<RNEL

;f Kobe University Repository : Kernel

R
S
4oge

PDF issue: 2026-01-27

R&D Efficiency and Collaboration Networks

Okatani, Ryoji
Takauchi, Kazuhiro

(Citation)
Kobe University Economic Review, 56:33-56

(Issue Date)
2010

(Resource Type)
departmental bulletin paper

(Version)
Version of Record

(JaLCDOI)
https://doi.org/10.24546/81002757

(URL)
https://hdl. handle. net/20.500. 14094,/81002757

KOBE

\j].\]\'l:lihl'[ Y
J

%)



Kobe University Economic Review 56 (2010) 33

R&D EFFICIENCY AND COLLABORATION NETWORKS*

By RYOJI OKATANI' AND KAZUHIRO TAKAUCHT

We investigate the relationships between collaboration networks and the efficiencies of R&D and
collaboration. In our model, there are three firms, and firms’ collaboration patterns are represented by
networks. Since the number of firms is three, there are four possible shapes for collaboration networks
(1) the complete network, (2) a star network, (3) an exclusive network, and (4) the empty network.
Firms engage in Cournot competition, and we obtain four results on competition in the four respective
networks. We show which network shapes are stable and optimal with respect to the efficiencies of
R&D and collaboration.

Keywords: R&D, Collaboration, Network,; Pairwise stability

1. Introduction

In a highly technological good market, firms face keen competition. Firms are going to
obtain a large share of the market, because if a firm obtains a large share, then its product be-
comes the standard of the market, and the firm becomes large. To increase sales, firms make
efforts to lower their production costs. Such efforts are considered as research and develop-
ment (R&D). We consider that such an R&D activity is an important aspect of competition in
the market. In such a market, we often observe that a few firms compete. Furthermore, since
such a product requires a high level of technology, we also observe that firms collaborate
with others to develop their production technology. We consider that a collaboration among a
few firms is also an important aspect in competition.

To consider the two aspects noted in the above, we introduce two parameters that represent
the efficiencies of technology and collaboration. Technological efficiency represents how
much investment is needed to reduce the production cost. If technological efficiency is high,
then cost reduction requires a small amount of investment. On the other hand, collaboration
efficiency represents whether and by how much collaboration with other firms decreases a
firm’s investment cost. If collaboration efficiency is high, then collaboration among firms can
significantly decrease investment costs. We study the relationships among market outcomes,
collaborations, and the efficiencies of technology and collaboration.

Much of the recent industrial organization literature considers firms’ collaboration patterns
as networks. A collaboration between two firms is denoted by a link, and a set of all such
links, i.e., a network, represents a collaboration pattern among firms. For example, Goyal and
Moraga (2001) and Goyal and Joshi (2002) study R&D collaboration among firms by using
network formation games. In the empirical literature, Powell, White, Koput, and Owen-Smith
(1996) investigate collaboration networks in the biotechnological sector. Their focuses are
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Figure 1: Four shapes of networks formed by three firms

the shapes of collaboration patterns, the resources that cause the shapes, and how market out-
comes are affected by the resources and shapes. We also focus on these issues using a three
stage game in which firms choose their collaboration partners and levels of R&D, and then
engage in Cournot competition.

In our model, there are three firms, and accordingly there are four possible shapes for col-
laboration networks, as shown in Figure 1: (1) the complete network, in which each firm
collaborates with the other two firms, (2) a star network, in which there is one hub firm that
collaborates with the other two firms and there are two firms that collaborate only with the
hub firm, (3) an exclusive network, in which there is one pair of firms that collaborate with
each other and there is one firm that does not collaborate at all, and (4) the empty network,
in which there is no collaboration. We show the conditions for which a network is pairwise
stable and/or optimal, and that, for any network, there exist ranges of parameters for which
the network is pairwise stable and optimal.

The present paper is closely related to Song and Vannetelbosch (2007). They show that
the complete network is pairwise stable in similar settings to ours. In their model, if a firm
collaborates with others, then the collaboration necessarily lowers the cost of R&D. In our
model, if collaboration efficiency is high, then the collaboration necessarily lowers the cost
of R&D. Besides the efficiency of collaboration, we also show that, if R&D is very costly,
then the complete network, which is pairwise stable, maximizes social welfare.

By separating the efficiency of R&D into technological and collaboration efficiency, we ob-
tain results that have implications for policy for R&D investment. According to our results,
if R&D for highly technological good production is very costly, although a policy for pro-
moting individual firms’ R&D seems to increase social welfare, it possibly decreases social
welfare, whereas a policy for promoting collaboration increases social welfare. Therefore, a
policy for promoting R&D should be targeted towards collaboration among firms since the
complete network or the star network is formed and is optimal when the policy sufficiently
lowers the cost of collaboration.

This paper is organized as follows. Section 2 provides the model. Section 3 shows the
outcomes of Cournot competition. Section 4 shows the pairwise stable networks. Section 5
shows the optimal networks. Section 6 shows conditions under which networks are stable and
optimal. Section 7 concludes.
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2. Model

Firms

Let N = {1, 2, 3} be the set of firms. The firms face the (inverse) demand function defined
by p(Q) = a — Q, where a > 0 is a constant and Q is the fotal production of firms in the mar-
ket. Let ¢; > 0 denote the production of firm 7, and the profile of firms’ productions be denoted
by ¢ =(q,, ¢, q3)- We assume that all firms have the same marginal cost, which is constant.
Let ¢ be the marginal cost of production, and we suppose that a > ¢. Each firm can reduce the
marginal cost by doing research and development (R&D). Let x; denote the cost reduction
of firm i, and a profile of firms’ cost reductions be denoted by x =(x;, x5, x3). If firm i’s cost
reduction is x;, then firm i reduces the marginal cost ¢ to ¢ —x;. When a firm’s cost reduction
is x;, the firm incurs an investment cost, which depends on x;. The investment cost function is
specified in the following.

Networks and the R&D cost function

Each firm can collaborate with other firms to obtain the cost-reducing technology that other
firms own. If a firm collaborates with another firm, then the firms make changes in their in-
vestment cost functions. To specify how firms that collaborate with each other change their
investment cost functions, at first, we introduce collaboration networks. Let ij ={i, j} C N
denote that firms i and j collaborate with each other. We refer to ij as the collaboration link
ij or, simply as the link ij. Let g = {ij : i, j € N, i #} denote the set of all links. We call g"
the complete network, and a network is denoted by g  g". Let G be the set of networks. For
example, {12, 23} is a network, where firms 1 and 2 are linked, and firms 2 and 3 also are
linked. We denote the neighborhood of firm i, which is a set of directly linked firms, by N/(g)
={j € N:ij € g}. We refer to an element of a neighborhood as a neighbor. For example,
N,({12,23})={1, 3}, i.e., firms 1 and 3 are neighbors of firm 2. Let 1, (g) denote the number
of firm #’s neighbors in network g.

Next, we specify the collaboration by which each firm changes its investment cost. Let ¢(x,)=
yx?/2 denote firm i’s investment cost function, where y > 0 is a constant. We call 1/y the level
of technological efficiency. The higher the level of technological efficiency, the lower the
investment cost per cost reduction. We assume that all firms have the same investment cost
function for cost reductions. However, the investment costs that firms face need not be same
even if cost reductions are the same, because investment costs also depend on their positions
in the network as follows. When firm i whose cost reduction is x; has n,(g) neighbors, the firm
incurs the investment cost, 8(n,(g)) @(x;), where

o ifni(g) 1,
1 otherwise

B(ni(g)) =

and o > 0, which is a constant, represents the intensity of synergy and congestion effects in
collaboration. Let y(x;, n(g)) = B(n(g)) @(x;) denote the R&D cost function. When a firm
collaborates with another firm and if « is sufficiently low, then 8(n; (g)) < 1. Then, a col-
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laboration reduces the investment cost, indicating that the synergy effect is larger than the
congestion effect. On the contrary, when « is sufficiently high, then 8(; (g)) > 1. Then, a col-
laboration increases the investment cost, indicating that the congestion effect is larger than
the synergy effect. We call 1/« the level of collaboration efficiency.

Independent of whether « is high or low, if firms 7 and j collaborate, then each of them ob-
tains its collaboration partner’s technology, and enjoys a lower investment cost. The invest-
ment costs monotonically decreases in the number of neighbors. This monotonicity is simply
represented by 1/(n(g)+1).

The profit function
We define the profit function as follows. Let i; be firm i’s profit function, which is defined

by
7:(g, %, 8) = (p(Q) — (¢;— X)) ¢;— v (x;, n,(2))

We also denote the profit simply as 7; (g).

3. Cournot competition with cost reductions

This section analyzes an oligopolistic market in which three firms engage in Cournot
competition with cost reductions. One of our main concerns is which collaboration pattern
emerges in the market. We consider the networks that emerge to be stable networks. To ana-
lyze which network emerges, we need to derive firms’ profits for each of the networks. In the
following, therefore, we study the game of Cournot competition with cost reductions. The
game is a two-stage perfect information game.

3.1 Game
Stage 1

The strategy of firm i is the cost reduction x;. Since the coefficient of firm i’s R&D cost
function depends on the network, the cost reduction depends on the network. Let x =(x, x,,
x3) denote the profile of all firms’ cost reductions. This strategy decides the R&D cost y(x;,
n(g))-
Stage 2

All firms know the profile of cost reductions decided in Stage 1. Firms engage in Cournot
competition under the cost reductions. Each firm chooses its production ¢; to maximize its
profit 7 (q;, q_;, x, g) subject to the other firms’ given levels of production ¢_,. Firm i’s produc-
tion is a function g,(q_;, x, g), or simply, ¢{g). ¢ = (¢;, ¢,, q3) denote the profile of all firms’
production levels.

3.2 Equilibria
This subsection shows the four results for the subgame perfect Nash equilibria of this two-
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stage game. Since the number of players is three, there are four possible network shapes: (1)
the complete network, (2) stars including everyone, in which two links are formed and no
other link exists, (3) exclusive networks, in which one link is formed and one player is iso-
lated from the link, and (4) the empty network, in which no link exists. Hence, we obtain four
results for Cournot competition.

When firm i collaborates with another firm, 8,(n(g)) = ay/(n(g)+1). Therefore, many of the
outcomes (quantities, cost reductions, and profits) include ay, as we can see in the following.
We define 6 = ay, and we call 1/6 the R&D efficiency. The higher the level of R&D efficien-
cy, the lower the cost of R&D, i.e., R&D is “efficient”. On the contrary, R&D is “inefficient”
if R&D efficiency is sufficiently low. To guarantee that production is positive in equilibrium,
we assume that § > 27/8 and y > 9/8. Let §, = 27/8 and y, = 9/8.

The following subsections solve the game backwardly.

3.2.1 Stage 2
Firms decide their production levels. For all firms 7, given the other firms’ production levels
q_;, the cost reductions x = (x,, x,, x3), and the network g, the profit functions are

/(4 4 % @) = (P(Q) = (c = X)) q; =y (x;, ni(2)).
In equilibrium, all firms i produce
q; (1) = (d + 35— x5~ %) /4,

where d = a — c. It is clear that the more firm 7 reduces the cost, the more its production in-
creases, and the more other firms reduce their costs, the more firm i’s production decreases.

3.2.2 Stage 1

Firms decide their cost reductions. Since the coefficient of the R&D cost depends on the
number of collaboration links the firm has, we calculate Nash equilibria in the complete, a
star, an exclusive, and the empty network, respectively.

The complete network

In the complete network, all firms have two neighbors. So, their profit functions are the
same as

7:(q" (), x;, €)= (p(0) — (¢ — X)) q; (x) — 6x7/6.

In equilibrium, for all firms i, cost reductions are

x’;(gN):g(?—g-

Output and profits are
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* = 2d6d do. _ 6(86-27)d?
7, 85-9 (&) 2(86—9)
A star network

Suppose that firm i collaborates with firms j and %, and firms j and & do not collaborate. Let
g’ = {ij, ik} be the network, which is a star. Firm i is the hub of the star network, and we de-
note firm 7 as firm AH. Firms j and k are in periphery of the star, and we denote firms j and & as
firm P. The profit functions of the hub firm H and periphery firms P are

17 (4 (), %, €)= (P(Q) = (¢ = x) gy () — 67, /6 and
7p (4" (), %, €)= (P(Q) = (¢ = xp))gp (¥) = Oxp /4.

In equilibrium, the cost reductions of the hub firm and periphery firms are

. -3 . 326-9)4d
¥ (&) =357 306+ 27 4 ¥r (&) =557 3954 27

The outputs of the hub firm and periphery firms are

s 28(8-3)d . 825-9d
911(8) = 557395+ 27 4 4r (€) =557 305+ 27"

Thus, the profits of the hub firm and periphery firms are

5(85—27)(5— 3)%d>
2(867— 395+ 27)

6(46-9) (26— 9)2d2.

andﬂP (g): 4(862_ 395_,’_27)2

(@)=

An exclusive network

Suppose that firms i and j collaborate with each other, and firm & does not collaborate with

any others. Let g° ={ij} be the network, which is an exclusive network. We denote the linked

firms i and j as firm L, and the isolated firm £ as firm /. The profit functions of linked firms L
and the isolated firm [/ are

71, (g (), %, 8 = (p (Q) = (= x1)) g1 (¥) ~ 6x], /4 and
(g (@), x, 8= (p (0) — (¢ — X)) g (x) — yx7 /2.

In equilibrium, the cost reductions of the linked firms and the isolated firm are

32y —3)d

e 3(28 - 3)d
X&) = g5 0512719

86y- 95— 12y+9

and Xj €)=

The outputs of the linked firms and the isolated firm are
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e 3Qy-3)d o e 2y(5-3)d
9@ = g5, 05 12y+9 M49E) =55 "9 12,79

The profits of the linked firms and the isolated firm are

_ - 272 _ _ 292
5(45-9) (2y 3)d2andm(ge): y(87-9) @ 3)d2.
488y 95— 127+ 9) 2(88y— 95— 12y+9)

7 (8=

The empty network
Suppose that no firm collaborates. Let g© denote the network, which is the empty network.
For all firms 7, the profit functions are

7 (g (%), %, €%) = (0 () — (¢ —x) ¢ () — yx/2.

In equilibrium, the cost reductions are x: %) = 3d/(8y — 3). Then outputs and profits are

_ oy _ y(8y—9)d>
q: (g% = 3andn,< %) e

4. Pairwise stability

This section studies stable networks. “Stable” means that no player has an incentive to alter
the network by forming or severing his available links. So we can consider that a stable net-
work emerges in the market. There are several definitions of network stability in the strategic
network formation literature.”” Among them, pairwise stability, introduced by Jackson and
Wolinsky (1996), is widely used. A network is pairwise stable if no player has an incentive
to sever an existing link, and no pair of players has an incentive to form a new link between
them.

For example, the complete network is pairwise stable if no firm gains by severing one link,
which alters the complete network to a star network. If a firm in the complete network severs
one link, then the position of the firm becomes a periphery in a star network. Hence, if the
profit in the complete network, s, ("), is greater than the profit of a periphery in a star, zp
(&), i.e., w; (&) > 7p (%), then firm i does not sever a link, and we can consider the complete
network to have emerged in this market.

Formally, a network g is pairwise stable if for all firms i and j, i #,

(i) i () >, (g — i) if j € g, and
(i) ; (g+i)) > 1, (&) =, (¢+i) <7, (8) if i E &,

1) Goyal (2007) introduces many definitions of network stability.
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where g—ij =g\ {i,j} and g+ ij=g U {i, j}.
The profits in networks, which are shown in the above section, are summarized as follows.

Fact 1. The profits in the complete network, a star network, an exclusive network, and the
empty network respectively are

v 5(85-27)
m (g )—m,

5(86—27)(6 — 3) 5(45—9)(25 - 9y

71 (€)= S g5 305+ 277 " &) T 4557395+ 277
oy 8(@48-92y =3 e  yBy-9)(E-3)
&)= 1 Rey—05- 127+ 97 €) T 3@y 95— 127 + O
o, _y@y-9)

where we omit d°, the coefficient of all profits.
Thus, the conditions for pairwise stability for all networks are as follows.

Fact 2. (i) The complete network is pairwise stable if ; (g") > 7 (g°).

(ii) A star network is pairwise stable if 7, (g") > 7, (g°), 7p () > 7;(g°), and 7p (g°) > 7, ().
(iii) An exclusive network is pairwise stable if s, (¢°) > 7;(¢°) and [, (g°) > 7y (¢°) or 7, (£°%)
>7p ()]

(iv) The empty network is pairwise stable if 7, (g%) > 7, (°).

By using facts 1 and 2, we can find the ranges of R&D efficiency and technological effi-
ciency over which networks are pairwise stable.

Proposition 1. (i) The complete network is pairwise stable if R&D efficiency is low
(5 < as0507).

(ii) A star network is pairwise stable if R&D efficiency is not so low (5 € (s51ser> 35565)) and
technological efficiency is in a interval that depends on R&D efficiency.

(iii) Exclusive networks and the empty network are pairwise stable for all R&D efficien-
cies. If technological efficiency is sufficiently high or low, then an exclusive network is pair-
wise stable, and if technological efficiency is in a middle range, then the empty network is
pairwise stable.

All proofs are collected in the Appendix.

5. Optimality

This section shows the optimal network. We measure network optimality using social wel-
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fare. We denote the social welfare by S(g), which is defined by

_ 3

The first term of the right hand side is consumer surplus, and the second term is the sum of
all firms’ profits.
The social welfares for equilibria in networks are summarized as follows.

Fact 3. The social welfares in the complete network, a star network, an exclusive network,
and the empty network are respectively

605816
)" 2850y
605 5435° + 14585°— 9726

S(e) = 2(86Z 395+ 27) ’
gty = 200 526 +36)y 2+ (43674786-27)y+245%275)
2(85y— 127— 95 + 9)?
@, 00y*-27y

S(g )_ 2(87/*3)2 5

where we omit d?, the coefficient of all social welfares.

If a network provides the highest social welfare, then we call the network is optimal. For-
mally, a network g is optimal if S(g) > S(g") for all g" € G\{g}.?

We can find the ranges of technical and R&D efficiencies in which a network is optimal.

Proposition 2. (i) The complete network is optimal if R&D efficiency is low (3 <53555:), and
collaboration efficiency is high (z>%)

(ii) A star network is optimal if R&D efficiency is high (3 € ssas» 33-5)) and the technologi-
cal efficiency is in an interval that depends on R&D efficiency.

(iii) An exclusive network is optimal if technological efficiency is low for all R&D efficien-
cies.

(iv) The empty network is optimal if R&D efficiency is low (5 <¢5) and technological ef-
ficiency is high.
6. Compatibility

This section investigates compatibility between stability and optimality. We can consider
that the market is well-worked if a network is pairwise stable and optimal. From propositions

2) In the present paper, the term “efficient” appears frequently. Hence we avoid referring to the condition as strong
efficiency, which is used by the network literature.
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1 and 2, we obtain the following results. All of them say that, for each network, there is a
range of parameters in which the network is pairwise stable and optimal.

Corollary 1. The complete network is pairwise stable and optimal if the R&D efficiency is
low (3 < 539555) and collaboration efficiency is high (z>3).

Corollary 1 says that no matter how costly the cost decreasing technology is (y is suffi-
ciently large), if the synergy effect of collaboration is high, then all firms collaborate with all
other firms and social welfare is maximized. Furthermore, in this range of §, social welfare
is increasing in §. Therefore, if collaboration efficiency rises and R&D efficiency remains in
the range, the complete network remains pairwise stable and optimal, and social welfare in-
creases.

Corollary 2. A star network is pairwise stable and optimal if R&D efficiency is not so low
(3 € 59z 5535¢5)) and technological efficiency is not so high or low, which depends on R&D
efficiency.

Note that, in the above range of 1/9, the social welfare of a star network is increasing in J,
and therefore, social welfare sharply decreases if R&D efficiency increases.

The next two corollaries say that if the cost reducing technology is not costly, then collabo-
rations are not necessary.

Corollary 3. An exclusive network is pairwise stable and optimal if technological efficien-
cy is sufficiently high for all R&D efficiencies.

Corollary 4. The empty network is pairwise stable and optimal if R&D efficiency is low
(5 <45) and technological efficiency is high depending on R&D efficiency.

7. Concluding Remarks

We have studied strategic network formation in a market where firms engage in Cournot
competition with cost reductions when the number of firms is three. We have shown that for
each network, there exist ranges of parameters for collaboration efficiency, technological ef-
ficiency, and R&D efficiency, over which the network is pairwise stable and optimal. Accord-
ing to the results, we discuss implications for government policy that promotes R&D.

The complete network is pairwise stable and optimal if R&D efficiency is low, i.e., R&D
is inefficient, but collaboration efficiency is high, i.e., collaboration is efficient, as shown by
corollary 1. Moreover, in the complete network, social welfare is monotonically increasing in
R&D efficiencies. Therefore, if the government adopts a policy that promotes collaboration
among firms, e.g., a subsidy for collaboration, social welfare will increase. Therefore, when
R&D efficiency is sufficiently low, by promoting collaboration among firms, which raises
collaboration efficiency, the complete network remains stable and optimal, and social welfare
increases.

A star network is pairwise stable and optimal if R&D efficiency is high and technological
efficiency is not so high or low, i.e., the cost reducing technology is neither so efficient nor
so inefficient, as shown by corollary 2. In this range of R&D efficiency, if the government
adopts an R&D promoting policy, it sharply decreases social welfare. If the policy applies to
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cost reduction, which increases technological efficiency, then the stable network may alter to
an exclusive network. In many of such cases, no matter whether an exclusive network is also
optimal, social welfare is low, compared with that of the star network formed before adopting
the policy since social welfare in a star network that is pairwise stable is very high. That is,
when a star network is formed, it is difficult to use the promotion of R&D to increase social
welfare.

An exclusive network is pairwise stable and optimal if the technological efficiency is suf-
ficiently high, i.e., the cost reducing technology is efficient, as shown by corollary 3. Hence,
when we are concerned with a highly technological good production, which may imply that
the technological efficiency is sufficiently low, then there is a room for a policy that promotes
R&D to improve social welfare since an exclusive network is not optimal. For example,
when y = 4, the exclusive network is never optimal. Furthermore, there also exist ranges of
parameters such that the empty network is pairwise stable and optimal. However, if a govern-
ment adopts an R&D promoting policy that sufficiently raises collaboration efficiency, then
the complete or a star network is pairwise stable and optimal, and social welfare after adopt-
ing the policy is greater than before adopting the policy.

We have studied the case of three firms. The general n firms case remains as a matter to
be studied further but how far this approach can be extended is unclear because of the great
complexity of network formation.

Appendix A: Proof of Proposition 1

A.1 The case that the complete network is pairwise stable

We find the range of R&D efficiency, d, in which the complete network is pairwise stable.
In the complete network, since all firms have all of the possible links, firms cannot form a
new link. Hence, the complete network is pairwise stable if no firm has an incentive to sever
a link. If a firm severs a link, then the complete network becomes a star network, and the
firm’s position is a periphery in the star. Thus, if z; (g") > 7; (%) for all firms i, then g" is
pairwise stable. 77; (¢") > 7p (€°) if § € (812 ), 51, = 4.30507.

A.2 The case that a star network is pairwise stable

We find ranges of R&D efficiency, d, and technological efficiency, y, in which a star net-
work is pairwise stable. In a star network, if firm i is the hub, then firm i can only sever one
link, and then he becomes a linked firm in an exclusive network. If firm 7 is a periphery, then
firm i can sever the link or form a link between another periphery firm. Thus, if 7 (g°) > 7,
(€9, 7p (&) > 7; (g°), and 7 (%) > 7, ("), then a star network is pairwise stable.

A.2.1 Conditions
“77p (') > 7 (€")

First, we find the range in which periphery firms do not have an incentive to form a link be-
tween them. If periphery firms form a link between them, then the star becomes the complete
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network. Hence if 7 (g*) > 7; (¢"), then the firms do not form a link. By the proof of (i) in
the above, 77, (¢%) > ; (¢") if and only if § € (5, d;,)
sy (&) > (&)

Next, we find the range in which the hub firm has no incentive to sever a link. If the hub
firm severs one link, then the star becomes an isolated network, and the firm’s profit becomes
7, (¢)). Hence, if 7, (¢°) > r; (g°), then the hub firm does not sever any link. 77, (¢°) > 7; (g°)
if

0 E (09, 04) and y € (4,(6), 45(9)),
0 € (84, J6) and y € (yo, 4,00)),

0E (04, 09) and y € (4,(0), 4,(9)),
0€ (09,012)  and y € (4,(6), 45(9)),

where 8, = 3.75, 8¢ = 3.82006, 8o = 4.03950,

(64 03+ V6463606 +486(2'0%—875° +3335°-513 5+243))
~7925*+30245°-34295°-11345 +2187

4,0)= 645'—12245°+6426 6—122048 +7290 .

and
645°—\V646°-3605+486(2'6"-875°+3335°-513 5+243))
—79264+3024 534295711345 +2187
6451224 5°+64266°—12204 5 +7290

>

Ax(0) =

~7p(g)>m(g)

Third, we find the range in which a periphery firm has no incentive to sever the link. If a pe-
riphery firm severs the link, then the star becomes the exclusive network, and the firm’s profit
becomes 7, (¢°). Hence, if p &> 7y (g°), then a periphery firm does not sever the link. 77p (%
> (g9 if

{5 € (¢, 69) and y € (g, 43(9)) U (44(9),),
0E (09,012  and y € (yp, 440)) U (4509),),

where

((245118952+4325 —243)\V645°-8805°+47055" 12816 5°+19926 5°—17496 5 +6561 )
A4,6) +1926°-22565°+81098" 4536 5°+25758 5°+437405 19683
} 5126°-73445°+38016 5°—87264 5°+894248 —34992

and
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(— (245°-1895%+432 5-243)V64 6°-8805°+47055°~128165°+19926 517496 5 +6561 )

46) = +1925°-22565°+81095" 4536525758 5°+437405 ~19683 )
! 5125°-73445"+380165°~872645+894245-34992

A.2.2 Ranges
We find the ranges of § and y such that 7 (g') > 7(g"), m:(g") > 7,(g°), and 7wp (&) > 7Ag°).

* 5 € (0p, Oy)-

Then, y needs y € (4,(5), 4,(8)) and y € (-, 45(5)) U (44(5),"). In this range of §, 4;(5) <
A1(8) < A40). If 6 € (6, 0,), Where §,= 3.53865, then 4,(5) < A4(5). Hence, no y satisfies the
inequalities. Thus, if § € (01, d,) and y € (44(5), 4,(9)), a star is pairwise stable.

* 8 € (04, 0g)-
Then, y needs y € (yg, 4,(8)) and y € (-, 45(5)) U (44(5),"). In this range of 4, y, < 45(6) <
A1(0) < A40). Thus, if § € (04, d¢) and y € (v, 45(3)), then a star network is pairwise stable.

* 8 € (0¢, 0)-

Then, y needs y € (4,(5), 4,(6)) and y € (-, 45(5)) U (44(5),). In this range of 8§, 45(5) <
A1(0) < A45). Thus, we ignore the conditio y € (44(3),"). If 6 € (04, dg), where 65 = 3.94868,
then 4,(8) < A43(0). If § € (Jg, y), then A3(8) < 4,(5). Hence, if § € (8¢, §y), then no y satis-
fies the conditions. Thus, if 6 € (J, dg) and y € (4,(0), 43(9)), then a star is pairwise stable.

*6 € (g, 1)
Then, y needs y € (4,(5), 4,(8)) and y € (-, 44(0)) U (43(6),"). In this range of §, 44(5) <
A1(8) < A,(5) < A5(5). Thus, no y satisfies the above conditions.

A.2.3 Summary for pairwise stability of star network
A star network is pairwise stable if

O E (01, 04) and y € (44(0), 45(9)),
O € (04, 6¢) and y € (y, 45(0)),
0 E€ (06, 0g) and y € (4,(6), 43(9)).

A.3 The case that an exclusive network is pairwise stable

We find ranges of R&D efficiency, d, and technological efficiency, y, in which an exclusive
network is pairwise stable. An exclusive network is pairwise stable if a linked firm has no
incentive to sever the link, and a pair of linked and isolated firms has no incentive to form
a link. Thus, if 77;(g°) > 7(g°) and [,(g°) > m(g") or 7,(g°) > wp(g")], then an exclusive net-
work is pairwise stable.

A.3.1 Conditions
e 1,(g%) > 7(g?).
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We find the range of 6 and y in which a linked firm has no incentive to sever the link. If a
linked firm severs the link, then the exclusive network becomes the empty network, and the
profit of a linked firm 7;(g°) becomes 7,(g?). 7,(g%) > 7(g?) if y € (yo, 45(6),") for all § > &,
where

_ 3x=-9x -9  6x—-21
A5 (0)=Z () -
sO) =20 e 3700 24

where

Z ()= 33V976x'—5520:+776 Tx*—648x s
1024(x — 3)? 1024(x — 3)}

and 44 () =0/2.
(&) > (L)

If a linked and the isolated firms form a link between them, then the exclusive network be-
comes a star network. Firms profits, 7z, (g°) and 7(g°), become 7,(¢’) and 5(g%), respectively.
Thus, if 7,(g°) > m(g") or m(g°) > mp(g”), then they do not have an incentive to form a link.

m1(8°) > Q) if

0€ (60,04) and y € (yo, 4,(6)) U (45(9),)

0E (04,0¢) and y €(4,(9),),

€ (0, 09) and y € (v, 42(6)) U (4,(6),),
0E (09, 014) and y € (yp, 4,(6)) U (4,(6),"),
0E (014)  and y €(4,00),),

where §,4~ 4.46394.

* 1 /(8°) > 7p(g))
/(g > nmp(g) if

0E (09, 09)  and y € (45(0), 4409))
0E (09, 012) and y € (440), 43(9)),
€ (612, 015) and y € (yo, 449)),
€ (15 019) and y € (yo, 44(9)),
0E (01957) and y € (44(9), 45(0)),

where §,5=4.5, and §,9= 5.53763.

A.3.2 Ranges of 77,(g°) > ,(°) and 7,(g°) > 7(2)
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First, we find the range of § and y such that z;(¢°) > 7;(g?) and 77;(g°) > 7 (g").

*0E (09> 04)

Then, y needs y € (yg, 45(8)) U (44(5),") and y € (yg, 4,(5)) U (4,(8),). If 6 € (¢, 55),
where §, =~ 3.66375, then 45(5) < 4,(0) < A5(8)< A¢(6). Hence, if 6 € (5, J,), then we ignore
the condition y € (yg, 4,(6)) U (4,(6),). If 6 € (8, 83), where §3 = 3.69905, then 4,(5) <
A5(8) < A5(6) <A(S). If 6 € (83, 84), then A,(5) < A5(6) < Ag(8) < A5(6).

Thus, if § € (8¢, §,) and y € (yy, 45(5)) U (4e(5),), or 6 € (05, 83) and y € (yy, 4,(0)) U
(44(5),), or 8 € (03, d4) and y € (yg, 4,(6)) U (4,(5),’), then an exclusive network is pairwise
stable.

* 0 € (04, O6)

Then, € (1, 45(6)) U (4¢(0),)) and 7 € (4,(8).). In this range of 3, yo < 4,(5) < A5(5) <
A(8). Thus, if § € (84, ) and y € (4,(5), 45(5)) U (4¢(5),), then an exclusive network is
pairwise stable.

* 5 € (9, 99)

Then, y € (yo, 45(6)) U (46(6),) and y € (yo, 42(6)) U (4,(6),)- In this range of §, 45() <
A,(6) < A5(0) < A¢(6). Thus, if § € (84, §9) and y € (yy, 45(8)) U (44(5),’), then an exclusive
network is pairwise stable.

*0E€ (9,014)

Then, y € (y¢, 45(0)) U (44(5),") and y € (y,, 4,(5)) U (4,(3),)- In this range of 8, y, < 4,(6)
< A,(8) < As5(5) < Ag(8). Thus, if § € (89, 814) and y € (4,(5), A5(8)) U (44(6),), then an ex-
clusive network is pairwise stable.

*0E (014

Then, y € (y¢, 45(0)) U (46(0),") and y € (4,(6),"). In this range of , y, < 4,(5) < 45(5) <
Ag(6). Thus, if 6 € (6,4,7) and y € (4,(5), 45(5)) U (44(5),"), then an exclusive network is
pairwise stable.

A.3.3 Ranges of 7,(g°) > 7,(g%) and 7,(¢%) > 7p(g")
s (60) 69)

Then, y € (o, 45(8)) U (4¢(8),") and y € (45(8), 44(5)). If 8 € (8¢, 5,), where &, = 3.85911,
then A43(0) < A5(8) < A4(0) < Ag(9). If 6 € (7, d9), then A3(5) < A4(6) < A5(5) < Ac(6).

Thus, if § € (&, 67) and y € (43(5), 45(0)), or & € (87, 8y) and y € (A43(6), 44(5)), then an
exclusive network is pairwise stable.

*5E€ (09, 012)

Then, y needs y € (-, 45(5)) U (4¢(S),") and y € (44(5), 45(5)). If 6 € (J, J,¢), Where §;y=
4.14460, then A,(8) < A5(8) < A5(8) < A(8). If & € (8,0, 81;), Where 8, ~ 4.27258, then A,(8)
< A5(0) < A43(0) < A4(0). If 6 € (011, 012), then A4(0) < A5(0) < Ae(0) < 43(0).
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Thus, if 8 € (8o, 815) and y € (44(8), A3(8)), or if 8 € (3,0, 81,) and y € (44(8), 45()), or if
Y € (811, 012) and y € (44(5), A5(8)) U (4¢(5), A3(5)), then an exclusive network is pairwise
stable.

*0€ (9, 012)
Then, y € (-, 45(6)) U (44(8),") and y € (v, 44(8)). In this range of &, 4,(8) < A5(8) < A¢(®)-
Thus, if § € (512, 015) and y € (yy, 44(5)), then an exclusive network is pairwise stable.

*0€ (015 019)
Then, y € (-, 45(6)) U (4¢(8),") and y € (y4, A4(6)). In this range of §, A4(5) < 45(5) < 4¢(6).
Thus, if § € (015, d19) and y € (v, 44(9)), then and exclusive network is pairwise stable.

*0E (019,

Then, y € (, 45(0)) U (46(0),) and y € (44(5), 43(0)). In this case, 44(0) < A5(0) < A(0) <
A3(0). Thus, if § € (019,) and y € (44(0), 45(0)) U (44(0), 43(0)), then an exclusive network
is pairwise stable.

A.3.4 Summary for pairwise stability of exclusive network
An exclusive network is pairwise stable if

6 € (60, 03) and y € (v, 45(0)) U (46(6),"),

0 € (03, 64) and y € (v, 45(9)) U (4,(6),"),

0 € (04, J6) and y € (45(0), 45(6)) U (44(9),)s

0 € (06, 67) and y € (v, 42(9)) U (45(6), 45(9)) U (44(0),)s
6 € (67, 0g) and y € (v, 42(0)) U (43(0), 449)) U (44(0),)s
6 € (03, 69) and y € (v, 44(9)) U (46(6),")

0 E(09,012) and y € (44(9), 45(0)) U (44(9),")
0E€(012,019) and y € (v, 44(0)) U (45(0), 45(6)) U (44(5).")
€ (195) and y € (44(0), 45(6)) U (44(9), 45(0))

A.4 The case that the empty network is pairwise stable

We find ranges of R&D efficiency, 8, and technological efficiency, y, in which the empty
network is pairwise stable. In the empty network, if all pairs do not form a link, then the
network is pairwise stable. If a pair forms a link, then the network becomes an exclusive
network, and their profits become s, (g°). Thus, if 7,(g%) > ,(¢%), then all firms have no in-
centive to form a link. ”i(g@) > ,(g°) if y € (A5(5), 44(0))- Thus, if § € (Jy,) and y € (45(5),
A4(0)), then the empty network is pairwise stable. O
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Appendix B: Proof of Proposition 2

B.1 Social Welfare
In this subsection, we calculate social welfares. The consumer surplus in network g is

0@ @-pQ@)_Q@@-at@@)_ Q)
2 2 2

Hence, the social welfare in network g is

©? 3
S = ng +;ﬂi(g)-

B.1.1 The complete network
In the complete network, total production and the consumer surplus are respectively

N_ 68d L 0EY 365>
Q&) =55 o™= =355 0

The sum of firms profits is

35(86-27)d>

(8 =55 oy

Thus, the social surplus in the complete network is

S(gN):( 3652 +35(85727))d2: 6052-815

2(86-9)  2(88 —9) 2(88 — 9y

B.1.2 A star network
In a star network, total production is

s 28(6-3) 5(25-9) )
o) (852—395+27+ 867 305+27)%
_ 65(6-4)d
862 396+27

Hence, the consumer surplus is

O(g)  365*(5—4)d?
2 2(887-395+27)
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The sum of firms’ profits is

5 _((85-27)(5-3)  25(45—9) (25— 9)
(&) + 27 (&) (2(8627 3951277 T 4(867—395 + 27)? )dz
_ 245% 2555 +8828° 9725
T 2867396+ 27)

Thus, the social surplus is

N 365°(5 —4) 2454—25553+88262—9726)
S = 2
&) (2(8627 3961277 T 285-396+277 )¢
60554357 +14586°-9725 ,
2(867—396+27) :

B.1.3 An exclusive network
In an exclusive network, total production is

e[ 20Q2y-3) 2y(6-3) )
2) (85y—95—127/+9 " 35y-96-127+9)¢
6(0y —6—y)d
86y -90-12y+9

Hence, the consumer surplus is

Oy __ 36(6y-6-y)d
2 288y -95-12y+9)"

The sum of firms’ profits is

2 g+ Ty (g
- ( 26(46-9)(2y -3y L_r@® 7-9)(6-3)° ) e
488y 9512y +9)>" 2(88y —95—12y +9)>
_(246°-846+72)y*~ (5761625 +81)y +365°-818 5
2(85y-96 12y +9)?

Thus, the social surplus is

e 36(6y—-6-y)
S =
©) (2(867/ 9512y +9)?
| 24(5*-845+72) 7= (5T6°—1625 +81)+365°-815 ) P
28579512y +9)°
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_ 3((2057-525+36) y> +(-436°+785 -27) y +24 62 -275)
2(86y—95-12y +9)?

B.1.4 The empty network
In the empty network, total production and the consumer surplus respectively
are

0(¢%) = 87d g Q& _ 187°d°

8y-3 2 (8y2-3)*
The sum of firms’ profits is
_ 3y(8y-9)d?
3,(g?) = 2V )T
7i(g”) 28y 37

Thus, the social surplus is

18y?2 3y@®y-9))\ ,, 60y>-27y

S(g%) = _
& By—3¢  2(8y-3) 2(8y -3y

B.2 The case that the complete network is optimal

We find ranges of § and y such that the complete network is optimal.
S(g") > S(g") for all § > 8, where 8,5 = 5.50005.
S > S(g% ify > B,(8) for all § > §,,, where

(8823385 +27) V2565 —8645°+46175°—102065 +6561
+1285*+965°-24035+4374 5 2187

Bi©)= 12805° 669657 +110165 —5832

S(g") > S(g%) if y > B,(8) for all § > &), where B,(8) = /3.
Furthermore, if § <43, then B,(8) < B,(6) and if § > §5, then B,(5) < B,(9).
Thus, if § € (6,3, -) and y > B,(8), then the complete network is optimal. Furthermore, since
y > B,(0) = 0/3 = ay/3, we have a < 3. Thus, if § > §,3 and & < 3, then the complete network
is optimal.

B.3 The case that a star network is optimal

We find ranges of ¢ and y such that a star network is optimal.
S(g") > S(g") for all § € (8¢, d19)-
S(g)>S(g)if
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{5 € (09> 09) and y € (g, B,(0)) U (B5(9),),
5 € (599') and }’ € (32(5)9)9

where

845%-9455°+37535°-51035 +2187
1288%-13085°+4752 5’64805 +2916 "

By(0) =

S(g)>S(g?) if

{5 € (09, 16) and  y € (yp,),
5 € (516’.) and Y € (B4(6)’)>

where §,4~ 4.75920, and

((245271 175 +81)V2565*-27205*+9801 5°—137705 +6561 )
+384 5430725 +57515>+3402 56561

17925°-159126° +42768 529160

B4(6) =

Furthermore, if § € (64, 0;3), then B4(8) < B,(9).
Thus, if

{5 €60, d9)  and y € (yo, B2(6)) U (B5(6),)s
6 € (69’ 6]8) and }/ € (BZ(‘S)s)a

then a star network is optimal.

B.4 The case that an exclusive network is optimal

We find ranges of ¢ and y such that an exclusive network is optimal.
59> S(@") ify € (o, B1(6)) for all 6 > 8.
S(g9) > S(g") if

v € (By(6), B3(6))  if 8 € (69, b)s
Y € (B3(6), By(6))  if 6 € (69, 013),
v € (yo, B2(6)) if6 € (615,),

where §,3 =~ 4.42847.
S(g%) > S(g%) ify € (4, ¥9) U (Bs(9),"), where y{ =1.62 and Bs(8) = 8/2.%)
We ignore the condition of Bs(8) since Bs(6) > B,(0) for all § > . Furthermore, if § € (6,
d9), then B,(8) < B3(8) < B,(8) <y, and if § € (Jg, 513), then B;(8) < Bo(8) <min {y7, Bi(0)},
and if § € (8,3, 67), where §,7= 4.86, then y7 < B,(8) < y{ < B,(5), and if § € (§,7,"), then y,

3) We cannot solve analytically the case of S(g°) > S(g®). Hence, the value, 1.62, is a sufficiently small condition for
S(g%) > S(&°).
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<y1 < By(0) < B(9).
Thus, if
0 E (00, 09) and y € (By(d), B3(9)),
0 € (09,013) and y € (B;3(0), By(9)),
0€(013,017) and y € (yy, B,(9)),
d€@)  and yE (o yD)s

then an exclusive network is optimal.

B.5 The case that the empty network is optimal
We find ranges of ¢ and y such that the empty network is optimal.
S(¢%) > (&™) ify € (ro, B,(©®)) for all § > 8. S(°) >S(g") if & > 81 and y € (vg, By(©)).
S(g%) > S(g°) ify > y5, where y5=2.1.%
Thus, if § € (549,"), and y € (y5, B,(5)), where d,,= 6.3, then the empty network is optimal.
O

Appendix C: Proofs of Corollaries

C.1 Proof of Corollary 1

By proposition 1, the complete network is pairwise stable if 6 > §,,. By proposition 2, the
complete network is optimal if § > &5 and y >B,(6). Since 8,3> d,,, we have § > 5.

Thus, 6 > 6,5 and a < 3, then the complete network is pairwise stable and optimal. O

C.2 Proof of Corollary 2
By proposition 1, a star network is pairwise stable if

0 €(01,04) andy € (44(0), 4,(0)),
0 € (84, 0) andy € (v, 45(0)),
0 € (06, 03) andy € (4,(6), 45(0)).

By proposition 2, a star network is optimal if

{6 € (80, 69)  andy € (yo, B,(6)) U (B5(9),), and
SE@By)  andy E (By©),).

Since dg < d9, we ignore the condition, 6 € ( dy,7), and y € (B,(),). If 6 € (d;, J4), then
Yo < By(0) < B3(9) < A4(0) <4,(0), if 6 € (04, O¢), then By(6) < B3(6) <45(9), and if § € (0, ),
then 4,(6) < B,(6) < 43(6) < B3(0).

Thus, if

4) We cannot solve analytically the case of S(g%) > S(g°). Hence, the value, 2.1, is a sufficiently large value that
guarantees S(g%) > S(g°).
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0 €(81,0,4) andy € (44(0), 45(9)),
0 € (04, 0¢) andy € (yg, By(6)) U (B5(9), 45(9))s
0 € (0¢, 0g) and y € (4,(9), By(9)),

then a star network is pairwise stable and optimal. O

C.3 Proof of Corollary 3
We find the ranges of 6 and y such that an exclusive network is pairwise stable and optimal.
An exclusive network is pairwise stable if

[6€B0,05)  andy € (v, 45(8)) U (44(5),),

0 €(03,04) andy € (yg, 45(0)) U (4,(9),"),

0 € (04,0s) andy &€ (43(9), 45(9)) U (46(5),),

0 € (06, 07)  andy € (yo, 45(0)) U (43(9), 45(9)) U (44(9),"),
0 €(07,05) andy € (yg, 45(6)) U (43(5), 44(6)) U (46(9),"),
0 € (03,09)  andy € (yg, 44(0)) U (44(9),"),

0 €(09,012) andy € (44(9), 45(9)) U (46(6),),

0 € (012, 019) andy € (yg, 44(0)) U (45(9), 45(9)) U (44(9),"),
0 €019, and y € (44(6), 45(6)) U (46(5), A5(5)).

An exclusive network is optimal if

0 € (60, d9)  andy € (By(6), By(0)),
0 € (09,613) andy € (B3(6), By(0)),
0 €(013,017) andy € (yo, By(9)),
0E@17)  andy € (o, 1Y)

* 0 € (9, 63)-

Then, y € (7o, 45(6)) U (A4(0)). and y € (B(6), By(®)). In this range of 8, By(8) < A5(©) <
B3(8) < A¢(8). Thus, if 6 € (8, 03) and y € (B,(6), 45(8)), then an exclusive network is pair-
wise stable.

*dE (53, 64)

Then, y € (v, 45(0)) U (45(6)."), and y € (By(8), B5(®)). In this range of 8, B,(8) < By(6) <
A5(0) < Ay(0). Thus, if § € (93, 04) and y € (B,(0), B3(9)), then an exclusive network is pair-
wise stable.

5 € (04, 0).
Then, y € (45(8), 45(8)) U (44(0),"), and y € (B2(S), B3(8)). If 8 € (84, d5), where d5 =
3.79620, then B,(8) < A5(8) < A5(8) < B3(8) < A¢(d), and if 8 € (85, &), then B,(8) < A5(8) <
B3(0) <45(0) < A4(0).
Thus, if § € (34, 85) and y € (A5(6), 45(0)), and if § € (B, 5¢), and y € (45(5), By(d)), then
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an exclusive network is pairwise stable and optimal.

*J € (84, O¢)-

Then, y € (yo, 45(0)) U (43(0), 45(5)) U (44(6),"), and y € (B,(6), B3(9)). In this range of
0, A5(0) < B(9) < A3(0) < B3(0) < 45(0) < 4¢(6)- Thus, if 6 € (0, 97) and y € (45(0), B3(9)),
then an exclusive network is pairwise stable and optimal.

*J € (87, Oy)-

Then, y € (rg 42(6)) U (450), 44(6)) U (44(0),). and y € (B,(), B3(8)). In this range of
0, A5(0) < B(9) < A3(0) < B3(0) < 44(0) < 4¢(6)- Thus, if 6 € (07, dg) and y € (45(0), B3(9)),
then and exclusive network is pairwise stable and optimal.

* 0 € (d3, O9)-

Then, y € (7, 44(8)) U (4(6)."), and y € (By(8), B5(®)). In this range of 8, B,(8) < By(6) <
Ay(0) < Ag(0). Thus, if § € (55, dg) and y E (B,(), B;3()), then an exclusive network is pair-
wise stable and optimal.

* 9 € (09, 01)-

Then, y € (44(5), A5(0)) U (4(5),"), and y € (B5(5), B,(5)). In this range of §, 44(5) < B;(5)
< B,(0) < A45(0) < Ag(0). Thus, if § € (d9, d1,) and y € (B3(0), B,(0)), then an exclusive net-
work is pairwise stable and optimal.

*0E€ (12, 013)

Then, y € (yg, 44(0)) U (A(3), 45(8)) U (44(5),"), and y € (B3(3), B,(8)). In this range of §,
A4(8) < B3(0) < A5(8) < A5(8) < Bx(8) < Ag(0). Thus, if § € (6,5, 13), and y € (4,(5), 45(5)),
then an exclusive network is pairwise stable and optimal.

*0 € (013, 017)-

Then, y € (yg, 44(6)) U (4,5(5), 45(0)) U (44(6),"), and y € (yy, B,(5)). In this range of 6,
A4(8) < Ay(5) < As5(6) < By(8) < A¢(6). Thus, if § € (6,3, 17) and y € (4,(5), 45(5)), then an
exclusive network is pairwise stable and optimal.

*0 E(017,019)-

Then, y € (yy, 44(0)) U (45(5), 45(8)) U (44(9),), and y € (o, y7). In this range of , 44(0)
<A5(0) <As(8) <y{ <Ae(d). Thus, if § € (813, 017) and y € (yo, 44(0)) U (45(5), 45(5)) , then
an exclusive network is pairwise stable and optimal.

€ (619:')'

Then, y € (44(6), 45()) U (44(0), 43(9)), and y € (yo, y7). In this range of 3, 44(8) < 45(6)
<y{ <AS) <A5(5). Thus, if § € (§,9,) and y € (44(5), 43(6)) , then an exclusive network is
pairwise stable.

In summary, an exclusive network is pairwise stable if
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0 € (¢, 03) and y € (B,(9), 45(9)),
0 € (03, 04) and y € (B,(9), B5(9)),
0 € (04,05)  andy € (45(0), 45(0)),
0 € (0s505)  andy € (45(0), B5(0)),
0 € (35, 09) and y € (B,(9), B3(9)),
0 E(09,012)  andy € (B3(0), B,(9)),
0 € (017, 019) andy € (yg, 44(6)) U (45(6), 45(6)),
0 E(0195) and y € (44(9), 43(9)).

C.4 Proof of corollary 4

The empty network is pairwise stable if § € (dy,"), and y € (44(5), 4¢(5)). The empty
network is optimal if § € (6,,"), and y € (5, By(5)). If 6 € (520,"), then 45(5) < y3 < By(S)
< A4(6). Thus, the empty network is pairwise stable and optimal if § € (5,,") and y € (5,
By(9)- 0
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