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RISK PERFORMANCE OF A WEIGHTED AVERAGE
ESTIMATOR
CONSISTING OF THE RIDGE REGRESSION AND OLS
ESTIMATORS UNDER LINEX LOSS

By KAZUHIRO OHTANI*

In this paper, we consider a weighted average estimator consisting of the ridge regression estimator
proposed by Huang (1999) and the ordinary least squares (OLS) estimator, and examine the risk
performance of the weighted average estimator when the asymmetric LINEX loss function is used. It is
shown that when the asymmetry of the loss function is moderate, the weighted average estimator never
has the largest risk among the ridge regression estimator, the OLS estimator and the weighted average
estimator. It is also shown that when the asymmetry of the loss function is severe, the ridge regression
estimator has the smallest risk in a wide region of parameter space.

1. Introduction

Hoer and Kennard (1970) proposed the ridge regression estimator to avoid the problem of
multicollinearity. However, since the ridge regression estimator has a smaller mean squared
error (MSE) than the ordinary least squares (OLS) estimator irrespective of the problem of
multicollinearity when the regression coefficient is close to zero, many researchers have
studied the small sample properties of the ridge regression estimator and its variants. Some
examples are Dwivedi et al. (1980), Ohtani (1986) and Firinguetti (1999).

In regression analysis, there may be a situation where our concern is to estimate a specific
regression coefficient as accurately as possible. Huang (1999) showed such situations and
proposed the ridge regression estimator to estimate a specific regression coefficient. Huang
(1999) further examined the small sample properties of the ridge regression estimator and
showed that the ridge regression estimator has a smaller MSE than the ordinary least squares
(OLS) estimator when the regression coefficient is close to zero.

When the risk performances of the ridge estimator and its variants are examined, the qua-
dratic loss function has usually been used. Since the quadratic loss function is symmetric,
over-estimation and under-estimation have the same magnitude. However, as is shown in
Zellner (1986), in dam construction under-estimation of the peak water level is usually much
more serious than over-estimation. This indicates that the symmetric loss function may not be
appropriate in some situations. From this viewpoint, Variant (1975) proposed the asymmetric
LINEX loss function, and Zellner (1986) extensively discussed its properties. In several stud-
ies on the ridge regression estimator and its variants, the asymmetric LINEX loss function
has been used. Some examples are Ohtani (1995), Wan (1999), Akdeniz and Namba (2003),
and Namba and Ohtani (2010).

*The author is grateful to the JSPS (Japanese Society for the Promotion of Science) for partial financial support
(Grant-in-Aid for Scientific Research).
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In several studies on the risk performance of biased estimators, weighted average estimators
consisting of the OLS estimator and any biased estimator have been used. Some examples
are Stahlecker and Trenkler (1985), Tracy and Srivastava (1994) and Ohtani (1998). How-
ever, the risk performances of weighted average estimators have not been examined under
LINEX loss. In this paper, we consider a weighted average estimator consisting of the ridge
regression estimator proposed by Huang (1999) and the OLS estimator, and examine the risk
performance of the weighted average estimator when the asymmetric LINEX loss function is
used.

The organization of this paper is as follows. In section 2 the model and estimators are pre-
sented. In section 3 the LINEX loss function is shown and the exact formula of the risk func-
tion of the weighted average estimator is derived under the LINEX loss function. In section
4 the risk performance of the weighted average estimator is examined by numerical evalua-
tions, based on the exact formula of the risk function. It is shown that when the asymmetry
of the loss function is moderate, the weighted average estimator never has the largest risk
among the ridge regression estimator, the OLS estimator and the weighted average estimator.
It is also shown that when the asymmetry of the loss function is severe, the ridge regression
estimator has the smallest risk in a wide region of parameter space.

2. Model and estimator
Consider a linear regression model,

y=x161t Xy 6ot e, (1
where y is an n x1 vector of observations on a dependent variable, x; is an n x1 vector of
observations on an explanatory variable, X, is an n x (k — 1) matrix of observations on other
explanatory variables, 3, is a scalar coefficient for x;, 8, is a k — 1 vector of coefficients for
X,, and ¢ is an n x1 vector of error terms. We assume that x; and X, are nonstochastic, the
n x k matrix [x;, X,] is of full column rank, and ¢ is distributed as N(0, o’I,), where I, is an
n x n identity matrix. Without loss of generality, we can assume that §, is a specific regres-

sion coefficient which we want to estimate as accurately as possible.
Setting X =[x, X,] and = [B,, 85 ], the ordinary least squares (OLS) estimator of 8 is

b=X X)X, (2)
and the OLS estimator of 3, is

b= (x1,M2x1)71x1,M2y9 3)
where

My=1,- X, (X3 %) 'X3. 4)
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The distribution of b, is the normal distribution with mean 8, and variance o?/x [ Myx:
by~ N (B, 0°Ix{ Myx,). (5)
Following Huang (1999), the feasible ridge regression estimator of 8, is given by

R 2

pr1= (dﬁ‘ Z—%)‘lx{sz

:( d1b% )bl’ (6)

d,bi+s*

where d,= x| Myx,, s’= (y — Xb) (y — Xb)/v and v = n — k. We simply call the ridge regression
estimator proposed by Huang (1999) the ridge regression estimator hereafter.

Since the ridge regression estimator has a smaller MSE than the OLS estimator when the
parameter defined as 0,= \/dil /o is close to zero and vice versa, one may consider the fol-
lowing weighted average estimator of [2 pand by:

Bi=wh+ (1 - wb, (7)

where w is a constant such that 0 < w < 1. The weighted average estimator is the ridge re-
gression estimator when w = 1, and it is the OLS estimator when w = (. In the next section,
we derive the exact formula of the risk function of the weighted average estimator under the
LINEX loss function.

3. Risk under the LINEX loss function

The LINEX loss function of /3”1‘ is given by

LB =expla(Bi—BD1-a(fi—B1) -1
=3 G- py, (8)

a2 g

vl

where a # 0 is a parameter. When a > 0, the loss of over-estimation is more serious than that
of under-estimation and vice versa. Also, if the value of a is close to zero, the LINEX loss
function is almost symmetric and close to the quadratic loss function. Then, the risk function
of Bt is

R = ELLPBD!
L3 (Cu (=) " ELBD". ©)

0 q
q=2 ql m=
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The m-th moment of [%”f is
E[(BD" = EL[wB+ (1 - w)b))"]
=3 G (L =Wy ELG T B, (10)

As is shown in the Appendix, settingm =2p+5 (5 =0o0r5=1), E[/g;'l’“rbf] is given by

Rp+S —r 1 r _ (N & 67+ 2 s | dpro -1
E[B b] T T(v2) 1‘20(2j+5)! exp(—07/2) 2Py

Zj+3p+25—r—l /2( 1 7Z)v/2—1
[ 1 —+ (V_l )Z]2p+5*r

x]"(j+p+6+(v+1)/2)f(1) dz, (11)

where v=n —k and ,= \/?1 Bi/o. Substituting (11) into (10), and further substituting (10)
into (9), we obtain the exact formula of the risk function.

4. Numerical Analysis

Since the risk function of the weighted average estimator is very complicated, theoretical
analysis of the risk function is difficult. Thus, we examine the risk performance using numer-
ical evaluations, based on the exact formula of the risk function. The parameter values used
in the numerical evaluations are as follows: k=3, 5, 8; n =20, 30, 40; a =—-1.0,- 0.5, - 0.1,
0.1, 0.5, 1.0, w=0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0; 6,= various values. The convergence toler-

ance of the infinite series in (11) is 10~ '

, and the integral is calculated using Simpson’s 3/8
rule with 500 equal subdivisions. Since the result for £ = 3 and n = 20 is typical, we discuss
the result for this case.

The risk performance of the weighted average estimator for @ = 0.1, k =3 and n = 20 is
shown in Table 1. We see from Table 1 that when a = 0.1 (i.e., the asymmetry of the loss
function is not severe) and the value of 6, is close to zero (i.e., |0, <1.0), the risk decreases
monotonically as the value of w increases. [When 8,= — 1.0, the risks for w=10.9 and 1.0 are
the same in Table 1. However, if we show the value of the risk down to six decimal places,
the risk for w= 0.9 is 0.004012 and that for w = 1.0 is 0.003985. Although we show the value
of the risk down to four decimal places to save space, the same applies hereafter.] Since the
weighted average estimator with w = 1.0 is the ridge regression estimator, the best estima-
tor among the weighted average estimators considered here is the ridge regression estimator.
However, when |0,]| >2.0, the risk increases monotonically as the value of w increases. Since
the weighted average estimator with w = 0.0 is the OLS estimator, the best estimator is the
OLS estimator. When the value of 6, is — 1.5, the risk attains a minimum at w = 0.3. This in-
dicates that the best estimator is the weighted average estimator with w = 0.3. Also, when the
value of 9, is 1.5, the risk attains a minimum at w = 0.5. This indicates that the best estimator
is the weighted average estimator with w = 0.5. As a whole, when the asymmetry of the loss
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Table 1
Risk of the weighted average estimator under the LINEX
loss function for a = 0.1, k=3 and n =20

w
0, 0 1 3 5 ki 9 1.0
~10.0 10050 10050 0051 0051 0051 0052 10052
-9.0 10050 10050 0051 0051 0052 0052 .0053
-8.0 10050 10050 0051 0051 0052 .0053 .0053
-7.0 0050 0050 0051 0052 0053 0054 0054
-6.0 0050 0051 0051 0052 0053 .0055 .0055
-5.0 0050 0051 0052 0053 0055 10056 0057
45 0050 0051 0052 0054 0056 0058 10059
—4.0 0050 0051 0053 0054 0057 0059 0061
35 10050 0051 0053 0055 .0058 0061 .0063
-3.0 10050 0051 0053 0056 .0059 0062 0064
25 0050 0051 0053 0055 .0059 .0062 .0064
2.0 0050 0050 0052 0053 0056 10059 0061
-15 0050 0050 0049 0049 10050 0051 0052
-1.0 0050 0048 0045 0043 0041 10040 10040
-5 10050 0047 0042 0037 0033 .0030 10029
0 10050 0047 0041 0035 .0030 10026 0024
5 10050 0047 0042 0037 0033 .0030 10029
1.0 0050 0048 0045 0043 0041 .0040 .0039
15 0050 0049 10049 0048 0049 10050 10050
2.0 0050 0050 0051 0052 0054 0056 0058
2.5 0050 0051 0052 0054 0056 10059 0061
3.0 0050 0051 0052 0054 0056 .0059 0061
35 10050 0051 0052 0054 0056 0058 10059
4.0 10050 0051 0052 0053 0055 0057 .0058
45 0050 0050 0051 0053 0054 .0055 0056
5.0 0050 10050 0051 0052 0053 0054 0055
6.0 10050 0050 0051 0051 0052 0053 0053
7.0 0050 0050 0051 0051 0052 0052 0053
8.0 0050 0050 0050 0051 0051 0052 0052
9.0 10050 10050 0050 0051 0051 0051 0051
10.0 10050 10050 0050 0051 0051 0051 0051

function is not severe, the ridge regression estimator (w = 1) or the OLS estimator (w = 0) has
the smallest risk, except for some values of 6.

The risk performance of the weighted average estimator for a = 0.5, k =3 and n = 20 is
shown in Table 2. We see from Table 2 that when a = 0.5 (i.e., the asymmetry of the loss
function is moderate) and the value of 8, is close to zero (i.e., |6] <1.0), the risk decreases
monotonically as the value of w increases. This indicates that the best estimator among the
weighted average estimators considered here is the ridge regression estimator. However,
when 0, < — 2.0, the risk increases monotonically as the value of w increases. This indicates
that the best estimator is the OLS estimator. When 6,= — 1.5, the risk attains a minimum at w
= 0.3. Also, when 1.5 < 6,<7.0, the risk attains a minimum at w = 0.1, 0.3, 0.5 or 0.7. Com-
paring Tables 1 and 2, we see that when the degree of asymmetry of the loss function increas-
es from a = 0.1 to 0.5, the region where the ridge regression estimator or the OLS estimator
is best gets narrow. If we use a weight of 0.5 (i.e., w = 0.5), the risk of the weighted average
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Table 2
Risk of the weighted average estimator under the LINEX
loss function for a = 0.5, k=3 and n =20

w

0, 0 1 3 5 ki 9 1.0
~10.0 1331 1341 1362 1384 1408 1433 1446
-9.0 1331 1343 1367 1392 1420 1449 1465
-8.0 1331 1345 1373 1404 1436 1472 .1490
-7.0 1331 1347 1382 1419 1460 1504 1527
-6.0 1331 1351 1394 1442 1494 11550 1580
-5.0 1331 1357 1414 1477 1547 1623 1664
45 1331 1361 1427 1501 1583 1674 1723
—4.0 1331 1366 1442 1529 1626 1735 1793
35 1331 1370 1457 1557 1670 1798 1867
-3.0 1331 1372 1465 1573 1698 1841 1919
25 1331 1367 1452 1555 1678 1820 .1899
-2.0 1331 1351 1404 1476 1569 1684 1750
-15 1331 1321 1314 1326 1359 1413 .1448
-1.0 1331 1284 1202 1138 1093 1068 1063
-5 1331 1253 1110 0984 0875 0784 0745
0 1331 1242 1078 0931 .0800 0687 0636

5 1331 1254 1113 .0990 0884 0794 0756
1.0 1331 1279 1187 1113 1056 1015 .1000
15 1331 1304 1260 1233 1222 1225 1232
2.0 1331 1320 1309 1312 1328 1357 1376
2.5 1331 1329 1332 1346 1372 1409 1431
3.0 1331 1331 1338 1353 1378 1412 1432
35 1331 1331 1336 1348 1368 1395 1411
4.0 1331 1330 1332 1341 1355 1374 1386
45 1331 1329 1329 1334 1343 1357 1366
5.0 1331 1329 1326 1328 1334 1343 1350
6.0 1331 1328 1323 1321 1322 1326 1329
7.0 1331 1328 1322 1318 1316 1317 1318
8.0 1331 1328 1321 1316 1313 1311 1311
9.0 1331 1328 1321 1315 1311 1309 1308
10.0 1331 1328 1321 1315 1311 1307 1306

estimator is never the largest among the ridge regression estimator, the OLS estimator and
the weighted average estimator with w = 0.5. This indicates that when the asymmetry of the
loss function is moderate, the use of the weighted average estimator with w = 0.5 can avoid a
situation where we may have the maximum risk.

The risk performance of the weighted average estimator for @ = 1.0, k =3 and n = 20 is
shown in Table 3. We see from Table 3 that when a = 1.0 (i.e., the asymmetry of the loss
function is severe) and 6, < — 2.0, the risk increases monotonically as the value of w increas-
es. This indicates that the best estimator is the OLS estimator. Also, when 8, = — 1.5, the risk
attains a minimum at w = 0.3. However, when 8, > — 1.0, the risk decreases monotonically as
the value of w increases, except for §, = 2.5. This indicates that when the asymmetry of the
loss function is severe, the ridge regression estimator has the smallest risk in a wide region of
0.

The risk performance of the weighted average estimator for a =— 1.0, k=3 and n = 20 is
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Table 3
Risk of the weighted average estimator under the LINEX
loss function for a = 1.0, k=3 and n =20

w
0, 0 1 3 5 7 9 1.0
-10.0 .6487 6571 6747 .6932 7126 7331 7437
-9.0 6487 .6583 6784 .6998 7224 7462 7587
-8.0 6487 .6599 6835 7086 7354 7640 7789
-7.0 6487 6621 .6904 7209 7537 7889 8074
-6.0 6487 6652 7004 7388 7806 8259 .8500
-5.0 .6487 .6697 7154 7660 8219 .8836 9167
4.5 6487 6727 7252 7840 .8497 9228 9623
—4.0 .6487 .6759 7359 .8039 .8807 9669 1.0138
-3.5 6487 6784 7447 .8208 9078 1.0065 1.0606
-3.0 6487 6785 7458 8246 9161 1.0213 1.0795
-2.5 6487 6734 7309 .8008 8842 9823 1.0373
-2.0 6487 6610 .6936 7383 7961 8681 .9098
-1.5 .6487 6421 6365 6421 6594 .6893 7092
-1.0 6487 6218 5755 5393 5135 4984 4949
-5 .6487 .6074 5324 4671 4114 .3649 3451
.0 6487 .6034 5208 4480 3843 3292 .3047
5 6487 .6091 5375 4755 4224 3774 3578
1.0 6487 6191 5670 5237 4886 4609 4497
1.5 6487 16285 5941 5675 .5479 .5348 .5305
2.0 .6487 .6348 6120 .5956 5851 .5800 5794
2.5 6487 .6382 6212 .6094 6024 5998 .6001
3.0 .6487 .6398 6251 6146 .6079 .6049 .6047
35 6487 .6405 .6266 6161 .6087 .6043 .6032
4.0 6487 .6409 6273 6165 .6083 6025 .6006
4.5 6487 6412 6278 6168 .6080 6012 5986
5.0 6487 6415 .6284 6173 .6081 .6006 5976
6.0 6487 .6420 6297 6188 .6094 .6012 5976
7.0 6487 .6425 6310 .6206 6113 .6030 .5993
8.0 .6487 .6430 16323 .6224 6134 .6053 .6015
9.0 6487 .6434 .6334 6241 6155 .6076 .6039
10.0 6487 6438 .6344 6257 6175 .6098 .6062
shown in Table 4. We see from Tables 3 and 4 that the results for a = — 1.0 can be obtained

from the results for a = 1.0 in Table 3 by exchanging the sign of §,. For example, the risk for
6,= 1.0 in Table 4 is the same as the risk for §;=— 1.0 in Table 3. Thus, reversing the sign of 4,
we can discuss the results for a < 0 in a parallel way to the results for a > 0.

Appendix

In this appendix, we derive the formula (11). Setting u,= Yd, b,/o and uy= (y — Xb) ' (y —
Xb)/o?, u, is distributed as N(\'d, B,/o, 1) and u, as the chi-square distribution with v =n—k
degrees of freedom. Using u, and u,, b, and 8, can be written as
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Risk of the weighted average estimator under the LINEX

Table 4

loss function for a =-1.0, k=3 and n =20

w
0, 0 1 3 5 7 9 1.0
—10.0000 .6487 .6438 .6344 .6257 6175 .6098 .6062
—-9.0000 .6487 .6434 .6334 .6241 .6155 .6076 .6039
—8.0000 .6487 .6430 .6323 .6224 .6134 .6053 6015
—7.0000 .6487 .6425 .6310 .6206 6113 .6030 5993
—6.0000 .6487 .6420 .6297 .6188 .6094 6012 .5976
—5.0000 .6487 .6415 .6284 6173 .6081 .6006 .5976
—4.5000 .6487 .6412 6278 .6168 .6080 .6012 .5986
—4.0000 .6487 .6409 .6273 .6165 .6083 .6025 .6006
—-3.5000 .6487 .6405 .6266 .6161 .6087 .6043 .6032
-3.0000 .6487 .6398 .6251 .6146 .6079 .6049 .6047
—2.5000 .6487 .6382 .6212 .6094 .6024 5998 .6001
—2.0000 .6487 .6348 .6120 .5956 5851 .5800 5794
—1.5000 .6487 .6285 5941 5675 .5479 .5348 .5305
—1.0000 .6487 6191 .5670 5237 4886 4609 4497
—-.5000 .6487 .6091 5375 4755 4224 3774 3578
.0000 .6487 .6034 .5208 4480 3843 3292 .3047
.5000 .6487 .6074 .5324 4671 4114 3649 3451
1.0000 .6487 6218 5755 .5393 5135 4984 4949
1.5000 .6487 .6421 .6365 .6421 .6594 .6893 7092
2.0000 .6487 .6610 .6936 7383 7961 .8681 9098
2.5000 .6487 .6734 7309 .8008 .8842 .9823 1.0373
3.0000 .6487 .6785 7458 .8246 9161 1.0213 1.0795
3.5000 .6487 .6784 71447 .8208 .9078 1.0065 1.0606
4.0000 .6487 .6759 7359 .8039 .8807 9669 1.0138
4.5000 .6487 6727 7252 7840 .8497 9228 9623
5.0000 .6487 .6697 7154 7660 .8219 .8836 9167
6.0000 .6487 .6652 7004 7388 7806 .8259 .8500
7.0000 .6487 .6621 .6904 7209 1537 7889 .8074
8.0000 .6487 .6599 .6835 .7086 71354 7640 7789
9.0000 .6487 .6583 .6784 .6998 7224 7462 71587
10.0000 .6487 .6571 .6747 .6932 7126 7331 7437
O

b= T uy, (12)

s (oNd)ui 13

T (1)

Thus, we have

E[B™ " by

= E[(

wHu, v

mf f°° (U +uy /o)™ rx/l_ex‘p[ (uy - 6,)°/2]

(oNd, )ui \m -

) )]

3(m rytr
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1 -
X 2T (w2) uy?~ lexp(— uy/2)du, du,

3m 2r v/2 1

= K s @l (= 607 2exp (- uy/2)dio du (14)
where

o

m 1
K= (W) 2PN T(v2)"

Using Maclaurin’s expansion, exp(6,u;) = Siq(0;u;)/i!, (14) reduces to

=3 i uitIm-2ry 2]
2 —'1 exp(— 0]/2)f foo( " )m — 2 __exp[- (u%+u2)/2]du|du2. (15)

The integral part in (15) is written as follows:
0 oo ut+3m 2;u\/2 1
L2 ex uytu,)/2) dudu
f 0 WETLAYT pl— (ui+us)/2] duydu,

1+3m 2r v/2 1
f foo WA )m MW expl— (uitu,)/2] duydu,. (16)

Since u}/(u?+ u,/v) <1 and u, > 0 in the first term in (16), we have
f f l+3m 2r v/2 1 ox [7 (u2+u )/2] du du
e TV )m — exp 17Uy 19Uy

:foofoo (u )m 7 u2) t+3m 2r, \2/2 1 exp [— (u%—i—uz)/z] d”lduz
0 (MZ+M /V)m r

_f f ul™ expl— (u+u,)/2] duydu,

= Ooou ™ exp (—u?) dul uz exp (= up/2)du,. (17

Since the integrals in (17) are the kernels of the moments of the normal and chi-square distri-
butions, the first term in (16) exists. In a similar way, we can show that the second term in (16)
exists.

When both m and i are even numbers, and when both m and i are odd numbers, the inte-
grand in (15) is an even function. Since the integral exists and the integrand is an even func-
tion, (15) can be written as

0 utl+3m Zru v/2-1

0 m exp[— (u1+uz)/2]duldu2 (18)

© ei )
25K Fepoain
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When m is an even number and 7 is an odd number, and when m is an odd number and i is
an even number, the integrand in (15) is an odd function. Since the integral exists and the in-
tegrand is an odd function, the integral in (15) reduces to zero. Thus, the integral in (15) can
be evaluated by calculating (18).

Puttingm =2p+ o6 andi=2j+6 (6 =0 or 1), (18) is written as

2+5
2 21((2 5 exp(—6°12)
[N e (- () 2] (19)

(u3+u, /v)2p+5 g
Using the change of variable, 7, =u%, (19) reduces to

32011221

K tarru s e @t 2 dndu, (20)
where
92 j+8 )
K; = K(z 1 5)1 S 01/2). Q1)

Further using the change of variables, ¢, = 7,+u, and #, = 7,/u,, and manipulating some calcu-
lations, (20) reduces to

LD 32612

i fO f (1+l )]+p+§+(v+1)/2(t +1/v)2p+5 — €xXp (— t /2) dlzdtl, (22)

Using the gamma function, (22) is expressed as

2’00 I{;k 2j+p+($+(v+l)/21—~(]-+p+6+(v_+_1)/2)
=

0 t/+3p+25 —1/2
Xfo (I, y 7o O )77 dt,,

(23)

Finally using the change of variable, z = 1,/(1+t,), (23) reduces to (11) in the text.
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