

PDF issue: 2025-02-08

見えない放射線を可視化する/福島原発事故がもたら した汚染の一面

山内,知也

<mark>(Citation)</mark> Kernel開設5周年記念講演会:1-30

(Issue Date) 2011-10-26

(Resource Type) learning object

(Version) Version of Record

(URL) https://hdl.handle.net/20.500.14094/81003450

Kernelが拓く研究の未来

見えない放射線を可視化する 福島原発事故がもたらした汚染の一面

山内知也 2011年10月26日 神戸大学瀧川記念学術交流会館

原子って何?

原子の大きさ/原子核の大きさ

元素の種類だけ原子がある/元素の種類以上に原子がある。 Cs-137とCs-134とは別の原子。

Etch pits on KAPTON

After etching in sodium hypochlorite at 55°C

3 h

7 h

11 h

(ID-095) Puebra, Mexico

Etch pits on KAPTON

After 21 h etching in sodium hypochlorite at 55°C

25th Int. Conf. Nuclear Tracks in Solids

(05/30)

Triton

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽÇ…ÇÕïKóvÇ-ÇÅI

> QuickTimeý Ç* áLIEEvÉçEÓÉâÉĂ ǙDZÇĂÊsÊNĚ ÉÉÇ%á©ÇÉÇ2Ç%Ç...ÇŎIKóvÇ-ÇÅB

alpha-particle

Evolution of etch pits

2.0

Fe: 5,160 keV/µm

Fig. 6 Sensitivity of heavy ion detection in KAPTON.

IR spectra of KAPTON

Fig. 1 IR spectra of KAPTON film with 2.5 μm thickness before and after the exposure to Ne ions. Fig. 2 Reduction of the relative absorbance of indicating bonds with the fluence of Ne ions.

Table 2 Removal	cross-section	(10^{-13})	cm ²)
-----------------	---------------	--------------	-------------------

	C=O	C-N-C	Diphenyl ether
Ne	0.23	0.13	0.26
Fe	1.77	0.96	2.38
Xe	5.73	3.41	6.50

Fig. 2 Reduction of the relative absorbance of indicating bonds with the fluence of Ne ions.

Track core radius in KAPTON

Fig. 3 Effective track core radius as a function of the averaged stopping power for loss of C=O, C-N-C, and diphenyl ether in KAPTON. Track core is the region where the considering bonds are lost. And track core radius is:

$$\sigma = \pi r_t^2.$$

Track core radius in KAPTON

Fig. 3 Effective track core radius as a function of the averaged stopping power for loss of C=O, C-N-C, and diphenylether in KAPTON. 3,000 keV/µm track core radius:

1.2 - 2.0 nm

2.4 - 4.0 nm in size

Breakings at two adjacent diphenylether

Review on PET, PC and PADC

25th Int. Conf. Nuclear Tracks in Solids

Review on PET, PC and PADC

: Threshold of the formation of etchable track

We can understand the threshold as results of simultaneous breaking at more than two adjacent C-O bonds in ester, carbonate ester and ether bonds in radial direction of ion tracks.

Fig. Radiation chemical yield as a function of the averaged stopping power for loss of C=O in PET, PC and PADC.

QuickTimeý Dz êLí£ĚvÉçĔOĔâÉă ǙDZÇÃÉsÉNÉ ÉÉǾâ©ÇÊǎǽÇ...ÇÕīKóvÇ-ÇÅB

Solid State Nuclear Track Detector Etched Track Detector

since 1960s

研究の背景・目的

Apollo helmet:

QuickTimeý C² &LI£EvEcEOEáEĂ ǙDZÇĂÉsÉNÉ ÉEǾ@ÇEÇ2Ç%Ç...ÇÕiKóvÇ-ÇÅB

Track C Zn ion 700 μm

Fleischer "Tracks to innovation" (1998)

プルトニウムの検出

QuickTimeý Dz êLí£ÉvÉçÉOÊâÉÄ ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽÇ…ÇÕïKóvÇ-ÇÅB

Hot particle of Pu

トラック化学

トラック化学の確立

新しい固体飛跡検出器の分子設計

環境・宇宙放射線計測への応用

INTS(国際核飛跡協会)の発展

原子って何?

原子の大きさ/原子核の大きさ

元素の種類だけ原子がある/元素の種類以上に原子がある。 Cs-137とCs-134とは別の原子。

シーベルトって何? +

ロルフ・シーベルト

放射線の強度の目安

人体に吸収される 体重当たりのエネルギー

J/kg = Sv:シーベルト

0.05 µSv/h マイクロシーベルト毎時

バックグランドレベル 神戸

ベクレルって何?+

アントワーヌ・アンリ・ベクレル

Bq:ベクレル

ー秒間に壊れている <mark>
原子核の数</mark>

壊れること: 壊変(かいへん)

セシウムCs-137が バリウムBa-137に壊れる!

セシウムCs-134が バリウムBa-134に壊れる!

1852.12.15 - 1908.8.25.

放射能って何?

	H 1766	ドミトリ・メンデレーエフ (Dmitrij Ivanovich Mendelejev):第1周期表 (1869)、第2周期表 (1871)													He 1868			
	Li	Be											В	С	N	0	F	Ne
l	1817	1798											1808		1772	1774	1866	1898
	Na	Mg											Al	Si	Р	S	CI	Ar
	1807	1808											1807	1823	1669	_	1774	1894
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	1807	1808	1879	1791	1801	1797	1774		1735	1751	_	1746	1875	1886	1250	1817	1825	1898
[Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	1861	1808	1797	1789	1801	1778	1937	1828	1803	1803	_	1817	1863			1782	1811	1898
	Cs	Ba	La thunoid	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	п	Pb	Bi	Ро	At	Rn
	1860	1808		1924	1802	1781	1925	1803	1803	-	_		1862		1753	1897	1940	1900
	Fr	Ra	Actinoid	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
	1938	1898		1969	1970	1974	1981	1984	1982	1994	1994	1996						

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
1839	1803	1885	1885	1947	1879	1901	1880	1843	1886	1879	1843	1879	1878	1905
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1899	1829	1918	1789	1940	1940	1944	1944	1949	1950	1952	1952	1958	1958	1961

<ノーベル物理学賞>W. C. Roentogen:X線の発見(1901)、H. A. Lorentz, P. Zeeman:放射に対する磁場の影響(1902)、H. A. Bequerel, P. Curie, M. Curie:放射能の発見、放射能の研究(1903)、Lord Rayleigh:気体の密度に関する研究とアルゴンの発見(1904)、P. E. A. Lenard:陰極線の研究(1905)、J. J. Thomson:気体の電気伝導に関する理論的および実験的研究(1906)、A. A. Michelson:干渉計の考案とそれによる分光学およびメートル原基に関する研究(1907)、G. Lippmann:光の干渉を利用した天然色写真の研究(1908)、G. Marconi, K. F. Braun:無線電信の開発に対する貢献(1909)、J. D. van der Waals:気体及び液体の状態方程式に関する研究(1910)、W. Wien:熱放射に関する法則の発見(1911)

<ノーベル化学賞>J.H. van't Hoff化学熱力学の法則および溶液の浸透圧の発見(1901)、E. Fischer:糖およびプリン誘導体の合成(1902)、S.A.Arthenius:電 解質溶液の理論に関する研究(1903)、W. Ramsay:空気中の希ガス類諸元素の発見と周期律におけるその位置の決定(1904)、J.F. W. von Baeyer:有機染料と ヒドロ芳香化合物の研究(1905)、H. Moissan:フッ素の研究と分離、およびモアッサン電気炉の製作(1906)、E. Buchner:化学生物学的諸研究および無細胞 的発酵の研究(1907)、E. Rutherford:元素の崩壊および放射性物質の化学に関する研究(1908)、F. W. Ostwald:触媒作用に関する研究および化学平衡と反応 速度に関する研究(1909)、O. Wallach:脂環式化合物分野における先駆的研究(1910)、M. Curie:ラジウムおよびポロニウムの発見とラジウムの性質および その化合物の研究(1911) 元素の種類だけ原子がある/元素の種類以上に原子がある。

CsとBaは別の元素。Cs-137とCs-134とは別の原子。

(22/30)

核分裂と放射能

 $^{235}\text{U} + \text{n} - ^{236}\text{U} - ^{141}\text{Ba} + ^{92}\text{Kr} + 3\text{n} + 200 \text{ MeV}$

(+ 200,000,000 eV)

バリウム クリプトン

放射能って何? 汚染マップ

(25/30)

放射能って何? 汚染マップ

セシウムに見られる天然の濃縮!

Cs-134&Cs-137 13,812 Bq/kg

「放射性同位元素」>10,000 Bq/kg

幼稚園の園庭の土を 少し取り除くだけで 容易にバックグランド レベルにまで低下!

渡利を避難勧奨地点に指定させよう。

まとめ

除染の限界:側溝の泥をどかしても線量は下がらない。 生活環境からセシウムをはじめとする放射能を除去すること。

居住空間の安全:室内の空間線量を0.05 µSv/h以下にする。 屋根をふき替える。窓に近い庭の樹木の除染。 寝ている時間と家にいる時間の安全 16/24 = 2/3

幼稚園の安全:園庭の土壌とコンクリート、建物の屋根、植え込み、芝生 小学校の安全: 中学校の安全:

通学路の安全:アスファルトの舗装と側溝のコンクリートを新しくする。

家庭の庭の安全: 商業空間の安全: 職場の安全:

食品、水、空気

渡利を避難勧奨地点に指定させよう。