P R),„d, P R))

= −ġ(pj −mgj(
¯̄‰,„d, P R))

∂mgj(
¯̄‰,„d, P R)

∂‰′
{‰(„d, sn, P R)− ‰(„d, s0, P R)}.

Substituting (B.9) for the above equations obtains the vector form expression

!(„, sn, P R)− !(„, s0, P R) = −L(¯̄‰,„d, P R)M(¯̄‰,„d, P R)H−1(‰̄,„d, P R)›n.(B.11)

Similarly, we rewrite !(„, s0, P R)− !(„, s0, P 0) using (B.10) as follows.

!(„, s0, P R)− !(„, s0, P 0) = g(p−mg(‰(„d, s0, P R),„d, P R))− g(p−mg(‰(„d, s0, P 0),„d, P 0))(B.12)

= g(p−mg(‰(„d, s0, P 0),„d, P R))− g(p−mg(‰(„d, s0, P 0),„d, P 0))

+L(‰,„d, P R)M(‰,„d, P R)H−1(‰,„d, P R)›R(„d).

These calculations in (B.11) and (B.12) lead us to the cost side moments Gc
J(„, sn, P R) in (27).
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The additional moments Ga
J,T („d, sn, P R,”N ) is rewritten as follows.

Ga
J,T („d, sn, P R,”N )(B.13)

= Ga
J,T („d, s0, P 0,”0) + {Ga

J,T („d, sn, P R,”N )−Ga
J,T („d, s0, P R,”N )}

+{Ga
J,T („d, s0, P R,”N )−Ga

J,T („d, s0, P 0,”N )}+ {Ga
J,T („d, s0, P 0,”N )−Ga

J,T („d, s0, P 0,”0)}.

Using (B.9) we express the second term on the right hand side of (B.13) as follows.

Ga
J,T („d, sn, P R,”N )−Ga

J,T („d, s0, P R,”N )(B.14)

= ”N − 1

T

T∑
t=1

�obs
t ⊗ t(‰(„d, sn, P R),„d, P R)−

{
”N − 1

T

T∑
t=1

�obs
t ⊗ t(‰(„d, s0, P R),„d, P R)

}

= − 1

T

T∑
t=1

�obs
t ⊗ { t(‰(„d, sn, P R),„d, P R)− t(‰(„d, s0, P R),„d, P R)}

= − 1

T

T∑
t=1

�obs
t ⊗Υt(‰

†,„d, P R)(‰(„d, sn, P R)− ‰(„d, s0, P R))

= − 1

T

T∑
t=1

�obs
t ⊗Υt(‰

†,„d, P R)H−1(‰̄,„d, P R)›n.

Similarly, with (B.10), the third term in (B.13) is

Ga
J,T („d, s0, P R,”N )−Ga

J,T („d, s0, P 0,”N )(B.15)

= ”N − 1

T

T∑
t=1

�obs
t ⊗ t(‰(„d, s0, P R),„d, P R)−

{
”N − 1

T

T∑
t=1

�obs
t ⊗ t(‰(„d, s0, P 0),„d, P 0)

}

= − 1

T

T∑
t=1

�obs
t ⊗ { t(‰(„d, s0, P R),„d, P R)− t(‰(„d, s0, P 0),„d, P 0)}

= − 1

T

T∑
t=1

�obs
t ⊗

{
 t(‰(„d, s0, P 0),„d, P R)− t(‰(„d, s0, P 0),„d, P 0)

+Υt(‰
‡,„d, P R)(‰(„d, s0, P R)− ‰(„d, s0, P 0))

}

= − 1

T

T∑
t=1

�obs
t ⊗

{
 t(‰(„d, s0, P 0),„d, P R)− t(‰(„d, s0, P 0),„d, P 0)

−Υt(‰
‡,„d, P R)H−1(‰,„d, P R)›R(„d)

}
.

The fourth term in (B.13) is

Ga
J,T („d, s0, P 0,”N )−Ga

J,T („d, s0, P 0,”0) = ”N − ”0.(B.16)

Substituting (B.14), (B.15) and (B.16) for (B.13) obtains (28).
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Proof of (2-i)

Suggested argument will be established by showing that for any δJ → 0,

sup
||θd − θ0

d|| ≤ δJ,T

J
1
2
∣∣∣∣Gd

J(„d)−Gd
J(„d, sn, P R)

∣∣∣∣ = op(1),(B.17)

sup
||θ − θ0|| ≤ δJ,T

J
1
2
∣∣∣∣Gc

J(„)−Gc
J(„, sn, P R)

∣∣∣∣ = op(1),(B.18)

sup
||θd − θ0

d|| ≤ δJ,T

T
1
2 ||Ga

J,T („d)−Ga
J,T („d, sn, P R,”N )|| = op(1).(B.19)

Since (B.17) is shown in BLP (2004) under assumptions B5(a)(b), we focus on (B.18) and (B.19).

From (27) and (29), we know that

||J 1
2 [Gc

J(„)−Gc
J(„, sn, P R)]||

=

∣∣∣
∣∣∣− J−

1
2Z′cL0M0H

−1
0 {›n − ›R(„0

d)}

−J−
1
2Z′c

[
g(p−mg(‰(„d, s0, P 0),„d, P R))− g(p−mg(‰(„d, s0, P 0),„d, P 0))

−L(¯̄‰,„d, P R)M(¯̄‰,„d, P R)H−1(‰̄,„d, P R)›n +L(‰,„d, P R)M(‰,„d, P R)H−1(‰,„d, P R)›R(„d)
]∣∣∣

∣∣∣
≤

∣∣∣
∣∣∣J− 1

2Z′c
[
g(p−mg(‰(„d, s0, P 0),„d, P R))− g(p−mg(‰(„d, s0, P 0),„d, P 0))

] ∣∣∣
∣∣∣

+

∣∣∣
∣∣∣J− 1

2Z′c{L0M0H
−1
0 −L(¯̄‰,„d, P R)M(¯̄‰,„d, P R)H−1(‰̄,„d, P R)}›n

∣∣∣
∣∣∣

+

∣∣∣
∣∣∣J− 1

2Z′c{L0M0H
−1
0 ›R(„0

d)−L(‰,„d, P R)M(‰,„d, P R)H−1(‰,„d, P R)›R(„d)}
∣∣∣
∣∣∣.

We show the three terms on the right-hand side of the inequality above are respectively op(1) within the δJ,T

neighborhood of „0
d, We know the first term to be op(1) by B5(e). The second term is shown op(1) by using B5(c) as

follows.

Pr

[
sup

||θd − θ0
d|| ≤ δJ,T

∣∣∣
∣∣∣J− 1

2Z′c{L(¯̄‰,„d, P R)M(¯̄‰,„d, P R)H−1(‰̄,„d, P R)−L0M0H
−1
0 }›n

∣∣∣
∣∣∣ > c

]

≤ Pr

[
sup

||θd − θ0
d|| ≤ δJ,T

sup
(ξ1, ξ2, P ) ∈ {Nξ0(θ0

d; δJ,T )}2J ×NP0(δJ,T )

∣∣∣
∣∣∣J− 1

2Z′c{L(‰1,„d, P )M(‰1,„d, P )H−1(‰2,„d, P )−L0M0H
−1
0 }›n

∣∣∣
∣∣∣ > c

]

+Pr[(¯̄‰1, . . . ,
¯̄‰J) 6∈ {Nξ0(„0

d; δJ,T )}J ] + Pr[(‰̄1, . . . , ‰̄J) 6∈ {Nξ0(„0
d; δJ,T )}J ] + Pr[P R 6∈ NP0(δJ,T )]

→ 0.

Similarly, for the third term, we obtain by assumption B5(d)

Pr

[
sup

||θd − θ0
d|| ≤ δJ,T

∣∣∣
∣∣∣J− 1

2Z′c{L(‰,„d, P R)M(‰,„d, P R)H−1(‰,„d, P R)›R(„d)−L0M0H
−1
0 }›R(„0

d)}
∣∣∣
∣∣∣ > c

]

≤ Pr

[
sup

||θd − θ0
d|| ≤ δJ,T

sup
(ξ1, ξ2, P ) ∈ {Nξ0(θ0

d; δJ,T )}2J ×NP0(δJ,T )

∣∣∣
∣∣∣J− 1

2Z′c

×{L(‰1,„d, P )M(‰1,„d, P )H−1(‰2,„d, P )›R(„d)−L0M0H
−1
0 ›R(„0

d)}
∣∣∣
∣∣∣ > c

]

+ Pr
[
(‰

1
, . . . , ‰

J
) 6∈ {Nξ0(„0

d; δJ,T )}J
]

+ Pr
[
(‰

1
, . . . , ‰

J
) 6∈ {Nξ0(„0

d; δJ,T )}J
]

+ Pr[P R 6∈ NP0(δJ,T )]

→ 0.

Thus, we obtain (B.18).
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For the element of the additional moments Ga
J,T („d, sn, P R,”N ) which corresponds to consumer demographics d

and discriminating attribute q, we have

(B.20)

sup
||θd − θ0

d|| < δJ,T

T
1
2

∣∣∣∣{Ga
J,T („d)−Ga

J,T („d, sn, P R,”N )}d,q

∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

T
1
2

∣∣∣∣
1

T

T∑
t=1

νobs
td {ψtq(‰(„d, s0, P 0),„d, P R)− ψtq(‰(„d, s0, P 0),„d, P 0)}

− 1

T

T∑
t=1

νobs
td

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 {›n − ›R(„0

d)}

−Υtq·(‰
†,„d, P R)H−1(‰̄,„d, P R)›n + Υtq·(‰

‡,„d, P R)H−1(‰,„d, P R)›R(„d)
]∣∣∣∣

≤ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−1/2

T∑
t=1

νobs
td {ψtq(‰(„d, s0, P 0),„d, P R)− ψtq(‰(„d, s0, P 0),„d, P 0)}

∣∣∣∣

+ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−1/2

T∑
t=1

νobs
td

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 ›n −Υtq·(‰

†,„d, P R)H−1(‰̄,„d, P R)›n
]∣∣∣∣

+ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−1/2

T∑
t=1

νobs
td

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 ›R(„0

d)−Υtq·(‰
‡,„d, P R)H−1(‰,„d, P R)›R(„d)

]∣∣∣∣

where Υtq· is the qth row vector of Υt. Thus, it is sufficient to show that the three terms on the right-hand side of

the inequality above are respectively op(1) or,

sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−
1
2

T∑
t=1

νobs
td {ψtq(‰(„d, s0, P 0),„d, P R)− ψtq(‰(„d, s0, P 0),„d, P 0)}

∣∣∣∣ = op(1),(B.21)

sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−
1
2

T∑
t=1

νobs
td

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 ›n −Υtq·(‰

†,„d, P R)H−1(‰̄,„d, P R)›n
]∣∣∣∣ = op(1),(B.22)

sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−
1
2

T∑
t=1

νobs
td

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 ›R(„0

d)−Υtq·(‰
‡,„d, P R)H−1(‰,„d, P R)›R(„d)

]∣∣∣∣(B.23)

= op(1).

We obtain (B.21) as

sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−1/2

T∑
t=1

νobs
td {ψtq(‰(„d, s0, P 0),„d, P R)− ψtq(‰(„d, s0, P 0),„d, P 0)}

∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1/2

T∑
t=1

νobs
td

{ ∑
j∈Qq

σtj(‰(„d, s0, P 0),�t;„d)∑
j∈Qq

σj(‰(„d, s0, P 0),„d, P R)
−

∑
j∈Qq

σtj(‰(„d, s0, P 0),�t;„d)∑
j∈Qq

σj(‰(„d, s0, P 0),„d, P 0)

}∣∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1/2

T∑
t=1

νobs
td

{∑
j∈Qq

σtj(‰(„d, s0, P 0),�t;„d)∑
j∈Qq

σj(‰(„d, s0, P 0),„d, P 0)

}

×
∑

j∈Qq

{
σj(‰(„d, s0, P 0),„d, P 0)− σj(‰(„d, s0, P 0),„d, P R)

}
∑

j∈Qq
σj(‰(„d, s0, P 0),„d, P R)

∣∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1/2

T∑
t=1

νobs
td ψtq(‰(„d, s0, P 0),„d, P 0)

∑
j∈Qq

{−εR
j („d)}∑

j∈Qq
σj(‰(„d, s0, P 0),„d, P R)

∣∣∣∣∣

≤ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1

T∑
t=1

νobs
td ψtq(‰(„d, s0, P 0),„d, P 0)

∣∣∣∣∣ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣

∑
j∈Qq

T 1/2εR
j („d)∑

j∈Qq
σj(‰(„d, s0, P 0),„d, P R)

∣∣∣∣∣
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= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1

T∑
t=1

νobs
td ψtq(‰(„d, s0, P 0),„d, P 0)

∣∣∣∣∣ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣

∑
j∈Qq

T 1/2εR
j („d)

∑
j∈Qq

{
σj(‰(„d, s0, P 0),„d, P 0) + εR

j („d)
}

∣∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1

T∑
t=1

νobs
td ψtq(‰(„d, s0, P 0),„d, P 0)

∣∣∣∣∣ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣

∑
j∈Qq

T 1/2εR
j („d)∑

j∈Qq
s0

j +
∑

j∈Qq
εR
j („d)

∣∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1

T∑
t=1

νobs
td ψtq(‰(„d, s0, P 0),„d, P 0)

∣∣∣∣∣ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣

(∑
j∈Qq

s0
j

)−1 ∑
j∈Qq

T 1/2εR
j („d)

1 +
(∑

j∈Qq
s0

j

)−1

T−1/2
∑

j∈Qq
T 1/2εR

j („d)

∣∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1

T∑
t=1

νobs
td ψtq(‰(„d, s0, P 0),„d, P 0)

∣∣∣∣∣ sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣
Op(1) · op(1)

1 + Op(1) · T−1/2op(1)

∣∣∣∣∣

= sup
||θd − θ0

d|| < δJ,T

∣∣∣∣∣T
−1

T∑
t=1

νobs
td ψtq(‰(„d, s0, P 0),„d, P 0)

∣∣∣∣∣ · op(1)

= op(1)

where we use assumption A8 for (
∑

j∈Qq
s0

j )
−1 = Op(1) and assumption B5(h) for

∑
j∈Qq

T 1/2εR
j („d) = op(1). For

the last equality above, we use a weak law of large number that ensures sup||θd−θ0
d
||<δJ,T

|T−1∑T

t=1
νobs

td ψtq(‰(„d, s0, P 0),„d, P 0)|
p→ |η0

dq| = Op(1) where η0
dq = Op(1). For (B.22), we have

Pr

[
sup

||θd − θ0
d|| < δJ,T

∣∣∣∣T−
1
2

T∑
t=1

νobs
td

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 ›n −Υtq·(‰

†,„d, P R)H−1(‰̄,„d, P R)›n
]∣∣∣∣ > c

]

≤ Pr

[
max

t
|νobs

td | · sup
||θd − θ0

d|| < δJ,T

∣∣∣∣T−
1
2

T∑
t=1

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 ›n −Υtq·(‰

†,„d, P R)H−1(‰̄,„d, P R)›n
]∣∣∣∣ > c

]

≤ Pr

[
max

t
|νobs

td | · sup
||θd − θ0

d|| < δJ,T

sup
(ξ1, ξ2, P ) ∈ {Nξ0(θ0

d; δJ,T )}2J ×NP0(δJ,T )

∣∣∣∣T−
1
2

T∑
t=1

[
Υtq·(‰(„

0
d, s0, P 0),„0

d, P 0)H−1
0 ›n

−Υtq·(‰1,„d, P R)H−1(‰2,„d, P R)›n
]∣∣∣∣ > c

]

+Pr[‰† 6∈ {Nξ0(θ0
d; δJ,T )}J ] + Pr[‰̄ 6∈ {Nξ0(θ0

d; δJ,T )}J ] + Pr[P R 6∈ NP0(δJ,T )]

= o(1)

where we use assumption B5(f) and maxt |νobs
td | < M(constant) as well as the facts Pr[‰† 6∈ {Nξ0(θ0

d; δJ,T )}J ] → 0,

Pr[‰̄ 6∈ {Nξ0(θ0
d; δJ,T )}J ] → 0, and Pr[P R 6∈ NP0(δJ,T )] → 0. We also obtain (B.23) by the argument similar to the

argument for (B.22) with assumption B5(g).

Proof of (2-ii)

To show that the asymptotic normality of the estimator „̌ that minimizes the norm of GJ,T („), we use a version of

Theorem 3.3 in Pakes and Pollard (1989), which gives asymptotic normality to the estimator indexed by two distinct

indices. From the theorem, if we can show the following five conditions,

(i) ||GJ,T („̌)|| = op(J−
1
2 ) + op(T−

1
2 ) + infθ ||GJ,T („)||;

(ii) E[GJ,T („)] is differentiable at „0 with a derivative matrix ΓJ,T = (Γ′J ,Γa
J,T

′)′ of full rank where ΓJ,T converges

to (Γ′,Γa′)′ as J, T →∞;
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(iii) for every sequence {δJ,T } of positive numbers that converges to zero as J, T goes to infinity,

(a) sup
||θ−θ0||≤δJ,T

||GJ(„)− E[GJ(„)]− GJ(„0)||
J−

1
2 + ||GJ(„)||+ ||E[GJ(„)]||

= op(1);

(b) sup
||θd−θ0

d
||≤δJ,T

||Ga
J,T („d)− E[Ga

J,T („d)]− Ga
J,T („0

d)||
T−

1
2 + ||Ga

J,T („d)||+ ||E[Ga
J,T („d)]||

= op(1);

(iv)


 J

1
2GJ(„0)

T
1
2Ga

J,T („0
d)


 w

; N


0,


 Φ Φ12

Φ12′ Φa





 ;

(v) „0 is an interior point of Θ,

(vi) The size indices T and J go to infinity so as to J/T → c ≥ 0,

then, we have J1/2„̌
w
; N(0,V ) where V = (Γ′Γ + Γa′Γa)−1(Γ′ΦΓ + 2c1/2Γ′Φ12Γa + cΓa′ΦaΓa)(Γ′Γ + Γa′Γa)−1.

Our estimator satisfies (i) by definition. Since the three random variables εji, ε∗jr and ›#i′ in GJ,T („) have

respectively zero means given the set of product characteristics (X, ‰(„0
d, s0, P 0)), we have E[GJ,T („, s0, P 0,”0)] =

E[GJ,T („)]. Thus condition (ii) follows from assumption B2. The condition (iii)(a) can be shown as follows.

sup
||θ − θ0|| ≤ δJ,T

||GJ(„)− E[GJ(„)]− GJ(„0)||
J−

1
2 + ||GJ(„)||+ ||E[GJ(„)]||

≤ sup
||θ − θ0|| ≤ δJ,T

J
1
2 ||GJ(„)− E[GJ(„)]− GJ(„0)||

≤ sup
||θd − θ0

d|| ≤ δJ,T

J
1
2 ||Gd

J(„d)− E[Gd
J(„d)]− Gd

J(„0
d)||+ sup

||θ − θ0|| ≤ δJ,T

J
1
2 ||Gc

J(„)− E[Gc
J(„)]− Gc

J(„0)||

= op(1) + op(1) = op(1)

where sup||θd−θ0
d
||≤δJ,T

J
1
2 ||Gd

J(„d) − E[Gd
J(„d)] − Gd

J(„0
d)|| = op(1) and sup||θ−θ0||≤δJ,T

J
1
2 ||Gc

J(„) − E[Gc
J(„)] −

Gc
J(„0)|| = op(1) come respectively from B3(a) and (b). For condition (iii)(b), we have

sup
||θd − θ0

d|| ≤ δJ,T

||Ga
J,T („d)− E[Ga

J,T („d)]− Ga
J,T („0

d)||
T−

1
2 + ||Ga

J,T („d)||+ ||E[Ga
J,T („d)]||

≤ sup
||θd − θ0

d|| ≤ δJ,T

T
1
2 ||Ga

J,T („d)− E[Ga
J,T („d)]− Ga

J,T („0
d)||

= sup
||θd − θ0

d|| ≤ δJ,T

T
1
2

∣∣∣∣
∣∣∣∣Ga

J,T („d, s0, P 0,”0)− 1

T

T∑
t=1

�obs
t ⊗Υ0

tH
−1
0 {›n − ›R(„0

d)}+ ”N − ”0

−E[Ga
J,T („d, s0, P 0,”0)] +

1

T

T∑
t=1

E
[
�obs

t ⊗Υ0
tH

−1
0 {›n − ›R(„0

d)}
]
− E[”N − ”0]

−Ga
J,T („0

d, s0, P 0,”0) +
1

T

T∑
t=1

�obs
t ⊗Υ0

tH
−1
0 {›n − ›R(„0

d)} − ”N − ”0

∣∣∣∣
∣∣∣∣

= sup
||θd − θ0

d|| ≤ δJ,T

T
1
2

∣∣∣∣
∣∣∣∣Ga

J,T („d, s0, P 0,”0)− E[Ga
J,T („d, s0, P 0,”0)]−Ga

J,T („0
d, s0, P 0,”0)

∣∣∣∣
∣∣∣∣

= op(1)
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from assumption B3(c). Assumption B1 guarantees condition (v). Let us show (iv). Given the expression in (30), or


 J

1
2GJ(„)

T
1
2Ga

J,T („d)


 =


 J

1
2GJ(„, s0, P 0)

T
1
2Ga

J,T („d, s0, P 0,”0)


 +

n∑
i=1

Y JT i +
R∑

r=1

Y JTr +
N∑

i′=1


 0

T
1
2 ›#i′ /N




≡ T J,T,1 + T J,T,2 + T J,T,3 + T J,T,4,

we need to show each of T J,T,1,T J,T,2,T J,T,3 and T J,T,4 converges to the multivariate normal. Notice that since these

four terms are conditionally independent given (X, ‰(„0
d, s0, P 0)) and thus mutually uncorrelated, the Cramér-Wold

device will ensures that the sum of them also converges to the multivariate normal.

The first term T J,T,1: Given the set of product characteristics (X, ‰(„0
d, s0, P 0)), the demand and supply components

(zd
j ξj(„

0
d, s0, P 0), zc

jωj(„
0, s0, P 0)) in T J,T,1 are independent across j while the components of the additional moments

(”0−�obs
t ⊗ t(‰(„

0
d, s0, P 0),„0

d, P 0) are independent across t. Therefore when we apply the Lyapunov’s central limit

theorem to b′T J,T,1, we have to take into account two sampling processes indexed by j and t simultaneously. Write

 0
t ≡  t(‰(„

0
d, s0, P 0),„0

d, P 0). The Lyapunov condition is satisfied for this term because

lim
J,T→∞

V[b′T J,T,1]
−(2+δ)/2

(J,T )∑
(j,t)=(1,1)

E




∣∣∣∣∣∣∣∣∣
b′




J−1/2zd
j ξj(„

0
d, s0, P 0)

J−1/2zc
jωj(„

0, s0, P 0)

T−1/2(”0 − �obs
t ⊗ 0

t )




∣∣∣∣∣∣∣∣∣

2+δ


≤ lim
J,T→∞

{b′V[T J,T,1]b}−(2+δ)/2||b′||2+δ

(J,T )∑
(j,t)=(1,1)

E




∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣




J−1/2zd
j ξj(„

0
d, s0, P 0)

J−1/2zc
jωj(„

0, s0, P 0)

T−1/2(”0 − �obs
t ⊗ 0

t )




∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

2+δ


= {b′Φ1b}−(2+δ)/2||b′||2+δ · 0 = 0

for some δ > 0 by assumptions B4(a) and B4(e). Thus we obtain {V[b′T J,T,1]}−1/2b′T J,T,1
w
; N(0, 1) which is

equivalent to T J,T,1
w
; N(0,Φ1).

The second term T J,T,2: Abbreviate Y 0
J,T,i ≡ Y J,T,i(‰(„

0
d, s0, P 0),„0

d, P 0). Given (X, ‰(„0
d, s0, P 0), {�obs

t }T
t=1),

Y 0
J,T,i has zero mean and conditionally independent across i. The Lyapunov condition for this term is

lim
n→∞

{V[b′T J,T,2]}−(2+δ)/2

n∑
i=1

E[|b′Y 0
J,T,i|2+δ]

≤ lim
n→∞

{V[b′T J,T,2]}−(2+δ)/2||b′||2+δ

n∑
i=1

E[||Y 0
J,T,i||2+δ] = {b′Φ2b}−(2+δ)/2||b′||2+δ · 0

= 0

for some δ > 0 using assumptions B4(b) and B4(f). Thus we obtain {V[b′T J,T,2]}−1/2b′T J,T,2
w
; N(0, 1) which is

equivalent to T J,T,2
w
; N(0,Φ2).

The third term T J,T,3 requires us to increase the number R of simulation draws. Using B4(c) and B4(g), we obtain

T J,T,3
w
; N(0,Φ3) from the argument similar to the argument for the second term.

The fourth term T J,T,4 has only the components for the additional moments. Given (X, ‰(„0
d, s0, P 0)), ›#i′ has zero

mean and conditionally independent across i′. Using B4(d) and B4(h), applying the Lyapunov central limit theorem

to these components lead to T J,T,4
w
; N(0, diag(0,Φa

4)).
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Since all of the four terms in (30) converge to the normal, their sum also converges to the normal where the

asymptotic variance-covariance matrix is Φ1 + Φ2 + Φ3 + diag(0,Φa
4).
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