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RISK PERFORMANCE OF A WEIGHTED AVERAGE 

ESTIMATOR 

CONSISTING OF THE RIDGE REGRESSION AND OLS 

ESTIMATORS UNDER LINEX LOSS 

By KAZUHIRO OHTANI*

In this paper, we consider a weighted average estimator consisting of the ridge regression estimator 
proposed by Huang (1999) and the ordinary least squares (OLS) estimator, and examine the risk 
performance of the weighted average estimator when the asymmetric LINEX loss function is used. It is 
shown that when the asymmetry of the loss function is moderate, the weighted average estimator never 
has the largest risk among the ridge regression estimator, the OLS estimator and the weighted average 
estimator. It is also shown that when the asymmetry of the loss function is severe, the ridge regression 
estimator has the smallest risk in a wide region of parameter space.

1. Introduction

Hoer and Kennard (1970) proposed the ridge regression estimator to avoid the problem of 
multicollinearity. However, since the ridge regression estimator has a smaller mean squared 
error (MSE) than the ordinary least squares (OLS) estimator irrespective of the problem of 
multicollinearity when the regression coefficient is close to zero, many researchers have 
studied the small sample properties of the ridge regression estimator and its variants. Some 
examples are Dwivedi et al. (1980), Ohtani (1986) and Firinguetti (1999).

In regression analysis, there may be a situation where our concern is to estimate a specific 
regression coefficient as accurately as possible. Huang (1999) showed such situations and 
proposed the ridge regression estimator to estimate a specific regression coefficient. Huang 
(1999) further examined the small sample properties of the ridge regression estimator and 
showed that the ridge regression estimator has a smaller MSE than the ordinary least squares 
(OLS) estimator when the regression coefficient is close to zero.

When the risk performances of the ridge estimator and its variants are examined, the qua-
dratic loss function has usually been used. Since the quadratic loss function is symmetric, 
over-estimation and under-estimation have the same magnitude. However, as is shown in 
Zellner (1986), in dam construction under-estimation of the peak water level is usually much 
more serious than over-estimation. This indicates that the symmetric loss function may not be 
appropriate in some situations. From this viewpoint, Variant (1975) proposed the asymmetric 
LINEX loss function, and Zellner (1986) extensively discussed its properties. In several stud-
ies on the ridge regression estimator and its variants, the asymmetric LINEX loss function 
has been used. Some examples are Ohtani (1995), Wan (1999), Akdeniz and Namba (2003), 
and Namba and Ohtani (2010).

  *The author is grateful to the JSPS (Japanese Society for the Promotion of Science) for partial financial support 
(Grant-in-Aid for Scientific Research).
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In several studies on the risk performance of biased estimators, weighted average estimators 
consisting of the OLS estimator and any biased estimator have been used. Some examples 
are Stahlecker and Trenkler (1985), Tracy and Srivastava (1994) and Ohtani (1998). How-
ever, the risk performances of weighted average estimators have not been examined under 
LINEX loss. In this paper, we consider a weighted average estimator consisting of the ridge 
regression estimator proposed by Huang (1999) and the OLS estimator, and examine the risk 
performance of the weighted average estimator when the asymmetric LINEX loss function is 
used.

The organization of this paper is as follows. In section 2 the model and estimators are pre-
sented. In section 3 the LINEX loss function is shown and the exact formula of the risk func-
tion of the weighted average estimator is derived under the LINEX loss function. In section 
4 the risk performance of the weighted average estimator is examined by numerical evalua-
tions, based on the exact formula of the risk function. It is shown that when the asymmetry 
of the loss function is moderate, the weighted average estimator never has the largest risk 
among the ridge regression estimator, the OLS estimator and the weighted average estimator. 
It is also shown that when the asymmetry of the loss function is severe, the ridge regression 
estimator has the smallest risk in a wide region of parameter space.

2. Model and estimator

Consider a linear regression model,

 y = x1 β1+ X2 β2+ ε , (1)

where y is an n ×1 vector of observations on a dependent variable, x1 is an n ×1 vector of 
observations on an explanatory variable, X2 is an n × (k – 1) matrix of observations on other 
explanatory variables, β1 is a scalar coefficient for x1, β2 is a k – 1 vector of coefficients for 
X2, and ε  is an n ×1 vector of error terms. We assume that x1 and X2 are nonstochastic, the 
n × k matrix [x1, X2] is of full column rank, and ε  is distributed as N(0, σ2In), where In is an 
n × n identity matrix. Without loss of generality, we can assume that β1 is a specific regres-
sion coefficient which we want to estimate as accurately as possible.

Setting X =[x1, X2] and β= [β1, β2′]′, the ordinary least squares (OLS) estimator of β  is

 b = (X′  X) – 1X′y, (2)

and the OLS estimator of β1 is

 b1= (x1′M2x1)
 – 1x1′M2 y, (3)

where

 M2 = In – X2  (X2′X2 )
 – 1X2′. (4)
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The distribution of b1 is the normal distribution with mean β1 and variance σ2/x1′M2x1:

 b1 ~ N ( β1, σ
2/x1′M2x1). (5)

Following Huang (1999), the feasible ridge regression estimator of β1 is given by

 β̂1 = (d1+ 
b
s

2
1

2

) – 1x1′M2y

  = ( b +2
1d1

b2
1d1

s2)b1, (6)

where d1= x1′M2x1, s
2= (y – Xb)′(y – Xb)/v and v = n – k. We simply call the ridge regression 

estimator proposed by Huang (1999) the ridge regression estimator hereafter.
Since the ridge regression estimator has a smaller MSE than the OLS estimator when the 

parameter defined as θ1= √
––
d1 β1/σ  is close to zero and vice versa, one may consider the fol-

lowing weighted average estimator of β̂1 and b1:

 β̂1
* = wβ̂1+ (1 – w)b1 (7)

where w is a constant such that 0 ≤ w ≤ 1. The weighted average estimator is the ridge re-
gression estimator when w = 1, and it is the OLS estimator when w = 0. In the next section, 
we derive the exact formula of the risk function of the weighted average estimator under the 
LINEX loss function.

3. Risk under the LINEX loss function

The LINEX loss function of β̂1
* is given by

 L( β̂1
*)  = exp[a ( β̂1

* – β1)] – a( β̂1
* – β1 ) – 1

 = Σ
q=2

∞

q!
aq

 (β̂1
* – β1)

q, (8)

where a ≠ 0 is a parameter. When a > 0, the loss of over-estimation is more serious than that 
of under-estimation and vice versa. Also, if the value of a is close to zero, the LINEX loss 
function is almost symmetric and close to the quadratic loss function. Then, the risk function 
of β̂1

* is

 R(β̂1
*)  = E[L(β̂1

*)]

  = Σ
q=2

∞

q!
aq

 
q

Σ
 

m=0  
qCm ( – β1)

q – m E[ (β̂1
*)m]. (9)
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The m-th moment of β̂1
* is

 E[(β̂1
*)m] = E[(wβ̂1+ (1 – w)b1)

m]

 = Σ  
r=0

m 
 mCr w

m – r(1 – w)r E[β̂1
m – r b1

r ]. (10)

As is shown in the Appendix, setting m = 2p + δ  (δ = 0 or δ = 1), E[β̂1
m – r b1

r] is given by

 E[ β̂1
2p+δ  – r b1

r ] = π

δ

Γ(v/2)
d1

√
√σ( )/ 2p+

 Σ
j=0

∞ θ
(2j+ )!δ

2j+
1

δ
 exp(– θ2/2) 2j+p+δ v 2p+δ  – r

                         × Γ( j + p + δ + (v+1)/2) ∫ 1

0 [1+ (v–1)z]
z (1–z)

2p+

j+3p+2  –r–1/2 v/2–1

–rδ

δ
 dz, (11)

where v = n – k and θ1= √
––
d1  β1/σ . Substituting (11) into (10), and further substituting (10) 

into (9), we obtain the exact formula of the risk function.

4. Numerical Analysis

Since the risk function of the weighted average estimator is very complicated, theoretical 
analysis of the risk function is difficult. Thus, we examine the risk performance using numer-
ical evaluations, based on the exact formula of the risk function. The parameter values used 
in the numerical evaluations are as follows: k = 3, 5, 8; n = 20, 30, 40; a = – 1.0, – 0.5, – 0.1, 
0.1, 0.5, 1.0; w = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0; θ1= various values. The convergence toler-
ance of the infinite series in (11) is 10 – 12, and the integral is calculated using Simpson’s 3/8 
rule with 500 equal subdivisions. Since the result for k = 3 and n = 20 is typical, we discuss 
the result for this case.

The risk performance of the weighted average estimator for a = 0.1, k = 3 and n = 20 is 
shown in Table 1. We see from Table 1 that when a = 0.1 (i.e., the asymmetry of the loss 
function is not severe) and the value of θ1 is close to zero (i.e., |θ1| ≤1.0), the risk decreases 
monotonically as the value of w increases. [When θ1= – 1.0, the risks for w = 0.9 and 1.0 are 
the same in Table 1. However, if we show the value of the risk down to six decimal places, 
the risk for w = 0.9 is 0.004012 and that for w = 1.0 is 0.003985. Although we show the value 
of the risk down to four decimal places to save space, the same applies hereafter.] Since the 
weighted average estimator with w = 1.0 is the ridge regression estimator, the best estima-
tor among the weighted average estimators considered here is the ridge regression estimator. 
However, when |θ1| ≥2.0, the risk increases monotonically as the value of w increases. Since 
the weighted average estimator with w = 0.0 is the OLS estimator, the best estimator is the 
OLS estimator. When the value of θ1 is – 1.5, the risk attains a minimum at w = 0.3. This in-
dicates that the best estimator is the weighted average estimator with w = 0.3. Also, when the 
value of θ1 is 1.5, the risk attains a minimum at w = 0.5. This indicates that the best estimator 
is the weighted average estimator with w = 0.5. As a whole, when the asymmetry of the loss 
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function is not severe, the ridge regression estimator (w = 1) or the OLS estimator (w = 0) has 
the smallest risk, except for some values of θ1.

The risk performance of the weighted average estimator for a = 0.5, k = 3 and n = 20 is 
shown in Table 2. We see from Table 2 that when a = 0.5 (i.e., the asymmetry of the loss 
function is moderate) and the value of θ1 is close to zero (i.e., |θ1| ≤1.0), the risk decreases 
monotonically as the value of w increases. This indicates that the best estimator among the 
weighted average estimators considered here is the ridge regression estimator. However, 
when θ1 ≤ – 2.0, the risk increases monotonically as the value of w increases. This indicates 
that the best estimator is the OLS estimator. When θ1= – 1.5, the risk attains a minimum at w 
= 0.3. Also, when 1.5 ≤ θ1≤7.0, the risk attains a minimum at w = 0.1, 0.3, 0.5 or 0.7. Com-
paring Tables 1 and 2, we see that when the degree of asymmetry of the loss function increas-
es from a = 0.1 to 0.5, the region where the ridge regression estimator or the OLS estimator 
is best gets narrow. If we use a weight of 0.5 (i.e., w = 0.5), the risk of the weighted average 

Table 1
Risk of the weighted average estimator under the LINEX

loss function for a = 0.1, k = 3 and n = 20 

w
θ1 .0 .1 .3 .5 .7 .9 1.0

–10.0 .0050 .0050 .0051 .0051 .0051 .0052 .0052
–9.0 .0050 .0050 .0051 .0051 .0052 .0052 .0053
–8.0 .0050 .0050 .0051 .0051 .0052 .0053 .0053
–7.0 .0050 .0050 .0051 .0052 .0053 .0054 .0054
–6.0 .0050 .0051 .0051 .0052 .0053 .0055 .0055
–5.0 .0050 .0051 .0052 .0053 .0055 .0056 .0057
–4.5 .0050 .0051 .0052 .0054 .0056 .0058 .0059
–4.0 .0050 .0051 .0053 .0054 .0057 .0059 .0061
–3.5 .0050 .0051 .0053 .0055 .0058 .0061 .0063
–3.0 .0050 .0051 .0053 .0056 .0059 .0062 .0064
–2.5 .0050 .0051 .0053 .0055 .0059 .0062 .0064
–2.0 .0050 .0050 .0052 .0053 .0056 .0059 .0061
–1.5 .0050 .0050 .0049 .0049 .0050 .0051 .0052
–1.0 .0050 .0048 .0045 .0043 .0041 .0040 .0040
–.5 .0050 .0047 .0042 .0037 .0033 .0030 .0029
.0 .0050 .0047 .0041 .0035 .0030 .0026 .0024
.5 .0050 .0047 .0042 .0037 .0033 .0030 .0029

1.0 .0050 .0048 .0045 .0043 .0041 .0040 .0039
1.5 .0050 .0049 .0049 .0048 .0049 .0050 .0050
2.0 .0050 .0050 .0051 .0052 .0054 .0056 .0058
2.5 .0050 .0051 .0052 .0054 .0056 .0059 .0061
3.0 .0050 .0051 .0052 .0054 .0056 .0059 .0061
3.5 .0050 .0051 .0052 .0054 .0056 .0058 .0059
4.0 .0050 .0051 .0052 .0053 .0055 .0057 .0058
4.5 .0050 .0050 .0051 .0053 .0054 .0055 .0056
5.0 .0050 .0050 .0051 .0052 .0053 .0054 .0055
6.0 .0050 .0050 .0051 .0051 .0052 .0053 .0053
7.0 .0050 .0050 .0051 .0051 .0052 .0052 .0053
8.0 .0050 .0050 .0050 .0051 .0051 .0052 .0052
9.0 .0050 .0050 .0050 .0051 .0051 .0051 .0051

10.0 .0050 .0050 .0050 .0051 .0051 .0051 .0051
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estimator is never the largest among the ridge regression estimator, the OLS estimator and 
the weighted average estimator with w = 0.5. This indicates that when the asymmetry of the 
loss function is moderate, the use of the weighted average estimator with w = 0.5 can avoid a 
situation where we may have the maximum risk.

The risk performance of the weighted average estimator for a = 1.0, k = 3 and n = 20 is 
shown in Table 3. We see from Table 3 that when a = 1.0 (i.e., the asymmetry of the loss 
function is severe) and θ1 ≤ – 2.0, the risk increases monotonically as the value of w increas-
es. This indicates that the best estimator is the OLS estimator. Also, when θ1 = – 1.5, the risk 
attains a minimum at w = 0.3. However, when θ1 ≥ – 1.0, the risk decreases monotonically as 
the value of w increases, except for θ1 = 2.5. This indicates that when the asymmetry of the 
loss function is severe, the ridge regression estimator has the smallest risk in a wide region of 
θ1.

The risk performance of the weighted average estimator for a = – 1.0, k = 3 and n = 20 is 

Table 2
Risk of the weighted average estimator under the LINEX

loss function for a = 0.5, k = 3 and n = 20 

w
θ1 .0 .1 .3 .5 .7 .9 1.0

–10.0 .1331 .1341 .1362 .1384 .1408 .1433 .1446
–9.0 .1331 .1343 .1367 .1392 .1420 .1449 .1465
–8.0 .1331 .1345 .1373 .1404 .1436 .1472 .1490
–7.0 .1331 .1347 .1382 .1419 .1460 .1504 .1527
–6.0 .1331 .1351 .1394 .1442 .1494 .1550 .1580
–5.0 .1331 .1357 .1414 .1477 .1547 .1623 .1664
–4.5 .1331 .1361 .1427 .1501 .1583 .1674 .1723
–4.0 .1331 .1366 .1442 .1529 .1626 .1735 .1793
–3.5 .1331 .1370 .1457 .1557 .1670 .1798 .1867
–3.0 .1331 .1372 .1465 .1573 .1698 .1841 .1919
–2.5 .1331 .1367 .1452 .1555 .1678 .1820 .1899
–2.0 .1331 .1351 .1404 .1476 .1569 .1684 .1750
–1.5 .1331 .1321 .1314 .1326 .1359 .1413 .1448
–1.0 .1331 .1284 .1202 .1138 .1093 .1068 .1063
–.5 .1331 .1253 .1110 .0984 .0875 .0784 .0745
.0 .1331 .1242 .1078 .0931 .0800 .0687 .0636
.5 .1331 .1254 .1113 .0990 .0884 .0794 .0756

1.0 .1331 .1279 .1187 .1113 .1056 .1015 .1000
1.5 .1331 .1304 .1260 .1233 .1222 .1225 .1232
2.0 .1331 .1320 .1309 .1312 .1328 .1357 .1376
2.5 .1331 .1329 .1332 .1346 .1372 .1409 .1431
3.0 .1331 .1331 .1338 .1353 .1378 .1412 .1432
3.5 .1331 .1331 .1336 .1348 .1368 .1395 .1411
4.0 .1331 .1330 .1332 .1341 .1355 .1374 .1386
4.5 .1331 .1329 .1329 .1334 .1343 .1357 .1366
5.0 .1331 .1329 .1326 .1328 .1334 .1343 .1350
6.0 .1331 .1328 .1323 .1321 .1322 .1326 .1329
7.0 .1331 .1328 .1322 .1318 .1316 .1317 .1318
8.0 .1331 .1328 .1321 .1316 .1313 .1311 .1311
9.0 .1331 .1328 .1321 .1315 .1311 .1309 .1308

10.0 .1331 .1328 .1321 .1315 .1311 .1307 .1306
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shown in Table 4. We see from Tables 3 and 4 that the results for a = – 1.0 can be obtained 
from the results for a = 1.0 in Table 3 by exchanging the sign of θ1. For example, the risk for 
θ1= 1.0 in Table 4 is the same as the risk for θ1= – 1.0 in Table 3. Thus, reversing the sign of θ1, 
we can discuss the results for a < 0 in a parallel way to the results for a > 0.

Appendix

In this appendix, we derive the formula (11). Setting u1= √
––
d1 b1/σ  and u2= (y – Xb)′(y – 

Xb)/σ2, u1 is distributed as N(√
––
d1  β1/σ , 1) and u2 as the chi-square distribution with v = n – k 

degrees of freedom. Using u1 and u2, b1 and β̂1  can be written as

Table 3
Risk of the weighted average estimator under the LINEX

loss function for a = 1.0, k = 3 and n = 20 

w
θ1 .0 .1 .3 .5 .7 .9 1.0

–10.0 .6487 .6571 .6747 .6932 .7126 .7331 .7437
–9.0 .6487 .6583 .6784 .6998 .7224 .7462 .7587
–8.0 .6487 .6599 .6835 .7086 .7354 .7640 .7789
–7.0 .6487 .6621 .6904 .7209 .7537 .7889 .8074
–6.0 .6487 .6652 .7004 .7388 .7806 .8259 .8500
–5.0 .6487 .6697 .7154 .7660 .8219 .8836 .9167
–4.5 .6487 .6727 .7252 .7840 .8497 .9228 .9623
–4.0 .6487 .6759 .7359 .8039 .8807 .9669 1.0138
–3.5 .6487 .6784 .7447 .8208 .9078 1.0065 1.0606
–3.0 .6487 .6785 .7458 .8246 .9161 1.0213 1.0795
–2.5 .6487 .6734 .7309 .8008 .8842 .9823 1.0373
–2.0 .6487 .6610 .6936 .7383 .7961 .8681 .9098
–1.5 .6487 .6421 .6365 .6421 .6594 .6893 .7092
–1.0 .6487 .6218 .5755 .5393 .5135 .4984 .4949
–.5 .6487 .6074 .5324 .4671 .4114 .3649 .3451
.0 .6487 .6034 .5208 .4480 .3843 .3292 .3047
.5 .6487 .6091 .5375 .4755 .4224 .3774 .3578

1.0 .6487 .6191 .5670 .5237 .4886 .4609 .4497
1.5 .6487 .6285 .5941 .5675 .5479 .5348 .5305
2.0 .6487 .6348 .6120 .5956 .5851 .5800 .5794
2.5 .6487 .6382 .6212 .6094 .6024 .5998 .6001
3.0 .6487 .6398 .6251 .6146 .6079 .6049 .6047
3.5 .6487 .6405 .6266 .6161 .6087 .6043 .6032
4.0 .6487 .6409 .6273 .6165 .6083 .6025 .6006
4.5 .6487 .6412 .6278 .6168 .6080 .6012 .5986
5.0 .6487 .6415 .6284 .6173 .6081 .6006 .5976
6.0 .6487 .6420 .6297 .6188 .6094 .6012 .5976
7.0 .6487 .6425 .6310 .6206 .6113 .6030 .5993
8.0 .6487 .6430 .6323 .6224 .6134 .6053 .6015
9.0 .6487 .6434 .6334 .6241 .6155 .6076 .6039

10.0 .6487 .6438 .6344 .6257 .6175 .6098 .6062
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         b1 = 
d1√
σ

 u1, (12)

 β̂1  = 
d1√σ /( )u3

1

u +u2 /v2
1

 (13)

Thus, we have

 E[β̂1 
2p+δ  – r br

1]

 =  E[( d1√σ /( )u3
1

u +u2 /v2
1

)m – r( d1√
σ

u1)r]

 =  ( d1√
σ )m ∫  

∞

0
 ∫  

∞

–∞ 2√ π(
u3(m–r)+r

1 1
u +u2 /v)m–r2

1
 exp[ – (u1 – θ1)

2/2]

Table 4
Risk of the weighted average estimator under the LINEX

loss function for a = –1.0, k = 3 and n = 20 

w
θ1 .0 .1 .3 .5 .7 .9 1.0

–10.0000 .6487 .6438 .6344 .6257 .6175 .6098 .6062
–9.0000 .6487 .6434 .6334 .6241 .6155 .6076 .6039
–8.0000 .6487 .6430 .6323 .6224 .6134 .6053 .6015
–7.0000 .6487 .6425 .6310 .6206 .6113 .6030 .5993
–6.0000 .6487 .6420 .6297 .6188 .6094 .6012 .5976
–5.0000 .6487 .6415 .6284 .6173 .6081 .6006 .5976
–4.5000 .6487 .6412 .6278 .6168 .6080 .6012 .5986
–4.0000 .6487 .6409 .6273 .6165 .6083 .6025 .6006
–3.5000 .6487 .6405 .6266 .6161 .6087 .6043 .6032
–3.0000 .6487 .6398 .6251 .6146 .6079 .6049 .6047
–2.5000 .6487 .6382 .6212 .6094 .6024 .5998 .6001
–2.0000 .6487 .6348 .6120 .5956 .5851 .5800 .5794
–1.5000 .6487 .6285 .5941 .5675 .5479 .5348 .5305
–1.0000 .6487 .6191 .5670 .5237 .4886 .4609 .4497
–.5000 .6487 .6091 .5375 .4755 .4224 .3774 .3578
.0000 .6487 .6034 .5208 .4480 .3843 .3292 .3047
.5000 .6487 .6074 .5324 .4671 .4114 .3649 .3451

1.0000 .6487 .6218 .5755 .5393 .5135 .4984 .4949
1.5000 .6487 .6421 .6365 .6421 .6594 .6893 .7092
2.0000 .6487 .6610 .6936 .7383 .7961 .8681 .9098
2.5000 .6487 .6734 .7309 .8008 .8842 .9823 1.0373
3.0000 .6487 .6785 .7458 .8246 .9161 1.0213 1.0795
3.5000 .6487 .6784 .7447 .8208 .9078 1.0065 1.0606
4.0000 .6487 .6759 .7359 .8039 .8807 .9669 1.0138
4.5000 .6487 .6727 .7252 .7840 .8497 .9228 .9623
5.0000 .6487 .6697 .7154 .7660 .8219 .8836 .9167
6.0000 .6487 .6652 .7004 .7388 .7806 .8259 .8500
7.0000 .6487 .6621 .6904 .7209 .7537 .7889 .8074
8.0000 .6487 .6599 .6835 .7086 .7354 .7640 .7789
9.0000 .6487 .6583 .6784 .6998 .7224 .7462 .7587

10.0000 .6487 .6571 .6747 .6932 .7126 .7331 .7437
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       × Γ(v/2)2
1

v/2  u2
v/2 – 1exp(– u2/2)du1 du2

 =  K 
 ∫  

∞

0
 ∫  

∞

–∞ (
u3m–2r

1 uv/2–1
2

u +u2 /v)m–r2
1

 exp[– (u1 – θ1)
2/2]exp(– u2/2)du1 du2 (14)

where

 K =  ( d1√
σ )m  

√π Γ(v/2)2v/2+1
1  

.

Using Maclaurin’s expansion, exp(θ1u1) = Σ∞
i=0(θ1u1)

i/i!, (14) reduces to

 Σ
i=0

∞
 K θ

i!

i
1 exp( – θ1

2/2) ∫  

∞

0  ∫  

∞

–∞
u ui+3m–2r 

1
v/2–1 
2

(u +u2 /v)m–r2
1

 exp[– (u2
1+u2)/2]du1du2. (15)

The integral part in (15) is written as follows:

  ∫  

∞

0
 ∫  

∞

0  
u ui+3m–2r 

1
v/2–1 
2

(u +u2 /v)m–r2
1

 exp[– (u2
1+u2)/2]du1du2

 + ∫  

∞

0  ∫  

0

–∞ 
u ui+3m–2r 

1
v/2–1 
2

(u +u2 /v)m–r2
1

 exp[– (u2
1+u2)/2]du1du2. (16)

Since u2
1/(u

2
1+ u2/v) ≤1 and u1 ≥ 0 in the first term in (16), we have

 ∫  

∞

0
 ∫  

∞

0  
u ui+3m–2r 

1
v/2–1 
2

(u +u2 /v)m–r2
1

 exp[ – (u2
1+u2)/2]du1du2

 = ∫  

∞

0
 ∫  

∞

0

 (u )m–r2
1 (u )r–m2

1 u ui+3m–2r 
1

v/2–1 
2

(u +u2 /v)m–r2
1

 exp[– (u2
1+u2)/2]du1du2

 ≤ ∫  

∞

0  ∫  

∞

0  
u1

i+m exp[– (u2
1+u2)/2]du1du2

 = ∫  

∞

0  u1
i+m exp (– u2

1) du1 ∫  

∞

0  
u2

v – 1 exp(– u2/2)du2.  (17)

Since the integrals in (17) are the kernels of the moments of the normal and chi-square distri-
butions, the first term in (16) exists. In a similar way, we can show that the second term in (16) 
exists.

When both m and i are even numbers, and when both m and i are odd numbers, the inte-
grand in (15) is an even function. Since the integral exists and the integrand is an even func-
tion, (15) can be written as

 2  Σ
i=0

∞

 

 K θ
i!

i
1 exp(– θ1

2/2) ∫  

∞

0
∫  

∞

0  

u ui+3m–2r 
1

v/2–1 
2

(u +u2 /v)m–r2
1

 exp[– (u2
1+u2)/2]du1du2. (18)
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When m is an even number and i is an odd number, and when m is an odd number and i is 
an even number, the integrand in (15) is an odd function. Since the integral exists and the in-
tegrand is an odd function, the integral in (15) reduces to zero. Thus, the integral in (15) can 
be evaluated by calculating (18).

Putting m = 2p + δ  and i = 2j + δ  (δ  = 0 or 1), (18) is written as

 2  Σ
j=0

∞  K 
θ

(2j+ )!δ
2j+
1

δ
 exp( – θ1

2/2)

 × ∫  

∞

0
∫  

∞

0
 u u2j+6p+4 

1
–2r v/2–1 

2
–r (u +u2 /v)2p+2

1
δ

δ
 exp[– (u2

1+u2)/2]du1du2. (19)

Using the change of variable, τ1 =u2
1, (19) reduces to

 Σ
j=0

∞

 

 Kj
* ∫  

∞

0
∫  

∞

0
 uj+3p+2 

1
–r–1/2 v/2–1 

2
–r ( +u2 /v)2p+τ

τ δ

δ
1

 exp[– (τ1  +u2)/2]dτ1du2, (20)

where

 Kj
* = K 

θ
(2j+ )!δ

2j+
1

δ
 exp(– θ1

2/2). (21)

Further using the change of variables, t1 = τ1  +u2 and t2 = τ1/u2, and manipulating some calcu-
lations, (20) reduces to

 Σ
j=0

∞

 

 Kj
* ∫  

∞

0
∫  

∞

0

t +(v+1)/2–1j+p+ 
1

+(v+1)/2 (1+t2)j+p+

δ t –r–1/2j+3p+2 
2

δ

δ –r (t2+1/v)2p+δ  exp (– t1  /2) dt2dt1, (22)

 Using the gamma function, (22) is expressed as

 Σ
j=0

∞

 

 Kj
* 2j+p+δ+(v+1)/2Γ(j+p+δ+(v+1)/2)

 × ∫  

∞

0  
+(v+1)/2 (1+t2)j+p+
t –r–1/2j+3p+2 

2
δ

δ –r (t2+1/v)2p+δ  dt2, (23)

Finally using the change of variable, z = t2/(1+t2), (23) reduces to (11) in the text.

REFERENCES

Akdeniz, F. and Namba, A. (2003), “A note on new feasible generalized ridge regression estimator under the LINEX 
loss function,” Journal of Statistical Computation and Simulation, 73, pp.303-310. 

Dwivedi, T.D., Srivastava, V.K. and Hall, H.L. (1980), “Finite sample properties of ridge estimators,” Technometrics, 
22, pp.205-212. 

Firinguetti, L. (1999), “A generalized ridge regression estimator and its finite sample properties,” Communications 
in Statistics-Theory and Methods, 28, pp.1217-1229. 



KAZUHIRO OHTANI10 RISK PERFORMANCE OF A WEIGHTED AVERAGE ESTIMATOR CONSISTING OF THE RIDGE REGRESSION AND OLS ESTIMATORS 11

Hoerl, A.E. and Kennard, R.W. (1970), “Ridge regression: Biased estimation for nonorthogonal problems,” 
Technometrics, 12, pp.55-82. 

Huang, J.-C. (1999), “Improving the estimation precision for a selected parameter in multiple regression analysis: 
An algebraic approach,” Economics Letters, pp.261-264. 

Namba, A. and Ohtani, K. (2010), “Risk performance of a pre-test ridge regression estimator under the LINEX 
loss function when each individual regression coefficient is estimated,” Journal of Statistical Computation and 
Simulation, 80, pp.255-262. 

Ohtani, K. (1986), “On small sample properties of the almost unbiased generalized ridge estimator,” 
Communications in Statistics-Theory and Methods, pp.1571-1578. 

Ohtani, K. (1995), “Generalized ridge regression estimators under the LINEX loss function,” Statistical Papers, 36, 
pp.99-110. 

Ohtani, K. (1998), “The exact risk of a weighted average estimator of the OLS and Stein-rule estimators in 
regression under balanced loss,” Statistics and Decisions, 16, pp.35-45. 

Stahlecker, P. and Trenkler, G. (1985), “On heterogeneous version of the best linear and the ridge estimator,”
Proceedings of First Tampere Seminar on Linear Models, pp.301-322. 

Tracy, D.S. and Srivastava, A.K. (1994), “Comparison of operational variants of best homogeneous and 
heterogeneous estimators in linear regression,” Communications in Statistics-Theory and Methods, 23, 
pp.2313-2322. 

Varian, H.R. (1975), “A Bayesian approach to real estate assessment,” Studies in Bayesian Econometrics and 
Statistics in Honor of Leonard J. Savage, in S.E. Fienberg and A. Zellner (eds.), North-Holland, Amsterdam, 
pp.195-208. 

Wan, A.T.K. (1999), “A note on almost unbiased generalized ridge regression estimators under asymmetric loss,” 
Journal of Statistical Computation and Simulation, 62, pp.411-412. 

Zellner, A. (1986), “Bayesian estimation and prediction using asymmetric loss functions,” Journal of the American 
Statistical Association, 81, pp.446-451. 


	EconomicReview56_Part1_Part2_Part2.pdf
	EconomicReview56_Part1_Part3
	EconomicReview56_Part1_Part4
	EconomicReview56_Part1_Part5
	EconomicReview56_Part1_Part6
	EconomicReview56_Part1_Part7



