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R&D EFFICIENCY AND COLLABORATION NETWORKS*

By RYOJI OKATANI† AND KAZUHIRO TAKAUCHI‡

We investigate the relationships between collaboration networks and the efficiencies of R&D and 
collaboration. In our model, there are three firms, and firms’ collaboration patterns are represented by 
networks. Since the number of firms is three, there are four possible shapes for collaboration networks 
(1) the complete network, (2) a star network, (3) an exclusive network, and (4) the empty network. 
Firms engage in Cournot competition, and we obtain four results on competition in the four respective 
networks. We show which network shapes are stable and optimal with respect to the efficiencies of 
R&D and collaboration.

Keywords: R&D; Collaboration; Network; Pairwise stability

1. Introduction

In a highly technological good market, firms face keen competition. Firms are going to 
obtain a large share of the market, because if a firm obtains a large share, then its product be-
comes the standard of the market, and the firm becomes large. To increase sales, firms make 
efforts to lower their production costs. Such efforts are considered as research and develop-
ment (R&D). We consider that such an R&D activity is an important aspect of competition in 
the market. In such a market, we often observe that a few firms compete. Furthermore, since 
such a product requires a high level of technology, we also observe that firms collaborate 
with others to develop their production technology. We consider that a collaboration among a 
few firms is also an important aspect in competition.

To consider the two aspects noted in the above, we introduce two parameters that represent 
the efficiencies of technology and collaboration. Technological efficiency represents how 
much investment is needed to reduce the production cost. If technological efficiency is high, 
then cost reduction requires a small amount of investment. On the other hand, collaboration 
efficiency represents whether and by how much collaboration with other firms decreases a 
firm’s investment cost. If collaboration efficiency is high, then collaboration among firms can 
significantly decrease investment costs. We study the relationships among market outcomes, 
collaborations, and the efficiencies of technology and collaboration.

Much of the recent industrial organization literature considers firms’ collaboration patterns 
as networks. A collaboration between two firms is denoted by a link, and a set of all such 
links, i.e., a network, represents a collaboration pattern among firms. For example, Goyal and 
Moraga (2001) and Goyal and Joshi (2002) study R&D collaboration among firms by using 
network formation games. In the empirical literature, Powell, White, Koput, and Owen-Smith 
(1996) investigate collaboration networks in the biotechnological sector. Their focuses are 
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the shapes of collaboration patterns, the resources that cause the shapes, and how market out-
comes are affected by the resources and shapes. We also focus on these issues using a three 
stage game in which firms choose their collaboration partners and levels of R&D, and then 
engage in Cournot competition.

In our model, there are three firms, and accordingly there are four possible shapes for col-
laboration networks, as shown in Figure 1: (1) the complete network, in which each firm 
collaborates with the other two firms, (2) a star network, in which there is one hub firm that 
collaborates with the other two firms and there are two firms that collaborate only with the 
hub firm, (3) an exclusive network, in which there is one pair of firms that collaborate with 
each other and there is one firm that does not collaborate at all, and (4) the empty network, 
in which there is no collaboration. We show the conditions for which a network is pairwise 
stable and/or optimal, and that, for any network, there exist ranges of parameters for which 
the network is pairwise stable and optimal.

The present paper is closely related to Song and Vannetelbosch (2007). They show that 
the complete network is pairwise stable in similar settings to ours. In their model, if a firm 
collaborates with others, then the collaboration necessarily lowers the cost of R&D. In our 
model, if collaboration efficiency is high, then the collaboration necessarily lowers the cost 
of R&D. Besides the efficiency of collaboration, we also show that, if R&D is very costly, 
then the complete network, which is pairwise stable, maximizes social welfare.

By separating the efficiency of R&D into technological and collaboration efficiency, we ob-
tain results that have implications for policy for R&D investment. According to our results, 
if R&D for highly technological good production is very costly, although a policy for pro-
moting individual firms’ R&D seems to increase social welfare, it possibly decreases social 
welfare, whereas a policy for promoting collaboration increases social welfare. Therefore, a 
policy for promoting R&D should be targeted towards collaboration among firms since the 
complete network or the star network is formed and is optimal when the policy sufficiently 
lowers the cost of collaboration.

This paper is organized as follows. Section 2 provides the model. Section 3 shows the 
outcomes of Cournot competition. Section 4 shows the pairwise stable networks. Section 5 
shows the optimal networks. Section 6 shows conditions under which networks are stable and 
optimal. Section 7 concludes.
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Figure 1: Four shapes of networks formed by three firms
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2. Model

Firms
Let N = {1, 2, 3} be the set of firms. The firms face the (inverse) demand function defined 

by p(Q) = a – Q, where a > 0 is a constant and Q is the total production of firms in the mar-
ket. Let qi ≥ 0 denote the production of firm i, and the profile of firms’ productions be denoted 
by q =(q1, q2, q3). We assume that all firms have the same marginal cost, which is constant. 
Let c be the marginal cost of production, and we suppose that a > c. Each firm can reduce the 
marginal cost by doing research and development (R&D). Let xi denote the cost reduction 
of firm i, and a profile of firms’ cost reductions be denoted by x =(x1, x2, x3). If firm i’s cost 
reduction is xi, then firm i reduces the marginal cost c to c – xi. When a firm’s cost reduction 
is xi, the firm incurs an investment cost, which depends on xi. The investment cost function is 
specified in the following.

Networks and the R&D cost function
Each firm can collaborate with other firms to obtain the cost-reducing technology that other 

firms own. If a firm collaborates with another firm, then the firms make changes in their in-
vestment cost functions. To specify how firms that collaborate with each other change their 
investment cost functions, at first, we introduce collaboration networks. Let ij ={i, j} ⊂ N 
denote that firms i and j collaborate with each other. We refer to ij as the collaboration link 
ij or, simply as the link ij. Let gN = {ij : i, j ∈ N, i ≠ j} denote the set of all links. We call gN 
the complete network, and a network is denoted by g ⊆ gN. Let G be the set of networks. For 
example, {12, 23} is a network, where firms 1 and 2 are linked, and firms 2 and 3 also are 
linked. We denote the neighborhood of firm i, which is a set of directly linked firms, by Ni(g) 
={j ∈ N : ij ∈ g}. We refer to an element of a neighborhood as a neighbor. For example, 
N2({12, 23}) ={1, 3}, i.e., firms 1 and 3 are neighbors of firm 2. Let ni (g) denote the number 
of firm i’s neighbors in network g.

Next, we specify the collaboration by which each firm changes its investment cost. Let ϕ(xi)= 
γx2

i /2 denote firm i’s investment cost function, where γ  > 0 is a constant. We call 1/γ  the level 
of technological efficiency. The higher the level of technological efficiency, the lower the 
investment cost per cost reduction. We assume that all firms have the same investment cost 
function for cost reductions. However, the investment costs that firms face need not be same 
even if cost reductions are the same, because investment costs also depend on their positions 
in the network as follows. When firm i whose cost reduction is xi has ni(g) neighbors, the firm 
incurs the investment cost, β (ni(g)) ϕ (xi), where 

 (ni (g)) = {β
α

ni (g)+1

1
if ni (g) ≥ 1,

otherwise

and α > 0, which is a constant, represents the intensity of synergy and congestion effects in 
collaboration. Let ψ (xi, ni(g)) = β (ni(g)) ϕ (xi) denote the R&D cost function. When a firm 
collaborates with another firm and if α  is sufficiently low, then β (ni (g)) < 1. Then, a col-
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laboration reduces the investment cost, indicating that the synergy effect is larger than the 
congestion effect. On the contrary, when α  is sufficiently high, then β (ni (g)) > 1. Then, a col-
laboration increases the investment cost, indicating that the congestion effect is larger than 
the synergy effect. We call 1/α  the level of collaboration efficiency.

Independent of whether α  is high or low, if firms i and j collaborate, then each of them ob-
tains its collaboration partner’s technology, and enjoys a lower investment cost. The invest-
ment costs monotonically decreases in the number of neighbors. This monotonicity is simply 
represented by 1/(ni(g)+1).

The profit function
We define the profit function as follows. Let π i be firm i’s profit function, which is defined 

by 

π i (q, x, g) = (p (Q) – (ci – xi)) qi – ψ (xi, ni(g))

We also denote the profit simply as π i (g).

3. Cournot competition with cost reductions

This section analyzes an oligopolistic market in which three firms engage in Cournot 
competition with cost reductions. One of our main concerns is which collaboration pattern 
emerges in the market. We consider the networks that emerge to be stable networks. To ana-
lyze which network emerges, we need to derive firms’ profits for each of the networks. In the 
following, therefore, we study the game of Cournot competition with cost reductions. The 
game is a two-stage perfect information game.

3.1 Game
Stage 1

The strategy of firm i is the cost reduction xi. Since the coefficient of firm i’s R&D cost 
function depends on the network, the cost reduction depends on the network. Let x =(x1, x2, 
x3) denote the profile of all firms’ cost reductions. This strategy decides the R&D cost ψ (xi, 
ni(g)).
Stage 2

All firms know the profile of cost reductions decided in Stage 1. Firms engage in Cournot 
competition under the cost reductions. Each firm chooses its production qi to maximize its 
profit π i(qi, q–i, x, g) subject to the other firms’ given levels of production q–i. Firm i’s produc-
tion is a function qi(q–i, x, g), or simply, qi(g). q = (q1, q2, q3) denote the profile of all firms’
production levels.

3.2 Equilibria
This subsection shows the four results for the subgame perfect Nash equilibria of this two-



RYOJI OKATANI AND KAZUHIRO TAKAUCHI36 R&D EFFICIENCY AND COLLABORATION NETWORKS 37

stage game. Since the number of players is three, there are four possible network shapes: (1) 
the complete network, (2) stars including everyone, in which two links are formed and no 
other link exists, (3) exclusive networks, in which one link is formed and one player is iso-
lated from the link, and (4) the empty network, in which no link exists. Hence, we obtain four 
results for Cournot competition.

When firm i collaborates with another firm, β i(ni(g)) = αγ /(ni(g)+1). Therefore, many of the 
outcomes (quantities, cost reductions, and profits) include αγ , as we can see in the following. 
We define δ = αγ , and we call 1/δ  the  R&D efficiency. The higher the level of R&D efficien-
cy, the lower the cost of R&D, i.e., R&D is “efficient”. On the contrary, R&D is “inefficient” 
if R&D efficiency is sufficiently low. To guarantee that production is positive in equilibrium, 
we assume that δ > 27/8 and γ > 9/8. Let δ0 = 27/8 and γ0 = 9/8.

The following subsections solve the game backwardly.

3.2.1 Stage 2
Firms decide their production levels. For all firms i, given the other firms’ production levels 

q–i, the cost reductions x = (x1, x2, x3), and the network g, the profit functions are

π i(qi, q– i, xi, g) = (p (Q) – (c – xi))qi – ψ (xi, ni(g)). 

In equilibrium, all firms i produce

q*
i (x) = (d + 3xi – xj – xk) /4,

where d = a – c. It is clear that the more firm i reduces the cost, the more its production in-
creases, and the more other firms reduce their costs, the more firm i’s production decreases.

3.2.2 Stage 1
Firms decide their cost reductions. Since the coefficient of the R&D cost depends on the 

number of collaboration links the firm has, we calculate Nash equilibria in the complete, a 
star, an exclusive, and the empty network, respectively.

The complete network
In the complete network, all firms have two neighbors. So, their profit functions are the 

same as 

π i (q
*(x), xi, g

N) = (p (Q) – (c – xi)) q
*
i (x) – δxi

2/6.

In equilibrium, for all firms i, cost reductions are 

x*
i (g

N) = δ8 – 9
9d

.

Output and profits are 
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q*
i (g

N)  = 
δ
δ

8 – 9
2  d  and π i (g

N) = 
δ – 9)22(8

δδ – 27)d 2(8

A star network
Suppose that firm i collaborates with firms j and k, and firms j and k do not collaborate. Let 

gs = {ij, ik} be the network, which is a star. Firm i is the hub of the star network, and we de-
note firm i as firm H. Firms j and k are in periphery of the star, and we denote firms j and k as 
firm P. The profit functions of the hub firm H and periphery firms P are 

                           πH (q*(x), x, gs) = (p (Q) – (c – xH))q*
H (x) – δx2

H /6 and
                           πP (q*(x), x, gs) = (p (Q) – (c – xP))q*

P (x) – δx2
P /4.

In equilibrium, the cost reductions of the hub firm and periphery firms are 

x*
H (gs) = δ δ28 – 39 + 27

δ – 3)d9(
 and x*

P (gs) = δ δ28 – 39 + 27
δ – 9)d3(2

.

The outputs of the hub firm and periphery firms are 

q*
H (gs) = δ δ28 – 39 + 27

δ δ – 3)d2 (
 and q*

P (gs) = δ δ28 – 39 + 27
δδ – 9)d(2

.

Thus, the profits of the hub firm and periphery firms are 

π*
H (gs) = 

δ δ22(8 – 39 + 27)2

δδ δ– 27) – 3)2d 2(8 (  and π*
P (gs) = 

δ 2 δ
δδ δ(4   – 9) (2   – 9)2d 2

4(8    – 39   + 27)2
.

An exclusive network
Suppose that firms i and j collaborate with each other, and firm k does not collaborate with 

any others. Let ge ={ij} be the network, which is an exclusive network. We denote the linked 
firms i and j as firm L, and the isolated firm k as firm I. The profit functions of linked firms L 
and the isolated firm I are 

                           π*
L (q*(x), x, ge) = (p (Q) – (c – xL)) q*

L (x) – δx2
L /4 and

                           π*
I (q

*(x), x, ge) = (p (Q) – (c – xI)) q
*
I (x) – γx2

I /2.

In equilibrium, the cost reductions of the linked firms and the isolated firm are 

x*
L (g

e) = δγ γ
γ
δ8 – 9 – 12 + 9

– 3)d3(2
 and x*

I (g
e) = δγ γ

δ
δ8 – 9 – 12 + 9

– 3)d3(2
.

The outputs of the linked firms and the isolated firm are 
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q*
L (g

e) = δγ γ
γ
δ8 – 9 – 12 + 9

– 3)d3(2
 and q*

I (g
e) = δγ γ

γ δ
δ8 – 9 – 12 + 9

– 3)d(2
.

The profits of the linked firms and the isolated firm are 

πL (g
e) = 

δγ γ
γδ δ

δ4(8 – 9 – 12 + 9)2

– 3)2d 2– 9) (2(4  and π I (g
e) = 

δγ γ
δγ γ

δ2(8 – 9 – 12 + 9)2

– 3)2d 2– 9) ((8 .

The empty network
Suppose that no firm collaborates. Let gØ denote the network, which is the empty network. 

For all firms i, the profit functions are 

π i (q
*(x), x, gØ) = (p (Q) – (c – xi)) q

*
i (x) – γxi

2/2.

In equilibrium, the cost reductions are xi
*(gØ) = 3d/(8γ  – 3). Then outputs and profits are 

q*
i (g

Ø) = 
γ
γ

8 – 3
d2  and π i (g

Ø) = 
γ

γ γ
2(8 – 3)2

(8 – 9)d 2

.

4. Pairwise stability

This section studies stable networks. “Stable” means that no player has an incentive to alter 
the network by forming or severing his available links. So we can consider that a stable net-
work emerges in the market. There are several definitions of network stability in the strategic 
network formation literature.1) Among them, pairwise stability, introduced by Jackson and 
Wolinsky (1996), is widely used. A network is pairwise stable if no player has an incentive 
to sever an existing link, and no pair of players has an incentive to form a new link between 
them.

For example, the complete network is pairwise stable if no firm gains by severing one link, 
which alters the complete network to a star network. If a firm in the complete network severs 
one link, then the position of the firm becomes a periphery in a star network. Hence, if the 
profit in the complete network, π i (g

N), is greater than the profit of a periphery in a star, πP 
(gs), i.e., π i (g

N) > πP (gs), then firm i does not sever a link, and we can consider the complete 
network to have emerged in this market.

Formally, a network g is pairwise stable if for all firms i and j, i ≠ j, 

                                    (i) π i (g) ≥ π i (g – ij) if ij ∈ g, and
(ii) π i (g+ij) > π i (g) ⇒ π j (g+ij) < π j (g) if ij ∉ g,

1) Goyal (2007) introduces many definitions of network stability.
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where g – ij = g \ {i, j} and g + ij = g ∪ {i, j}.
The profits in networks, which are shown in the above section, are summarized as follows.

Fact 1. The profits in the complete network, a star network, an exclusive network, and the 
empty network respectively are 

                   πi (g
N) = δ

δ δ
2(8 – 9)2

(8 – 27)
, 

                   πH (gs) = 
δ δ

δ δδ
2(8 – 39 + 27)2

(8 (– 27) – 3)2

2
, πP (gs) = 

δ δ
δ δδ
4(8 – 39 + 27)2

(4 (2– 9) – 9)2

2

πL (ge) = 
δγ γδ

δ γδ
4(8 – 9 – 12 + 9)2

(4 (2– 9) – 3)2
, π I (g

e) = 
δγ γδ
γ δγ

2(8 – 9 – 12 + 9)2

(8 (– 9) – 3)2
, and

                   πi (g
Ø) = γ

γ γ
2(8 – 3)2

(8 – 9)
, 

where we omit d2, the coefficient of all profits.
Thus, the conditions for pairwise stability for all networks are as follows.

Fact 2. (i) The complete network is pairwise stable if π i (g
N) > πP (g

s).
(ii) A star network is pairwise stable if πH (g

s) > πL (g
e), πP (g

s) > π I (g
e), and πP (g

e) > π i (g
N).

(iii) An exclusive network is pairwise stable if  πL (g
e) > π i (g

Ø) and [πL (g
e) > πH (g

s) or π I (g
e)

 > πP (g
s)].

(iv) The empty network is pairwise stable if π i (g
Ø) > πL (g

e). 

By using facts 1 and 2, we can find the ranges of R&D efficiency and technological effi-
ciency over which networks are pairwise stable.

Proposition 1. (i) The complete network is pairwise stable if R&D efficiency is low 

(δ
1 1

< 4.30507).
(ii) A star network is pairwise stable if R&D efficiency is not so low (δ

1  ∈ ( 1
3.94868

1
3.53865, )) and 

technological efficiency is in a interval that depends on R&D efficiency.
(iii) Exclusive networks and the empty network are pairwise stable for all R&D efficien-

cies. If technological efficiency is sufficiently high or low, then an exclusive network is pair-
wise stable, and if technological efficiency is in a middle range, then the empty network is 
pairwise stable. 

All proofs are collected in the Appendix.

5. Optimality

This section shows the optimal network. We measure network optimality using social wel-
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fare. We denote the social welfare by S(g), which is defined by 

S(g) = 
Q(g)(a – p (Q(g))

2
 + ∑

3

i=1
π i (g).

The first term of the right hand side is consumer surplus, and the second term is the sum of 
all firms’ profits.

The social welfares for equilibria in networks are summarized as follows.

Fact 3. The social welfares in the complete network, a star network, an exclusive network, 
and the empty network are respectively 

S(gN) = δ
2

2(8 – 9)2

δ δ– 8160
, 

S(gs) = δ δ
4

2(8 – 39 + 27)2

δ 3δ– 543 2

2
δ+ 1458 δ– 97260

,

S(ge) = δ δγ γ
2δ 2δ 2δ2γ γδ δ δ3((20    – 52   +36)    + (–43    +78   –27)   +24    –27   )

2(8     – 12   – 9   + 9)2 ,

S(gØ) = γ2(8 – 3)2

2– 27γ γ60
,

where we omit d2, the coefficient of all social welfares.
If a network provides the highest social welfare, then we call the network is optimal. For-

mally, a network g is optimal if S(g) > S(g´) for all g´ ∈ G \{g}.2) 
We can find the ranges of technical and R&D efficiencies in which a network is optimal.

Proposition 2. (i) The complete network is optimal if R&D efficiency is low (δ
1

5.50005
1

< ), and 
collaboration efficiency is high (α

1
3
1

> )
(ii) A star network is optimal if R&D efficiency is high (δ

1  ∈ 1
5.50005

1
3.375, )) and the technologi-

cal efficiency is in an interval that depends on R&D efficiency.
(iii) An exclusive network is optimal if technological efficiency is low for all R&D efficien-

cies.

(iv) The empty network is optimal if R&D efficiency is low (δ
1

6.3
1< ) and technological ef-

ficiency is high. 

6. Compatibility

This section investigates compatibility between stability and optimality. We can consider 
that the market is well-worked if a network is pairwise stable and optimal. From propositions 

2) In the present paper, the term “efficient” appears frequently. Hence we avoid referring to the condition as strong 
efficiency, which is used by the network literature.
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1 and 2, we obtain the following results. All of them say that, for each network, there is a 
range of parameters in which the network is pairwise stable and optimal.

Corollary 1. The complete network is pairwise stable and optimal if the R&D efficiency is 

low (δ
1 1

< 5.50005) and collaboration efficiency is high (α
1

3
1

> ). 

Corollary 1 says that no matter how costly the cost decreasing technology is (γ  is suffi-
ciently large), if the synergy effect of collaboration is high, then all firms collaborate with all 
other firms and social welfare is maximized. Furthermore, in this range of δ , social welfare 
is increasing in δ . Therefore, if collaboration efficiency rises and R&D efficiency remains in 
the range, the complete network remains pairwise stable and optimal, and social welfare in-
creases.

Corollary 2. A star network is pairwise stable and optimal if R&D efficiency is not so low 

(δ
1  ∈ 1

3.94868
1

3.53865, )) and technological efficiency is not so high or low, which depends on R&D 
efficiency.

Note that, in the above range of 1/δ , the social welfare of a star network is increasing in δ , 
and therefore, social welfare sharply decreases if R&D efficiency increases.

The next two corollaries say that if the cost reducing technology is not costly, then collabo-
rations are not necessary.

Corollary 3. An exclusive network is pairwise stable and optimal if technological efficien-
cy is sufficiently high for all R&D efficiencies. 

Corollary 4. The empty network is pairwise stable and optimal if R&D efficiency is low 

(δ
1

6.3
1< ) and technological efficiency is high depending on R&D efficiency.

7. Concluding Remarks

We have studied strategic network formation in a market where firms engage in Cournot 
competition with cost reductions when the number of firms is three. We have shown that for 
each network, there exist ranges of parameters for collaboration efficiency, technological ef-
ficiency, and R&D efficiency, over which the network is pairwise stable and optimal. Accord-
ing to the results, we discuss implications for government policy that promotes R&D.

The complete network is pairwise stable and optimal if R&D efficiency is low, i.e., R&D 
is inefficient, but collaboration efficiency is high, i.e.,  collaboration is efficient, as shown by 
corollary 1. Moreover, in the complete network, social welfare is monotonically increasing in 
R&D efficiencies. Therefore, if the government adopts a policy that promotes collaboration 
among firms, e.g., a subsidy for collaboration, social welfare will increase. Therefore, when 
R&D efficiency is sufficiently low, by promoting collaboration among firms, which raises 
collaboration efficiency, the complete network remains stable and optimal, and social welfare 
increases.

A star network is pairwise stable and optimal if R&D efficiency is high and technological 
efficiency is not so high or low, i.e., the cost reducing technology is neither so efficient nor 
so inefficient, as shown by corollary 2. In this range of R&D efficiency, if the government 
adopts an R&D promoting policy, it sharply decreases social welfare. If the policy applies to 
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cost reduction, which increases technological efficiency, then the stable network may alter to 
an exclusive network. In many of such cases, no matter whether an exclusive network is also 
optimal, social welfare is low, compared with that of the star network formed before adopting 
the policy since social welfare in a star network that is pairwise stable is very high. That is, 
when a star network is formed, it is difficult to use the promotion of R&D to increase social 
welfare.

An exclusive network is pairwise stable and optimal if the technological efficiency is suf-
ficiently high, i.e., the cost reducing technology is efficient, as shown by corollary 3. Hence, 
when we are concerned with a highly technological good production, which may imply that 
the technological efficiency is sufficiently low, then there is a room for a policy that promotes 
R&D to improve social welfare since an exclusive network is not optimal. For example, 
when γ  = 4, the exclusive network is never optimal. Furthermore, there also exist ranges of 
parameters such that the empty network is pairwise stable and optimal. However, if a govern-
ment adopts an R&D promoting policy that sufficiently raises collaboration efficiency, then 
the complete or a star network is pairwise stable and optimal, and social welfare after adopt-
ing the policy is greater than before adopting the policy.

We have studied the case of three firms. The general n firms case remains as a matter to 
be studied further but how far this approach can be extended is unclear because of the great 
complexity of network formation.

Appendix A: Proof of Proposition 1

A.1 The case that the complete network is pairwise stable
We find the range of R&D efficiency, δ , in which the complete network is pairwise stable. 

In the complete network, since all firms have all of the possible links, firms cannot form a 
new link. Hence, the complete network is pairwise stable if no firm has an incentive to sever 
a link. If a firm severs a link, then the complete network becomes a star network, and the 
firm’s position is a periphery in the star. Thus, if π i (g

N) > π i (g
s) for all firms i, then gN is 

pairwise stable. π i (g
N) > πP (gs) if δ ∈ (δ12, ·), δ12 ≈ 4.30507.

A.2 The case that a star network is pairwise stable
We find ranges of R&D efficiency, δ , and technological efficiency, γ , in which a star net-

work is pairwise stable. In a star network, if firm i is the hub, then firm i can only sever one 
link, and then he becomes a linked firm in an exclusive network. If firm i is a periphery, then 
firm i can sever the link or form a link between another periphery firm. Thus, if πH (gs) > πL 
(ge), πP (gs) > π I (g

e), and πP (gs) > π i (g
N), then a star network is pairwise stable.

A.2.1 Conditions
• πP (gs) > π i (g

N)
First, we find the range in which periphery firms do not have an incentive to form a link be-

tween them. If periphery firms form a link between them, then the star becomes the complete 
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network. Hence if πP (gs) > π i (g
N), then the firms do not form a link. By the proof of (i) in 

the above, πP (gs) > π i (g
N) if and only if δ ∈ (δ0, δ12)

• πH (gs) > πL (ge)
Next, we find the range in which the hub firm has no incentive to sever a link. If the hub 

firm severs one link, then the star becomes an isolated network, and the firm’s profit becomes 
πL (gI). Hence, if πH (gs) > πL (ge), then the hub firm does not sever any link. πH (gs) > πL (ge) 
if 

                                         δ ∈ (δ0, δ4)        and  γ ∈ (A1(δ ), A2(δ )),  
                                         δ ∈ (δ4, δ6)        and  γ ∈ (γ0, A1(δ )),   
                                         δ ∈ (δ4, δ9)        and  γ ∈ (A2(δ ), A1(δ )),  
                                         δ ∈ (δ9, δ12)       and  γ ∈ (A1(δ ), A2(δ )),  

where δ4 = 3.75, δ6 ≈ 3.82006, δ9 ≈ 4.03950,

A1(δ ) =
 

5δ 2δ 4δ 3δ 2δ δδ

4δ 3 2δ δ δ

4δ 3δ 2δ δ )(64    + √64    –360   +486(27     –87    +333    –513   +243)
–792    +3024    –3429    –1134   +2187

64    –1224    +6426    –12204   +7290
 ,

and 

A2(δ ) =
 

5δ 2δ 4δ 3δ 2δ δδ

4δ 3δ 2δ δ

4δ 3δ 2δ δ )(64    – √64    –360   +486(27     –87    +333    –513   +243)
–792    +3024    –3429    –1134   +2187

64    –1224    +6426    –12204   +7290
 ,

• πP (gs) > π I (g
e)

Third, we find the range in which a periphery firm has no incentive to sever the link. If a pe-
riphery firm severs the link, then the star becomes the exclusive network, and the firm’s profit 
becomes π I (g

e). Hence, if πP (gS) > π I (g
e), then a periphery firm does not sever the link. πP (gS) 

> π I (g
e) if 

                                         δ ∈ (δ0, δ9)        and  γ ∈ (γ0, A3(δ )) ∪ (A4(δ ),·), 
                                         δ ∈ (δ9, δ12)       and  γ ∈ (γ0, A4(δ )) ∪ (A3(δ ),·), 

where 

A3(δ ) = 

3δ 2δ 6δ 5δ 4δ 3δ 2δ δδ
6δ 5δ 4δ 3δ 2δ δ

5δ 4δ 3δ 2δ δ

)((24    –189    +432   –243) √64    –880    +4705    –12816    +19926    –17496   +6561
+192    –2256    +8109    –4536    +25758    +43740   –19683

512    –7344    +38016    –87264    +89424   –34992
 ,

and 













RYOJI OKATANI AND KAZUHIRO TAKAUCHI44 R&D EFFICIENCY AND COLLABORATION NETWORKS 45

A4(δ ) = 

3δ 2δ δ 6δ 5δ 4δ 3δ 2δ
6δ 5δ 4δ 3δ 2δ δ

5δ 4δ 3δ 2δ δ

δ( )√64    –880    +4705    –12816    +19926    –17496   +6561
+192    –2256    +8109    –4536    +25758    +43740   –19683

– (24    –189    +432   –243)

512    –7344    +38016    –87264    +89424   –34992
 .

A.2.2 Ranges
We find the ranges of δ  and γ  such that πP (gs) > π i(g

N), πH(gs) > πL(ge), and πP (gs) > π I(g
e).

• δ ∈ (δ0, δ4).
Then, γ  needs γ  ∈ (A1(δ ), A2(δ )) and γ  ∈ (·, A3(δ )) ∪ (A4(δ ),·). In this range of δ , A3(δ ) < 

A1(δ ) < A4(δ ). If δ ∈ (δ0, δ1), where δ1≈ 3.53865, then A2(δ ) < A4(δ ). Hence, no γ  satisfies the 
inequalities. Thus, if δ ∈ (δ1, δ4) and γ ∈ (A4(δ ), A2(δ )), a star is pairwise stable.

• δ ∈ (δ4, δ6).
Then, γ  needs γ ∈ (γ0, A1(δ )) and γ  ∈ (·, A3(δ )) ∪ (A4(δ ),·). In this range of δ , γ0 < A3(δ ) < 

A1(δ ) < A4(δ ). Thus, if δ ∈ (δ4, δ6) and γ  ∈ (γ0, A3(δ )), then a star network is pairwise stable.

• δ ∈ (δ6, δ0).
Then, γ  needs γ ∈ (A2(δ ), A1(δ )) and γ  ∈ (·, A3(δ )) ∪ (A4(δ ),·). In this range of δ , A3(δ ) < 

A1(δ ) < A4(δ ). Thus, we ignore the conditio γ  ∈ (A4(δ ),·). If δ ∈ (δ4, δ8), where δ8 ≈ 3.94868, 
then A2(δ ) < A3(δ ). If δ ∈ (δ8, δ9), then A3(δ ) < A2(δ ). Hence, if δ ∈ (δ8, δ9), then no γ satis-
fies the conditions. Thus, if δ ∈ (δ6, δ8) and γ ∈ (A2(δ ), A3(δ )), then a star is pairwise stable.

• δ ∈ (δ9, δ12).
Then, γ  needs γ ∈ (A1(δ ), A2(δ )) and γ  ∈ (·, A4(δ )) ∪ (A3(δ ),·). In this range of δ , A4(δ ) < 

A1(δ ) < A2(δ ) < A3(δ ). Thus, no γ  satisfies the above conditions.

A.2.3 Summary for pairwise stability of star network
A star network is pairwise stable if 

                                         δ ∈ (δ1, δ4) and γ ∈ (A4(δ ), A2(δ )),
                                         δ ∈ (δ4, δ6) and γ ∈ (γ0, A3(δ )),
                                         δ ∈ (δ6, δ8) and γ ∈ (A2(δ ), A3(δ )).

A.3 The case that an exclusive network is pairwise stable
We find ranges of R&D efficiency, δ , and technological efficiency, γ , in which an exclusive 

network is pairwise stable. An exclusive network is pairwise stable if a linked firm has no 
incentive to sever the link, and a pair of linked and isolated firms has no incentive to form 
a link. Thus, if πL(ge) > π i(g

Ø) and [πL(ge) > π I(g
s) or π I(g

e) > πP(gs)], then an exclusive net-
work is pairwise stable.

A.3.1 Conditions
• πL(ge) > π i(g

Ø).




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We find the range of δ  and γ  in which a linked firm has no incentive to sever the link. If a 
linked firm severs the link, then the exclusive network becomes the empty network, and the 
profit of a linked firm  πL(ge) becomes π i(g

Ø). πL(ge) > π i(g
Ø) if γ ∈ (γ0, A6(δ ),·) for all δ > δ0, 

where

A5 (δ ) = Z (x) – 
64(x – 3)2Z(x)

3x2– 9x – 9
8x – 24
6x – 21

+  ,

where 

Z (x) = ( )3 √976x4–5520x3+7767x2–648x
3
2

1
3

1024(x – 3)2 1024(x – 3)3+
162x3–945x2

+1377x–54

and A6 (δ ) = δ /2.
• πL(ge) > πH(gs).

If a linked and the isolated firms form a link between them, then the exclusive network be-
comes a star network. Firms profits, πL(ge) and π I(g

e), become πH(gs) and πP(gs), respectively. 
Thus, if πL(ge) > πH(gs) or π I(g

e) > πP(gs), then they do not have an incentive to form a link.
πL(ge) > πH(gs) if 

                                 δ ∈ (δ0, δ4)     and  γ ∈ (γ0, A1(δ )) ∪ (A2(δ ),·) 
                                 δ ∈ (δ4, δ6)     and  γ ∈ (A1(δ ),·),
                                 δ ∈ (δ6, δ9)     and  γ ∈ (γ0, A2(δ )) ∪ (A1(δ ),·),
                                 δ ∈ (δ9, δ14)    and  γ ∈ (γ0, A1(δ )) ∪ (A2(δ ),·),
                                 δ ∈ (δ14,·)       and  γ ∈ (A2(δ ),·),

where δ14 ≈ 4.46394.

• π I(g
e) > πP(gs)

π I(g
e) > πP(gs) if

                                 δ ∈ (δ0, δ9) and  γ ∈ (A3(δ ), A4(δ )) 
                                 δ ∈ (δ9, δ12) and  γ ∈ (A4(δ ), A3(δ )),
                                 δ ∈ (δ12, δ15) and  γ ∈ (γ0, A4(δ )),
                                 δ ∈ (δ15, δ19) and  γ ∈ (γ0, A4(δ )),
                                 δ ∈ (δ19,·) and  γ ∈ (A4(δ ), A3(δ )),

where δ15 = 4.5, and δ19 ≈ 5.53763.

A.3.2 Ranges of πL(ge) > π i(g
Ø) and πL(ge) > πH(gs)



















RYOJI OKATANI AND KAZUHIRO TAKAUCHI46 R&D EFFICIENCY AND COLLABORATION NETWORKS 47

First, we find the range of δ  and γ  such that πL(ge) > π i(g
Ø) and πL(ge) > πH(gs).

• δ  ∈ (δ0, δ4)
Then, γ  needs γ ∈ (γ 0, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (γ 0, A1(δ )) ∪ (A2(δ ),·). If δ  ∈ (δ 0, δ 2), 

where δ2 ≈ 3.66375, then A5(δ ) < A1(δ ) < A2(δ )< A6(δ ). Hence, if δ  ∈ (δ0, δ2), then we ignore 
the condition γ ∈ (γ 0, A1(δ )) ∪ (A2(δ ),·). If δ  ∈ (δ 2, δ 3), where δ 3 ≈ 3.69905, then A1(δ ) < 
A5(δ ) < A2(δ ) < A6(δ ). If δ  ∈ (δ3, δ4), then A1(δ ) < A5(δ ) < A6(δ ) < A2(δ ).

Thus, if δ  ∈ (δ0, δ2) and γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·), or δ  ∈ (δ2, δ3) and γ ∈ (γ0, A1(δ )) ∪ 
(A6(δ ),·), or δ  ∈ (δ3, δ4) and γ ∈ (γ0, A1(δ )) ∪ (A2(δ ),·), then an exclusive network is pairwise 
stable.

• δ  ∈ (δ4, δ6)
Then,  γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·) and  γ ∈ (A1(δ ),·). In this range of δ , γ0 < A1(δ ) < A5(δ ) < 

A6(δ ). Thus, if δ  ∈ (δ4, δ6) and γ ∈ (A1(δ ), A5(δ )) ∪ (A6(δ ),·), then an exclusive network is 
pairwise stable.

• δ  ∈ (δ6, δ9)
Then, γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (γ0, A2(δ )) ∪ (A1(δ ),·). In this range of δ , A2(δ ) < 

A1(δ ) < A5(δ ) < A6(δ ). Thus, if δ  ∈ (δ4, δ9) and γ ∈ (γ0, A2(δ )) ∪ (A6(δ ),·), then an exclusive 
network is pairwise stable.

• δ  ∈ (δ9, δ14)
Then, γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (γ0, A1(δ )) ∪ (A2(δ ),·). In this range of δ , γ0 < A1(δ ) 

< A2(δ ) < A5(δ ) < A6(δ ). Thus, if δ  ∈ (δ9, δ14) and γ ∈ (A2(δ ), A5(δ )) ∪ (A6(δ ),·), then an ex-
clusive network is pairwise stable.

• δ  ∈ (δ14,·)
Then, γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (A2(δ ),·). In this range of δ , γ0 < A2(δ ) < A5(δ ) < 

A6(δ ). Thus, if δ  ∈ (δ 14,·) and γ ∈ (A2(δ ), A5(δ )) ∪ (A6(δ ),·), then an exclusive network is 
pairwise stable.

A.3.3 Ranges of  πL(ge) > π i(g
Ø) and π I(g

e) > πP(gs)
• δ  ∈ (δ0, δ9)

Then, γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (A3(δ ), A4(δ )). If δ ∈ (δ0, δ7), where δ7 ≈ 3.85911, 
then A3(δ ) < A5(δ ) < A4(δ ) < A6(δ ). If  δ ∈ (δ7, δ9), then A3(δ ) < A4(δ ) < A5(δ ) < A6(δ ).

Thus, if δ ∈ (δ0, δ7) and γ ∈ (A3(δ ), A5(δ )), or δ ∈ (δ7, δ9) and γ ∈ (A3(δ ), A4(δ )), then an 
exclusive network is pairwise stable.

• δ  ∈ (δ9, δ12)
Then, γ  needs γ ∈ (·, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (A4(δ ), A3(δ )). If δ ∈ (δ9, δ10), where δ10 ≈ 

4.14460, then A4(δ ) < A3(δ ) < A5(δ ) < A6(δ ). If δ ∈ (δ10, δ11), where δ11 ≈ 4.27258, then  A4(δ ) 
< A5(δ ) < A3(δ ) < A6(δ ). If  δ ∈ (δ11, δ12), then A4(δ ) < A5(δ ) < A6(δ ) < A3(δ ).
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Thus, if δ ∈ (δ9, δ10) and γ ∈ (A4(δ ), A3(δ )), or if δ ∈ (δ10, δ11) and γ ∈ (A4(δ ), A5(δ )), or if 
γ ∈ (δ11, δ12) and γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ), A3(δ )), then an exclusive network is pairwise 
stable.

• δ  ∈ (δ9, δ12)
Then, γ ∈ (·, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (γ0, A4(δ )). In this range of δ , A4(δ ) < A5(δ ) < A6(δ ). 

Thus, if δ ∈ (δ12, δ15) and γ ∈ (γ0, A4(δ )), then an exclusive network is pairwise stable.

• δ  ∈ (δ15, δ19)
Then, γ ∈ (·, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (γ0, A4(δ )). In this range of δ , A4(δ ) < A5(δ ) < A6(δ ). 

Thus, if δ ∈ (δ15, δ19) and γ ∈ (γ0, A4(δ )), then and exclusive network is pairwise stable.

• δ  ∈ (δ19,·)
Then, γ ∈ (·, A5(δ )) ∪ (A6(δ ),·) and γ ∈ (A4(δ ), A3(δ )). In this case, A4(δ ) < A5(δ ) < A6(δ ) < 

A3(δ ). Thus, if δ ∈ (δ19,·) and γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ), A3(δ )), then an exclusive network 
is pairwise stable.

A.3.4 Summary for pairwise stability of exclusive network

An exclusive network is pairwise stable if 

  δ ∈ (δ0, δ3) and   γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·),
  δ ∈ (δ3, δ4) and   γ ∈ (γ0, A5(δ )) ∪ (A2(δ ),·),
  δ ∈ (δ4, δ6) and   γ ∈ (A3(δ ), A5(δ )) ∪ (A6(δ ),·),
  δ ∈ (δ6, δ7) and   γ ∈ (γ0, A2(δ )) ∪ (A3(δ ), A5(δ )) ∪ (A6(δ ),·),
  δ ∈ (δ7, δ8) and   γ ∈ (γ0, A2(δ )) ∪ (A3(δ ), A4(δ )) ∪ (A6(δ ),·),
  δ ∈ (δ8, δ9) and   γ ∈ (γ0, A4(δ )) ∪ (A6(δ ),·)
  δ ∈ (δ9, δ12) and   γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ),·)
  δ ∈ (δ12, δ19) and   γ ∈ (γ0, A4(δ )) ∪ (A2(δ ), A5(δ )) ∪ (A6(δ ),·)
  δ ∈ (δ19,·) and   γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ), A3(δ )).

A.4 The case that the empty network is pairwise stable
We find ranges of R&D efficiency, δ , and technological efficiency, γ , in which the empty 

network is pairwise stable. In the empty network, if all pairs do not form a link, then the 
network is pairwise stable. If a pair forms a link, then the network becomes an exclusive 
network, and their profits become πL(ge). Thus, if π i(g

Ø) > πL(ge), then all firms have no in-
centive to form a link. π i(g

Ø) > πL(ge) if γ ∈ (A5(δ ), A6(δ )). Thus, if δ ∈ (δ0,·) and γ ∈ (A5(δ ), 
A6(δ )), then the empty network is pairwise stable. 






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Appendix B: Proof of Proposition 2

B.1 Social Welfare
In this subsection, we calculate social welfares. The consumer surplus in network g is 

Q (g) (a – p (Q (g))

2

Q (g) (a – a + (Q (g))

2

Q (g)2

2
= =

Hence, the social welfare in network g is

S (g) = 
Q (g)2

2  + ∑
3

i=1
π i(g).

B.1.1 The complete network
In the complete network, total production and the consumer surplus are respectively 

Q (gN) = 
8 – 9δ

6 dδ
2(8 – 9)2δ

36 d 2δ
2

Q(gN)2

and =
2

 .

The sum of firms profits is 

3π i(g
N) = 

2(8 – 9)2δ
3 (8 – 27)d 2δ δ  .

Thus, the social surplus in the complete network is 

S (gN) = 
2(8 – 9)2δ

36δ 2

2(8 – 9)2δ
60δ –81δ2

2(8 – 9)2δ
3 (8 – 27)δ δ

+( ) d 2= d2.

B.1.2 A star network
In a star network, total production is 

Q (gS) = 
8 8– 39 +27δ δ

2 – 3)(δ δ
2 – 39 +27δ δ

– 9)(2δ δ
2+ 2( )d .

= 
8 – 39 +27δ δ

6 – 4)d(δ δ
2

Hence, the consumer surplus is 

2
=

Q(gs)2

δ δ22(8 – 39 + 27)2

δ δ – 4)2d 236 (2
 .
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The sum of firms’ profits is 

πH (g
s) + 2 πP (g

s) = 
2(8    – 39   + 27)2

(8   – 27) (   – 3)2

4(8    – 39   + 27)2

2   (4   – 9) (2   – 9)2

+( ) d 2δδδδδ
δ 2 δ δ 2 δ 

  = δ 2 δ
δ 4 δ 3 δ δ2

d 2
24    – 255    +882    – 972

2(8    – 39   + 27)2

Thus, the social surplus is 

S (gs) = 
δ 2 δ δ 2 δ

2δ δδ
+( ) d 2

4 δ 3 δ 2 δ36    (   – 4)2

2(8    – 39   + 27)2 2(8    – 39   + 27)2

24    –255    +882    –972

  = δ δ2
δ 4 δ 3 δ δ260    –543    +1458    –972

2(8    – 39   +27)2
d 2.

B.1.3 An exclusive network
In an exclusive network, total production is 

Q (ge) = 2   (2   –3)
+( γδ δγ

δγ δ γ δγ δ γ8     –9   –12  +9 8     –9   –12  +9
2   (   –3) ) d

  = 
8     –9   –12  +9

6(     –   –  )dδγ
δγ

δ γ
δ γ

Hence, the consumer surplus is 

2
=

Q(ge)2

δγ γδ
δγ γδ36(    –   –   )2d 2

2(8     –9   –12   +9)2
.

The sum of firms’ profits is 

  2 πL (g
e) + π I (g

e)

  = +( ) d 2
δ δ γ
δγ δ γ

δγ γ
δγ δ γ

2   (4   –9)(2   –3)2 (8   –9)(   –3)2

4(8     –9   –12   +9)2 2(8     –9   –12   +9)2

     = d 2
δ δ γ γ

δγ δ γ
2 δ δ2 δ δ22(24    –84   +72)    – (57    –162   +81)   +36    –81

2(8     –9   –12   +9)2

Thus, the social surplus is 

     S (ge) = δγ γδ
δγ δ γ( 36(     –    –   )2

2(8     –9   –12   +9)2

                      + γδ δ δ
δγ δ γ )δ 2 δ 2 δ 2

2(8     –9   –12   +9)2

24(    –84   +72)   2– (57    –162   +81)+36    –81  d2
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= 
δ δδ

δγ δ γ
δ 2 δ 2δ 2 γ 2 γ3((20    –52   +36)     +(–43    +78   –27)   +24     –27  )

2(8     –9   –12   +9)2  d2

B.1.4 The empty network
In the empty network, total production and the consumer surplus respectively
are 

Q (gØ) = 
8   –3
6   d
γ

γ 2γ
2

Q(gØ)2

(8     –3)2

18    d 2

and = γ 2

The sum of firms’ profits is 

3π i(g
Ø) = 

2(8   –3)2

3   (8   –9)d 2

γ
γ γ .

Thus, the social surplus is 

S (gØ) = 
γ

γ 2

γ
γ 2 γ

+ γ
γ γ( ) d 2 = d 2

(8   –3)2

18
2(8   –3)2

60     –27
2(8   –3)2

3   (8   –9) .

B.2 The case that the complete network is optimal
We find ranges of δ  and γ  such that the complete network is optimal.
    S (gN) > S (gs) for all δ  > δo1, where δ18 ≈ 5.50005.
    S (gN) > S (ge) if γ > B1(δ ) for all δ > δ0, where 

B1(δ ) = δ 3

δ 2 δ 4 δ 3 δ 2 δδ

δ 2 δ
δ 4 δ 3 δ 2 δ

(8    –33   +27) √256    –864    +4617    –10206   +6561
+128    +96    –2403    +4374   –2187

1280    –6696    +11016   –5832 .

    S (gN) > S (gØ) if γ > B2(δ ) for all δ > δ0, where B2(δ ) = δ /3.
Furthermore, if δ < δ18, then B2(δ ) < B1(δ ) and if δ > δ18, then B1(δ ) < B2(δ ).
Thus, if δ ∈ (δ18, ·) and γ > B2(δ ), then the complete network is optimal. Furthermore, since 

γ > B2(δ ) = δ /3 = αγ /3, we have α < 3. Thus, if δ > δ18 and α < 3, then the complete network 
is optimal.

B.3 The case that a star network is optimal
We find ranges of δ  and γ  such that a star network is optimal.
    S (gs) > S (gN) for all δ ∈ (δ0, δ18).
    S (gs) > S (gs) if 
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  δ ∈ (δ0, δ9) and    γ ∈ (γ0, B2(δ )) ∪ (B3(δ ),·),
  δ ∈ (δ9,·) and    γ ∈ (B2(δ ),·),

where 

B3(δ ) = 
δ 4

δ 4 δ 3 δ 2 δ
δ 3 δ 2 δ

128    –1308    +4752    –6480   +2916
84    –945    +3753    –5103   +2187

.

S (gs) > S (gØ) if 

  δ ∈ (δ0, δ16) and    γ ∈ (γ0,·),
  δ ∈ (δ16,·) and    γ ∈ (B4(δ ),·),

where δ16 ≈ 4.75920, and 

B4(δ ) = δ 3 δ 2 δ

δ 2 δ 4 δ 3 δ 2 δδ
δ 4 δ 3 δ 2 δ( )(24    –117   +81) √256    –2720    +9801     –13770   +6561

+384    –3072    +5751    +3402   –6561

1792    –15912    +42768   –29160
.

Furthermore, if δ ∈ (δ16, δ18), then B4(δ ) < B2(δ ).
Thus, if 

  δ ∈ (δ0, δ9) and    γ ∈ (γ0, B2(δ )) ∪ (B3(δ ),·),
  δ ∈ (δ9, δ18) and    γ ∈ (B2(δ ),·),

then a star network is optimal.

B.4 The case that an exclusive network is optimal
We find ranges of δ  and γ  such that an exclusive network is optimal.
    S (ge) > S (gN) if γ ∈ (γ0, B1(δ )) for all δ > δ0.
    S (ge) > S (gs) if 

  γ ∈ (B2(δ ), B3(δ )) if δ ∈ (δ0, δ9),
  γ ∈ (B3(δ ), B2(δ )) if δ ∈ (δ9, δ13),
  γ ∈ (γ0, B2(δ )) if δ ∈ (δ13,·),

where δ13 ≈ 4.42847.
    S (ge) > S (gØ) if γ ∈ (γ0, γ1

o) ∪ (B5(δ ),·), where γ1
o =1.62 and B5(δ ) = δ /2.3)

We ignore the condition of B5(δ ) since B5(δ ) > B1(δ ) for all δ > δ0. Furthermore, if δ ∈ (δ0, 
δ9), then B2(δ ) < B3(δ ) < B1(δ ) < γ1

o, and if δ ∈ (δ9, δ13), then B3(δ ) < B2(δ ) < min {γ1
o, B1(δ )}, 

and if δ ∈ (δ13, δ17), where δ17 = 4.86, then γ1
o
 < B2(δ ) <  γ1

o < B1(δ ), and if δ ∈ (δ17,·), then γ0 

3) We cannot solve analytically the case of S(ge) > S(gØ). Hence, the value, 1.62, is a sufficiently small condition for 
S(ge) > S(gØ).
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< γ1
o < B2(δ ) < B1(δ ).

Thus, if 
  δ  ∈ (δ0, δ9) and   γ ∈ (B2(δ ), B3(δ )),
  δ  ∈ (δ9, δ13) and   γ ∈ (B3(δ ), B2(δ )),
  δ  ∈ (δ13, δ17) and   γ ∈ (γ0, B2(δ )),
  δ  ∈ (δ17,·) and   γ ∈ (γ0, γ1

o),

then an exclusive network is optimal.

B.5 The case that the empty network is optimal
We find ranges of δ  and γ  such that the empty network is optimal.
    S(gØ) > S(gN) if γ ∈ (γ0, B2(δ )) for all δ > δ0. S(gØ) >S(gs) if δ > δ16 and γ ∈ (γ0, B4(δ )). 

S(gØ) > S(ge) if γ > γ2
o, where γ2

o = 2.1.4) 
Thus, if δ ∈ (δ20,·), and γ ∈ (γ2

o, B2(δ )), where δ20 = 6.3, then the empty network is optimal.
  

Appendix C: Proofs of Corollaries
C.1 Proof of Corollary 1
By proposition 1, the complete network is pairwise stable if δ > δ12. By proposition 2, the 

complete network is optimal if δ > δ18 and γ >B2(δ ). Since δ18 > δ12, we have δ  > δ18.
Thus, δ  > δ18 and α < 3, then the complete network is pairwise stable and optimal. 

C.2 Proof of Corollary 2
By proposition 1, a star network is pairwise stable if 

  δ  ∈ (δ1, δ4)  and γ ∈ (A4(δ ), A2(δ )),
  δ  ∈ (δ4, δ6)  and γ ∈ (γ0, A3(δ )),
  δ  ∈ (δ6, δ8)  and γ ∈ (A2(δ ), A3(δ )).

By proposition 2, a star network is optimal if 

  δ  ∈ (δ0, δ9) and γ ∈ (γ0, B2(δ )) ∪ (B3(δ ),·), and
  δ  ∈ (δ9,·) and γ ∈ (B2(δ ),·).

Since δ 8 < δ 9, we ignore the condition, δ ∈ ( δ 9,·), and γ ∈ (B2(δ ),·). If δ ∈ (δ 1, δ 4), then 
γ0 < B2(δ) < B3(δ) < A4(δ) <A2(δ), if δ ∈ (δ4, δ6), then B2(δ) < B3(δ) <A3(δ), and if δ ∈ (δ6, δ8), 
then A2(δ ) < B2(δ ) < A3(δ ) < B3(δ ).

Thus, if 

4) We cannot solve analytically the case of S(gØ) > S(ge). Hence, the value, 2.1, is a sufficiently large value that 
guarantees S(gØ) > S(ge).
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  δ  ∈ (δ1, δ4)  and γ ∈ (A4(δ ), A2(δ )),
  δ  ∈ (δ4, δ6)  and γ ∈ (γ0, B2(δ )) ∪ (B3(δ ), A3(δ )),
  δ  ∈ (δ6, δ8)  and γ ∈ (A2(δ ), B2(δ )),

then a star network is pairwise stable and optimal. 

C.3 Proof of Corollary 3
We find the ranges of δ  and γ  such that an exclusive network is pairwise stable and optimal.
   An exclusive network is pairwise stable if 

  δ  ∈ (δ0, δ3) and γ ∈ (γ0, A5(δ )) ∪ (A6(δ ),·),
  δ  ∈ (δ3, δ4) and γ ∈ (γ0, A5(δ )) ∪ (A2(δ ),·),
  δ  ∈ (δ4, δ6) and γ ∈ (A3(δ ), A5(δ )) ∪ (A6(δ ),·),
  δ  ∈ (δ6, δ7) and γ ∈ (γ0, A2(δ )) ∪ (A3(δ ), A5(δ )) ∪ (A6(δ ),·),
  δ  ∈ (δ7, δ8) and γ ∈ (γ0, A2(δ )) ∪ (A3(δ ), A4(δ )) ∪ (A6(δ ),·),
  δ  ∈ (δ8, δ9) and γ ∈ (γ0, A4(δ )) ∪ (A6(δ ),·),
  δ  ∈ (δ9, δ12) and γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ),·),
  δ  ∈ (δ12, δ19) and γ ∈ (γ0, A4(δ )) ∪ (A2(δ ), A5(δ )) ∪ (A6(δ ),·),
  δ  ∈ (δ19,·) and γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ), A3(δ )).

An exclusive network is optimal if 

  δ  ∈ (δ0, δ9) and γ ∈ (B2(δ ), B3(δ )),
  δ  ∈ (δ9, δ13) and γ ∈ (B3(δ ), B2(δ )),
  δ  ∈ (δ13, δ17) and γ ∈ (γ0, B2(δ )),
  δ  ∈ (δ17, ·) and γ ∈ (γ0, γ

o
1).

• δ ∈ (δ0, δ3).
Then, γ ∈ (γ0, A5(δ )) ∪ (A6(δ )·), and γ ∈ (B2(δ ), B3(δ )). In this range of δ , B2(δ ) < A5(δ ) < 

B3(δ ) < A6(δ ). Thus, if δ ∈ (δ0, δ3) and γ ∈ (B2(δ ), A5(δ )), then an exclusive network is pair-
wise stable.

• δ ∈ (δ3, δ4).
Then, γ ∈ (γ0, A5(δ )) ∪ (A2(δ ),·), and γ ∈ (B2(δ ), B3(δ )). In this range of δ , B2(δ ) < B3(δ ) < 

A5(δ ) < A2(δ ). Thus, if δ ∈ (δ3, δ4) and γ ∈ (B2(δ ), B3(δ )), then an exclusive network is pair-
wise stable.

• δ ∈ (δ4, δ6).
Then, γ ∈ (A3(δ ), A5(δ )) ∪ (A6(δ ),·), and γ ∈ (B2(δ ), B3(δ )). If δ ∈ (δ 4, δ 5), where δ 5 ≈ 

3.79620, then B2(δ ) < A3(δ ) < A5(δ ) < B3(δ ) < A6(δ ), and if δ ∈ (δ5, δ6), then B2(δ ) < A3(δ ) < 
B3(δ ) <A5(δ ) < A6(δ ).

Thus, if δ ∈ (δ4, δ5) and γ ∈ (A3(δ ), A5(δ )), and if δ ∈ (δ5, δ6), and γ ∈ (A3(δ ), B3(δ )), then 
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an exclusive network is pairwise stable and optimal.

• δ ∈ (δ4, δ6).
Then, γ ∈ (γ0, A2(δ )) ∪ (A3(δ ), A5(δ )) ∪ (A6(δ ),·), and  γ ∈ (B2(δ ), B3(δ )). In this range of 

δ , A2(δ ) < B2(δ ) < A3(δ ) < B3(δ ) < A5(δ ) < A6(δ ). Thus, if δ ∈ (δ6, δ7) and γ ∈ (A3(δ ), B3(δ )), 
then an exclusive network is pairwise stable and optimal.
• δ ∈ (δ7, δ8).

Then, γ ∈ (γ0, A2(δ )) ∪ (A3(δ ), A4(δ )) ∪ (A6(δ ),·), and γ ∈ (B2(δ ), B3(δ )). In this range of 
δ , A2(δ ) < B2(δ ) < A3(δ ) < B3(δ ) < A4(δ ) < A6(δ ). Thus, if δ ∈ (δ7, δ8) and γ ∈ (A3(δ ), B3(δ )), 
then and exclusive network is pairwise stable and optimal.

• δ ∈ (δ8, δ9).
Then, γ ∈ (γ0, A4(δ )) ∪ (A6(δ ),·), and γ ∈ (B2(δ ), B3(δ )). In this range of δ , B2(δ ) < B3(δ ) < 

A4(δ ) < A6(δ ). Thus, if δ ∈ (δ8, δ9) and γ ∈ (B2(δ ), B3(δ )), then an exclusive network is pair-
wise stable and optimal.

• δ ∈ (δ9, δ12).
Then, γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ),·), and γ ∈ (B3(δ ), B2(δ )). In this range of δ , A4(δ ) < B3(δ ) 

< B2(δ ) < A5(δ ) < A6(δ ). Thus, if δ ∈ (δ9, δ12) and γ ∈ (B3(δ ), B2(δ )), then an exclusive net-
work is pairwise stable and optimal.

• δ ∈ (δ12, δ13).
Then, γ ∈ (γ0, A4(δ )) ∪ (A2(δ ), A5(δ )) ∪ (A6(δ ),·), and  γ ∈ (B3(δ ), B2(δ )). In this range of δ , 

A4(δ ) < B3(δ ) < A2(δ ) < A5(δ ) < B2(δ ) < A6(δ ). Thus, if δ ∈ (δ12, δ13), and γ ∈ (A2(δ ), A5(δ )), 
then an exclusive network is pairwise stable and optimal.

• δ ∈ (δ13, δ17).
Then, γ ∈ (γ0, A4(δ )) ∪ (A2(δ ), A5(δ )) ∪ (A6(δ ),·), and γ ∈ (γ0, B2(δ )). In this range of δ , 

A4(δ ) < A2(δ ) < A5(δ ) < B2(δ ) < A6(δ ). Thus, if δ ∈ (δ13, δ17) and γ ∈ (A2(δ ), A5(δ )), then an 
exclusive network is pairwise stable and optimal.

• δ ∈ (δ17, δ19).
Then, γ ∈ (γ0, A4(δ )) ∪ (A2(δ ), A5(δ )) ∪ (A6(δ ),·), and γ ∈ (γ0, γ1

o). In this range of δ , A4(δ ) 
< A2(δ ) < A5(δ ) < γ1

o < A6(δ ). Thus, if δ ∈ (δ13, δ17) and  γ ∈ (γ0, A4(δ )) ∪ (A2(δ ), A5(δ )) , then 
an exclusive network is pairwise stable and optimal.

• δ ∈ (δ19,·).
Then, γ ∈ (A4(δ ), A5(δ )) ∪ (A6(δ ), A3(δ )), and γ ∈ (γ0, γ1

o). In this range of δ , A4(δ ) < A5(δ ) 
< γ1

o < A6(δ ) < A3(δ ). Thus, if δ ∈ (δ19,·) and γ ∈ (A6(δ ), A3(δ )) , then an exclusive network is 
pairwise stable.

In summary, an exclusive network is pairwise stable if 
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  δ  ∈ (δ0, δ3) and γ ∈ (B2(δ ), A5(δ )),
  δ  ∈ (δ3, δ4) and γ ∈ (B2(δ ), B3(δ )),
  δ  ∈ (δ4, δ5) and γ ∈ (A3(δ ), A5(δ )),
  δ  ∈ (δ5, δ8) and γ ∈ (A3(δ ), B3(δ )),
  δ  ∈ (δ8, δ9) and γ ∈ (B2(δ ), B3(δ )),
  δ  ∈ (δ9, δ12) and γ ∈ (B3(δ ), B2(δ )),
  δ  ∈ (δ17, δ19) and γ ∈ (γ0, A4(δ )) ∪ (A2(δ ), A5(δ )),
  δ  ∈ (δ19,·) and γ ∈ (A6(δ ), A3(δ )).

  

C.4 Proof of corollary 4
The empty network is pairwise stable if δ  ∈ (δ 0,·), and γ ∈ (A6(δ ), A6(δ )). The empty 

network is optimal if δ ∈ (δ20,·), and γ ∈ (γ2
o, B2(δ )). If δ ∈ (δ20,·), then A5(δ ) < γ2

o < B2(δ ) 
< A6(δ ). Thus, the empty network is pairwise stable and optimal if δ ∈ (δ 20,·) and γ ∈ (γ 2

o, 
B2(δ )). 
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