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1 Introduction

The publication of the Stern Review of the Economics of Climate Change (Stern 2006) has provided impetus to eco-
nomics analysis of climate change. Much progress has been achieved in climate change studies over the last decade.
A large literature has appeared, bringing new insights to the field of climate change research. Some of the pressing
economic issues are discussed in Heal (2009) and Haurie et al. (2012), among others.

Issues of climate change are broad and can be analyzed from multiple perspectives. In this paper we adopt a
dynamic game approach, because there are strategic considerations that extend into the far future. Hopefully the model
will contribute to formulation of climate policy. We focus on international aspect of the exploitation of fossil fuels under
the threat of global warming, where carbon taxes are used as policy instruments for mitigating its adverse effects.

We study a dynamic game involving a fossil-fuel exporting cartel and a coalition of fuel importing countries that
impose carbon taxes. The fossil fuel is non-renewable resource, and its consumption leads to stock externality in the
form of carbon dioxide concentration which is largely responsible for global warming. We will focus on the case where
the importing countries form a coalition and agree on their carbon policies. We show that there exists a unique Nash
equilibrium in a game by exporting and importing countries, where they use feedback strategies to set fuel price and
carbon tax. Further we compare the Nash outcome with the Stackelberg equilibria in which Stackelberg leadership
rests with either exporting or importing countries.

Our model borrows some features from Wirl (1995) and Fujiwara and Long (2011). The main differences are
that Wirl (1995) derives a Nash equilibrium but does not deal with the Stackelberg leader-follower relationship and
Fujiwara and Long (2011) do not consider the externalities of fossil fuel consumption.

After deriving the solutions, we compare welfare levels of participants under Nash equilibrium with the efficient
outcome, which is a benchmark scenario where a single world social planner maximizes world welfare. Furthermore,
we take two Stackelberg leadership scenarios, one where the importing coalition is the leader and the other with
the leadership by exporters. After showing analytical results, we provide numerical comparisons among alternative
regimes under a range of possible parameter values.

The paper is organized as follows. Section 2 presents the basic model. In section 3 a benchmark scenario is
analyzed by assuming the existence of a world social planer. In section 4 we consider the optimal behavior of the oil
cartel facing to an arbitrary carbon-tax rule set by oil importing countries and, in turn, in section 5 the behavior of
oil importing countries against an arbitrary price-setting rule of the oil cartel. Section 6 derives the feedback Nash
equilibrium. Section 7 compares the Nash equilibrium with the outcome under the social planner, both in terms of
welfare and in terms of speed of accumulation of the pollution stock. Section 8 and 9 derive the global Stackelberg
equilibrium in linear strategies of the importing and exporting countries as leader, respectively. After pinning down the
analytical conditions to solve, numerical examples are presented to shed light on the comparison of welfare under four
different regimes.

2 Model

There are three countries, denoted by 1,2, and 3. Countries 1 and 2 import fossil fuels from country 3. The consumption
of fossil fuels generate§' O, emissions, which contributes to greenhouse gas concentration, causing climate change



damages. We assume that climate change damages to country 3 are negligible.

For simplicity, assume that country 3 consists\bidentical oil producers. (In what follows, “oil” stands for “fossil
fuels”.) Each producer takes the price path of oil as beyond its control. Its sole objective is to maximize the present
value of its stream of revenue. Extraction is assumed to be costless. Each prpdueedowed at timé = 0 with a
deposit of sizeR;y. Let Ry = Z;V:;L Rjo. Letg(t) > 0 denote their aggregate extraction at titneLet Y (¢) denote
their cumulative extraction. Then

V(1) = q(t), Y(0) = Yo

It is required that total cumulative extraction from time zero to tineeannot exceed the available stock at time zero,
R() :
Y(t)—Yy, < Ryforallt > 0.

The importing country (wherei = 1, 2) consists of\/; identical consumers. Lét/ = M; + M,. Each consumer
k has a utility functionU (¢, zx, gx) Wherecy, is the consumption of oily, is the consumption of a numeraire good,
andg;, is the damage caused by global warming. Assumeliiat, =, gx) is of the form

1
Ulcr, xr) = Acg — §Ci + o — gr = u(ck) + T — gk

whereu’(cx) = A — ¢ is the consumer’s marginal utility of oil consumption.
For simplicity, assume that the damage is quadratic in cumulative extraction:

gi(t) = SV ()7 2 0.

Note that this view (relating damages to cumulative extraction, rather than GHG concentration level) is based on the
scientific work of Allen et al. (2009).

At each point in time, each consumer is endowed withnits of the numeraire good. It is assumed thas
sufficiently large, so that the consumers after paying for the oil they purchase still have some positive amount of the
numeraire good to consume.

3 A benchmark scenario: world social planner

As a benchmark, suppose there is a world social planner who wants to maximize the welfare of all consumers and
producers. The planner treats all consumers identically. Then, if the aggregate oil extractiog(@j, the planner
would let each individual consumt) = ¢(t)/M units of oil. Each individual is asked to payt) for each unit of oil
consumed. The revenue to the producers is fi{éyy(t). The utility at timet of the representative consunieis then

U(t) = A% -3 <q§?>2 4 {x p(t)q]f?] ~ Ty



and therevenue of the collection of producerdi$t) = p(t)q(t). The world's welfare is the weighted sum of producers
welfare and consumers’ welfare, wherés the weight given to producers

W = /OO e " wIL(t) + MU(t)] dt. 1)
0

The rate of discount > 0 is exogenously given.
Considering the standard case where= 1, i.e., consumers and producers receive the same weight, the social
welfare function (1) reduces to

el 1 M~
_ rt _ 2 T — — 2 . 2
W /O e [Aq(t) o4+ Mz — ==Y ()" dt )
The sociaplanner chooseg(t) to maximize (2) subject to
Y =g, 3)

givenY (0) = Yo, Jim [¥'(t) ~ Yg] < Ro. )

Before solving this problem, consider some extreme cases that will provide us some useful intuition.
First, the case where = 0 (i.e. no climate change damages). Then the problem (2) reduces to a standard resource-
extraction problem with a quadratic utility function. The marginal benefit of extragtiag

A— %q.

In this case, it is optimal to exhaust the resource at some finitefinTée extraction rate(t) will fall over time, with
q(T) = 0. Attime T, the price of the resource reaches its “choke price” leliednd extraction stops.

Second, consider the case wherandY are so large that at time zero the present value of the stream of marginal
damage cost of adding to the cumulative extract@i,y—o, is greater than the marginal utility of consuming oll,
Then clearly it is optimal not to extract the resource, ¢:d¢) = 0 for all ¢t > 0.

Armed with the abovéntuition, we nowconsider the case whefle< YMY,/r < A.

It is easy to see that in this case, the followiegult holds:

Proposition 0 : Assume that 0 gMY;,/r < A. DefineY,, by

MYY.
=

A. )

Then,

(i) it is optimal to extract the resource during some time interval, and

(ii-a) if (Yo + Ro) > Y, then exhaustion will not take place, and the remaining resource $t0ckwill asymp-
totically approach a critical leveR defined by

Yo+ Rr =Y,



In this case the steady state pollutiorlig, . If Y; = 0, the social welfare is given by €§)

M M ApM \* Mz
O{—?((A+ﬂ)2+2l‘) _2r<A+(r—]\4,u)> +T (6)

where

T — /T2 4 4y M? -0

2M

(ii-b) if Yo + Ry < Y, then extraction should proceed until the remaining resource stock falls to zero (in finite
time).

(See Appendix 1 for a proof).

In what follows, we focus on the case where

,LL:

rA
Y, ikl
o+ Ry > S

Then, as shown in the Appendix, the social planner will not exhaust the stock of the resource. The optimal extraction

path is positive, withy(¢) approaching zero asymptotically, @s+ oo. The optimal consumer price for oil is, as shown

in the appendix,

A Yo )y M
pc(t)—A—c(t)_A—qE)_A—Mex\lt @

where

1
M= (r= VI E) <o,

2
REMARK 1: In case (i), the resource will never be exhausted. Therefore its scarcity value is zero. This implies
that the producer price is zero, while the consumer pricé is (¢/M). The difference between the consumer price
and the producer price is the carbon tax. We see that the carbon tax rises over time.
REMARK 2: It is easy to introduce a constant extraction éosthereA > b > 0. In this case, we can define
A= A—b. Thenthe egs (5), (6), and (7) apply, w'@replacingA. The carbon tax per unit is thesi — b. The ad
valorem carbon tax is where(1 + 7)b = p© — b.

4 Behaviour of the oil cartel facing an arbitrary carbon-tax rule by oil im-
porting countries

In this section, we assume that the coalition of importing countries set a carbon taxtygter barrel of oil at time.
Assumed(t) is linked toY (¢) by the following rule

0=0+nY



wheres > 0 andn > 0 are some constants. Assume< A. Then the taX will approach valued whenY approaches

the valueY defined by
A—o

n
WhenY reaches this level, the carbon tax is so high that even if the produceppsi@ero, the consumer will not buy
oil.

?:

(8)

The cartel of oil producers takes the linear Markovian tax fute o + nY as given.It knows that if it charges a
pricep(t) > 0 per barrel at time, the representative consumer will demand the quaatitysuch that

u'(c) =p(t) +6(t) = p(t) + o + 1Y (t)

A—c(t)=pEt)+oc+nY(t)

i.e. the demand function from each consumer is

c(t)=A—p(t)—oc—nY(t).

Since there ard/ consumers, the market demand is
q(t) = Mc(t) = M (A—p(t) —o —nY(t)) =q(p,Y).

Since extraction cost is zero, the profit of the cartel at tirise

m(t) = p(t)q(t) = M (A —p(t) — o —nY () p(t).

The cartel seeks to maximize

/O T e M (A= p(t) — o — Y (8)) p(t)} dt

subject to
Y(t) = M(A—p(t)— o —nY(t) ©)

Y(0) =Yo,Y(t) — Y(0) < Ry forall ¢.

Let us solve the cartel’s optimal extraction path, and show how it depends on the tax paranaeigns
To proceed with the analysis, we make the following assumption
Assumption C:

— A—
Ry>Y —Yy=-_2

Y.

This assumption implies that the cartel will never exhaust the stock of oil.
To solve the cartel’s optimization problem, we use the Hamilton-Jacobi-Belman (HJB) equatidf (3€}f be the



value function of the cartel of oil exporters. Its HIB equation is

rVx(Y) = mzz)xx{M (A=p—o—nY)p+ V(Y)Y M(A—p—0—nY)}.

Maximizing the right-hand side (RHS) of the HIB equation with respegtyields the FOC
—2p+A—0c—nY —Vi(Y)=0.

Therefore the cartel’s producer price rule satisfies

p=(A—0—nY —Vik(Y))

5 p(Y).

Then the RHS of the HIB equation can be written as
Mp(Y)+Vx(Y)](A—o—p(Y)—nY)

= M(A-o—p(Y)—nY)’

M
= Z[A—U—nY—&—V)’(]Q.

Let us conjecture that the value function is quadratic:
1 2
Vx(Y)=ax +BxY + §NXY
whereax,Bx andux are to be determined. Then
Vx(Y) = Bx +pxY

and eqg. (10) becomes

1 M
T (ax +BxY + QHXYQ) =7 [A—o0 —nY + Bx + uxY]

?&(O‘X"_BXY—'_;:U’XYQ) = [(A-0o+8x)+ (ux —n)Y]’

(A=0+Bx)*+2(A -0+ Bx)(ux —n)Y + (ux —n)*Y>.

(10)

(11)

(12)

(13)

(14)

This equation must hold for all feasible valuesYof Therefore the coefficient of thE2 term on the left-hand side

must equal the coefficient of thé? term on the right-hand side:

2rpx 2
7 = (ux —1n)°.

(15)



Similarly, the coefficient of th&” term on the left-hand side must equal the coefficient offfterm on the right-hand

side:
4rfBx
M

=2(A— 0+ Bx)(ux —n) (16)

and, likewise for the constant term:
dray

M

The three equations (15), (16), and (17) determine the three coeffiaigntsy, . x of the quadratic value function
Vx(Y). We first determing:.x from (15):

=(A—o0+Bx)% (17)

2rpx

AL = MR = 2npx

2 r 2
—2(n+ — +n°=0.
Hx (n M)MX n

This quadratic equation inx has two positive real rootg,x; anduxo wherepx; > uxs > 0,

1 T r T r\2 2
— (9 I 92 Ty _yp2) = 7 (7) il
HX1 2<(U+M)+\/ (7]+]V[) 77) n+ar A\ 57) T

and

1 r r r r\2 2
= (24 =) — /2 + =2 =42 ) =+ — — /(=) + —=nr.
fix2 2((77+M) \/ (n+47) n) UREY: (M) + o

Which root should we select? As usual, we should choose the root such that the differential equatiomafoa
solution that converges to a steady state. The differential equation is, from egs (9), (11) and (13)

Y = M(A—-p—0o—nY) (18)
= M(A-J(A—o— ¥ ~VE(¥) 0 —nY)

= %(A—U—&-ﬁx—(??—ﬂx)}/) (19)

This equation gives a converging solution to a steady state if and onjy-ifi{x) > 0. This requires that the smaller
root i xo be chosen.
Therefore

. r r\2 2
fix =pxa =N+ 35— (*) T (20)
Notice that
X = (L)z + 2 — >0
n—HKx = M MW M .
Having solved for x, we now turn to eq. (16) to solve faty

47“6)(
M

=2(A -0+ Bx)(ux —n).



Then A
ﬁx[r+2muw}%Aam&-n><a

M

Thus

A* _ *

g = — {( 0)577 ,L;X)] <0

(n—wX)+ 31

sincen — p% > 0. And thus
AH@(A@[HM}M@[%]M (21)
T (= k) 2+ (=)
Finally, from (17)
we obtain v
ol = ZT(A_O——'_ﬁ;()Q >0

Substituting(21) into (19) we get

4r

Ve {0 ] 0o

This equation has a stable steady stateefined by

_ i }
(4-0) [ FH2n—uk)

v (n— 1)
37
={4-0) [?&(nu}) +2(nu§()2}
Now we use (15) to simplify’
Yz(A—J)[M i | =24
2 (= px) + =7 K

Thus

The following Proposition summarizes the result of this sub-section.
Proposition 1: When the oil cartel faces a carbon tax rule of the form 8 == Y, where o <A, and 1> 0, its
optimalresponsas to set the producegrice accordingto the rule

1 _
p=5lA-0=Fx) = (+px)Y]foraly <y
whee
* r r\Z2 2
Px =N+ 35~ (M) +M777”>0



and i
T (A_U),E"_’éff) <0
(n—wX)+ 37
withn + p% > 0and A — o — 8% > 0. Thus the producer’s price will fall over time, and the quantity demandged,
will also fall over time. AY” approachey” = (A — o) /n, the producer’s price approaches zero, while the consumer’s
price,p + 0, approachesA.

Proof: It remains to show thai(¢) < 0. Now

g = MA—-0c—-p—nY)
= M(A-o0)—M({p+nY).

So

¢ = —M(@p+nY)

1 .
= M —2(n+ux)+n] Y

1 i} .
= §M[ux—n]Y

1 ro\2 2
- ~ml L (7) =
2™ |\ ) T

Y <0.

5 Behavior of oil importing countries facing an arbitrary price-setting rule
of the oil cartel

Now suppose that the oil cartel uses a price-setting rule which relates the price attaritee state variablé’ (¢),
whereY (t) < Yj + R,
p=06-\Y (22)

with 6 < AandX = 0.

Suppose the governments of the oil importing countries taked )\ as given, and agree on coordinating their
carbon-tax policy to maximize the welfare of the representative consumer.

Let 6(t) be the carbon tax that consumers must pay to their governments per barrel of oil consumed) het
the quantity of oil demanded per person, aii) = Mc(t) be the aggregate demand for oil. The aggregate consumer

surplus at time is
1

Agq(t) = 577 (a(t)® = [p(t) + 0(8)] a(#).

The quantity demanded is
q(t) = M [A—p(t) —0(t)] (23)

10



and the carbon-tax revenue is
R(t) = 0(t)q(t). (24)

Assume that the carbon-tax revenue is redistributed in a lump-sum fashion to consumdrét) lbet the lump-sum
transfer to the consumers
Then, the instantatneous welfare flow of the consumers atttime

1

W(t) = Aa(t) - 57

(a(t))* = [p(®) + 0] a(t) + L(t) + Mz — M [2Y (1’] (25)

wheregq(t) is given by (23) and(t) = § — AY (¢). The coalition of the two governments choo#és) and L(¢) to
maximize the integral of the discounted flow of welfare:

oo
max/ e "W (t)dt
0
subject to the government’s budget constraint
L(t) = R(t) (26)

and the dynamic equation
Y(t) = M[A - p(t) - 0(t)]

whereY (0) = Y, andY () < Y.
Using (23), (24), (25) and (26), the instantaneous welfare Ti6(¢) becomes

w

[A—p—mlwq]q—l-]\/la:—M[;YQ}

[A—p—;(A—p—e)}M(A—p—@)%—Mx—M{gYQ}
= {(A=p+0)(A—p—0)+2T —7Y?}

[(A— p)? — 0%+ 21 — ’yYQ} . (27)

MRS

Let V;(Y) denote the value function for the coalition of the two oil importing countries. The HIB equation is
M 2 2 - 2 /
rVi(Y) = max § —- [(A=p)? =0 +2T — Y|+ V/(Y)M[A—p—0] (28)
and maximizing the right-hand side of (28) with respedi fives the first order condition (FOC)

—0—V/(Y) =0.

11



Subsititute this FOC into (28) to get

Vi(Y) = 7{/1 pP=VI)(A=p+ V) +2T —1Y* + 2V (A-p+V])}
M 2
- ?{A p+VY)) —&-Qx—ny} (29)

Let us conjecture that
Vi(Y)=ar+81Y + %YQ.

Then
Vi = Br +purY. (30)

Substituting (30) and (22) into (29)
r (oq + BrY + %YQ) =
M _ 2 2 2
7{217+(A76+51) +2(ur + (A= 8+ B)Y + [(ur + N2 —1] Y }

It follows, by comparison, that

rpp =M [(ur 4+ A)* =] (31)
rBr = M(pur + A)(A =6+ fr) (32)
rag = % [2f+ (A—5+ﬁz)2}. (33)

Equation (31) gives the quadratic equation

M?Jr(?A—&)m—(v—Az):

To avoid complex roots and repeated roots, let us assume that the discriminant is positive

A= (&—2/\)2+4(’y—)\2)>0

For this to hold, it imecessary and sufficietitat

Note: Either of the following conditions isufficientfor A > 0 :

rA
- 4
> (34)

> A% (35)

12



With A > 0, we have two rootsyr; > pir2,

pn :% [(]\Z —2\) + \/(]7% 2)\>2+4(7)\2)]
(=20 V(G -2+ w02

As before, we should choose the root such that the differential equatidhlias a solution that converges to a steady
state. The differential equation is

1
/~L12:§

Y = M[A—p—0]
MI[A—06+)\Y +V]]
M[(A =6+ pBr)+ (ur + Y.

This equation gives a converging solution to a steady state if and only if
(ur+ ) <0. (36)

We must choosg; that satisfies the convergence condition (36). Since the biggerfoatives

1
/m+/\=>\—>\+§

AZ+\/(]\Z—2A)2+4(7—A2)] >0

we rejectur;. Turning to the smaller rooby;», we find that

1 - 2
pe H A= 3 []\Z—\/(]&—%) +4(7—)\2)1 (37)
is negative if and only if
r o2 r 2
(57) < (57 -20) +ar-2)
i.e. iff
r
v > (M> A (38)

In what follows, we assume that condition (38) is satisfied. This condition is satisfied if or A > 0 but sufficiently
small).
Under Assumption (34), we select tamaller root..;» and denote it by:7 :

,;;:% l&—ZA—\/(AZ—Z)\)2+4(7—/\2)].

13



Next, we solve fors;.
Br M (5 +X) — 7] = —M(A— 8)(4i5 + A) > 0.

Thenj; < 0 becauséu; + \) < 7 by eq (37).

(A=) +A)

G

pr =

(4= -G - 207 46 - )
Br = <0 (39)
57V Gy~ 20 4= 22)

given that condition (38) is satisfied. Finally,

M
aj =5 [+ (A-5+67)] >0

The steady state is

v o_ A—0+ 6

—(ur +A)

_ 1 [(A—5) [(r/M) — (07 + M)+ (A=0)(u7 +A)
—(pur +A) (r/M) —(u7 +A)

_ (A—=9)(r/M)
(1 +A)? = (07 + A)(r/M)

_ A—0)(r/M) _ (A=6)(r/M) - 0.
EEDE-ECRNEEE

Thefollowing Proposition summarizes the result of this sub-section:
Proposition 2: Suppose that the coalitiaf oil importing countries faces aarbitrary producer’s price rule of

the form p =6 — AY, where § <A, A 20, and v> ( "Jr.
Assume that
(A = 8) (/M)

rA
R vi

Yo+ Ry> Y =

Then,the intertemporal welfare maximizing behaviour of the coalition of importing countries will result in setting
the carbon-tax according to the rule

0=—p1 — 1Y

L\Z—Q/\—\/(]\Z—%)Q—Hl(v—)\?)}

where

14



and

(4=8) 4 =/ - 207 + 46— 29
pr = - <0.
Ly (=20 + 40— 2)

Thus the consumer’s price satisfies
pi=p+0=(5—p7)— (u] +N)Y.

AsY rises, the consumer’s price rises (recalf + A < 0). The quantity demanded, will fall over timel. AsY
approachesf/, the carbon-tax approache$, and the consumer’s price,+ 6, approachesA.?

Note Since we do not make any assumption about the sign itfis possible that the carbon tax falls Hsrises,
provided that\ < 0, so that the producer’s price rises with We will see later that this cannot happen in a Nash
equilibrium.

Finally, to prove that falls over time, we write

= M(A—p—0)= M(A—5+X— B} — 15;Y).

Then
g=\+p)Y <0

because\ + p7 < 0.

6 Nash equilibrium

In the two preceding sub-sections, we looked at the reaction of one player (either the cartel, or the coalition of importing
countries) to a given linear Markovian strategy (either a carbon-tax rule, or a producer-price setting rule) of the other
player. It is now time to put our pieces together to find the Nash equilibrium of the games between the two players.

Given any linear Markovian tax rule= o + Y , we found that the cartel's reaction function (or best reply) is the
following pricing rule

1 X 1 ,
p= i(A—U—ﬁx)_i("’l‘f'Mx)Y

where
r

(L)2+3 SAC)
M M Mm"*,ufxn

P {(A—U)(n—u}(n))
* (n—wx(n) + 37

Conversely, given any linear Markovian producer-price settingpute § — \Y (whereX = 0), we found that the

px =n+

and

}zﬂMmm.

1See the proof below. B
2 This follows from(A — 6 + 83) + (0} + A)Y — 0asy — Y.

15



coalition’s reaction function (or best reply) is the following carbon-tax rule
0=-pB1 — 1Y

where

lr 9\ — \/(]C[ 2)\>2+4(7>\2)1 = pi(N)

and

(4= -G -2 46 - )
i = : = B 6.0)
GV G20 - )

In a Nash equilibrium, it must hold that, for afl,

oc+nY =—p] —puiy

and

1 1
F-AY = S(A—0 - 8y) - 30+ pR)Y.

These two conditions are satisfied if and only if the following four equalitites are met:

o= —Bi(6,) (40)
5= 3 (A—0 (o) (a1)
n=—pui(A) (42)

A= 0n+ k(). (43)

Note that the RHS of (40) is positive; and the RHS of (41) is positivé # o > 0. We will verify that in a Nash
equilibrium, A — ¢ > 0. The four equations (40) to (43) determine the Nash equilibrium tupl& 7, \).

We are able to show that a soluti¢m 0,7, A) exists and is unique.

We find that (see Appendix 2) under Assumption (38), there are two possible values of

2M~ 1|7 7 \2
o 2My 1o r 44
A =3 +9[M 37+<M)]>0 (44)
2My 1| r r\2
=2 o Dy r . 45
2 =3, Tolar " 37+<M)]>0 (45)
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However, the bigger root is not admissible (see the Appendix for a proof). So in what follows, we define
2M~y 1| r r o\ 2
Vi =5 [ )] 2o
After somesimple manipulations, we obtain the solution

M
=2 (7 = )\*) > 0. (46)
T
Finally, we can solve for* andd*. We can show that (see Appendix 2)

_Ar)”

= 47
.Y >0 47

ocf =2 —A>0.

*

Proposition 3 :

Thereexistsa unique Nashequilibrium. At theequilibrium,the coalition of importingcountriesimposes carbon
tax rule of the form 6(t) = o* + »*Y (¢) wheren* > 0 and 0 < ¢* < A, and the oil cartel setsproducersprice
accordingto the pricing rule of the form p(t) = ¢* — A*Y (¢) whereé* > 0 and 0 < A* < M~/r. The quantity

demandeaill fall overtime,andtheconsumeprice will approachA asthestockof pollution Y approached” where

A-o A—o —Y = A-9 szﬂ (48)

e TGSy Qi) — & AT

In the Nash equilibrium, the importing countries use the carbon tax strategy
0=0c"+n*Y
while the oil cartel uses the price setting strategy

Ar
=" - NY =N |—-Y
P [“YM }
Therefore the tax increases and the producer price falls as the stock of pollution increases. The consumer price is
pr=p+O=(c"+6)+n" - A)Y
wheren* — A* > 0. AsY increases toward its steady state valdg = Ar/(yM), the carbon tax tends td and the

cartel’'s producer price tends to zero.
The rate of increase in pollution is

Y=Mc=q=MA-p—0)=MA-(c*+5) - (n* = \)Y)

17



Thus, asY’ rises,Y (the rate of increase in pollution) becomes smaller and smaller:

dy M| r r 2
haiel *_oyky 7 D o .
v = M=) = [M 3’”(]\4) 1 <0

REMARK 1: The social optimal steady state stock is

_ Ar
ThenY, = Y is true if and only if
. ANAr
o = T (49)

For a proof that* = 24~ see the Appendix.
REMARK 2: Under the social planner, the pollution stock also tends to the steady ¥tgte= Ar/(yM).

However, the rate of change ¥ is not the same in the two regimes. In fact,

Y M 2 -
v _ M [ 3y + <L) - r] for Nash equilibrium

ay ~ 3 M M

while .
dy M 2 . .
v "3 4y + (%) — ]\TJ] for social planning.

Itis clear that the former takes a smaller negative value than the latter. Thus, compared with the social planner case,
the Nash equilibrium results in lower consumption earlier on. This is because cartel conserves the resource stock. This
is another confirmation of Solow’s claim that the resource monopolist is the conservationist’s best friend.

7 Welfare comparison

Since the social planner maximizes world welfare, it is clear that, in terms of world welfare, the Nash equilibrium
outcome cannot dominate the outcome under the social planner.
For the sake of illustration, we provide a numerical example. Assiime- 1,Y, = 0, = 0.05, A = 5, and
v = 0.02.
Then the social planner’s optimal pollution stock is
rA  (0.05)5

=— = =125
M 0.02

o0

18



and welfare under the social plannet is

V(O):azg((A+ﬂ)2+2f) £<A+ﬁ]\]§€)) +?

where

¢ = r— /12 4+ 4yM?

2M

In the case of Nash equilibrium

1| M~y r\2
- My, T TN = 0.244.
v=X=3 [6 v M 3y 4 (M) ] 0

We keep only\; and call itA*. Next, computey*

M
n* _2( 7 )\*):O.311.

r

Then
" B & r\Z2 2 _
px(n®)=n +M_ (M) +MT] r=0.177
. Nt — px
2(n) = ———X o =0.571
= ik + 3
A = 2( *))(1+Z( "))
0 = =3.055
2 —z(n*)(1+ 2(n%))
L A1 - ( ")
o= =1.111
2= z(n")(1 + 2(nY))
20" — A =1.111
v=A479 19 499
A—o*
YOO = - = 12.499-
(M~y/r) = A*

Therefore, we confirm that = Y...

Notice that the steady state pollution stock in the Nash equilibrium is the same as under the social planner. However.
the rates at which the pollution stock grows toward the steady state are different under the two regimes

Concerning welfare in the Nash equilibrium, for simplicity, we ¥gt= 0. The welfare of the importing coalition

3since the termZ is a constant, we can omit it in all welfare expressions.
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as seen from time= 0, is

Mz M

* M — * * * *
Vi0) = af = 5 [20+ (A= 0"+ 8])°| = =5+ T (A= 5"+ 687’

And the welfare of the cartel of oil exporter is

M * *
Vx(0) = af = (4 — 0" + 55)?

M . (A—=0%)(n—u3

_ 47({470_ 7( 1( 2TX))2
r (n_ﬂx)"‘ﬁ
M

= 5, (A=0")(1- (7))

In the Nash equilibrium) = \; = 0.244 44. So the welfare of the coalition of importers%? plus
i(A—5*+5*)2—i(A—5*— )% = 6.944
2r 7= 9 o) =0 '
And the welfare of the cartel of exporters is
o% = 13.888.
The sum of their welfare levels is

Mz Mz
=% 46.944 +13.888 = — +20.832.

Recall that the welfare under the social planner, whicﬁ’r—?‘er 21.983 .This implies that welfare in the social planner
regime is greater than that in the Nash equilibrium.

8 Equilibrium when the importing coalition is the leader

In Section 4, we have shown how the cartel determines its pricing strategy facing a given tax=rule- nY by the
importing coalition, i.e., given the parametersc A andn > 0. Suppose the importing coalition knows this “reaction
function” of the cartel. Then it seems tempting for the coalition to choose the “best” parameteds) to maximize
its welfare.

Let us formulate this problem. We have found that given,) the cartel’s best reply takes the form

p= (A=~ k(o) = 300+ k()Y

For simplicity, define
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and define the cartel’s reaction functions

and

The consumer price is

Then the transition equation becomes
V=M[A-p"—0] =M{A— (o+3%)} — M(n-A")Y.

ThenY (t) converges to the steady stafe= (A — o)/n and

Y(t) =Y + (Yo - Y)exp l“”@f

From (27), the instantaneous welfare of the importing country is

A — pR)2 _ g2 y2
WzMaH—M[( r) 9—7]

2 2

which can be expressed as
W =kY?+pY +¢ + MZ

where v
k() = == [(n = X)) (1 + A% () + ]
plo,n) = M(—on + (A—6%(a,m))A" ()
Vo) = 5 (A= 0 = 5o, m)(A+ 0~ 5(o,m)

It follows that, after substituting for"(¢) using (52), instantaneous welfaret as
W(t) = #(Yy — Y)2e"MEY))t 4 (95 + p) (Yo — V) "MCV/2 4 o2 | ¥ + 4 + M7,

Thus
o0 N 2 SV —
ot K 2, 2(2KY +p) oy, KY Y+ Mz

r r
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which can be simplified as

— —2

© K ., 2(2KY 4 p) . Mz MAY
1174 S LG T v v e e A VAR v W st ,

/0 Wt = yrem (Yo =Y+ raie (o —Y) £ o (53)

r

The task of the importing coalition, acting as leader, is to chepardos to maximize the right-hand side of eq.
(53). Note tha” = Y (0, 7). The first order conditions that determine the optimal pair;) would involve the term
Yy. Suppose that at some future timé the leader can replan, by choosin@gndos again to maximize the integral of
instantaneous welfare flow starting from timgwhereY’ is the current pollution stock:

K J—

2
W(YT -Y)"+

2(2kY + p) MZ MAY

r+ MG1/2 (¥ -7) +T 2r (54)

VoY) = / e W ()t =

Then the new first order conditions that determine the optimal(paif) would involve the tern¥’., which is different
from Y. This observation leads us to conclude that the optimal policy of the leader is time-inconsistent. This time
inconsistency in dynamic games with Stackelberg leadership is a well-known result, see e.g. Kemp and Long (1980).

To resolve the problem of time inconsistency, several authors have imposed time-consistent conditions that would
constrain the choice set available to the Stackelberg leader, see for example Karp (1984), Fujiwara and Long (2011).
In what follows we use the approach advocated by Fujiwara and Long (2011). They propose that the leader’s choice of
the parameters of the tax function should lead to the socially optimal steady state. The rationale for this requirement
is that if a policy leades to a steady state that is not efficient, there will be incentive for the leader to deviate from it to
achieve gains. In terms of our model, this requirement is

A—o Ar

Y = = =Y,
n yM

_ AWMy —nr)
o= RV (55)

This requirement allows us to simplify the coefficients of the tefiris— Y) and(Y; — Y)? as follows

2(2kY + p)

AR TPy
r+ MGY/?2
K r(3n+r/M)—(2n+r/M)MGY? —2yM
MG/ AMG'/? '

Therefore the right-hand side of eq (54) becomes

r(3n +1/M) — (20 +r/M)MGY? — 2y M Ar\?
VT(YT): |: AMGL? YT—W +
Ar Mz M~y [ Ar 2
‘A<YT‘7M>+T‘2T<7M> : (56)
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It follows that the time-consistent leader’s optimization problem amounts to choggmgiaximize the term inside
the square brackets. Sef = 1 for simplicitly. The first order condition for this optimization problem is

3rG — [r(3n+7) — 29]r — 2G3/? = 0. (57)

We can show (see the Appendix ) that the above FOC has a unique positive tdrfortunately, it is not possible
to express the leader’s optimal choicencds an explicit function of the parameter valuesnd~. We must therefore
resort to numerical computations.

Given the numerical values efand~, we must solve for). The solution proceeds as follows. Define the new
variables = 2n + r. First, we must find the unique positive root of the following cubic equation in

9r ro 2y T 272
3 I 2 rooa _ oAy o
4s 45 37’<2+r)3 r<2+r) 0.

Next, we findn from s = 21 + r, and compute

r\2 2r
=\ () +
After that, we find the welfar& (Y-).
Numerical example
AssumeM = 1,r = 0.05, v = 0.02, A = 5. Solving the cubic equation i, we obtain the real roat = 0.265.
Then
n = 0.107.

Turning toG(n)'/2 = (ﬁ)z + 22,
G(n)Y/? = 0.115.
And
A(M~y —nr)

Then, assuming;, = 0,the leader’s payoff i93.644 + % This is an improvement over the Nash equilibrium
welfare (which wa$.944 + Z)

What about the follower’s welfare?

Recall that in section 4, for any arbitrary tax functiée= o + 7, the payoff of the cartel, whew, = 0, is

M .
QX+ :E(A—U‘Fﬁx)z

where
(A—o)(n—pX)

(n— ) + 3%

By = -
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and
2

(%Y+Mmf%:¢aﬁrﬁ:w%
Theng% = —0.531 anda’, = 3.321. Therefor the payoff for the follower (the cartel) is much smaller than under the
Nash equilibrium (which wa$3.88).

World welfare under the leadership of the importing coalitiohG966 + %,which is smaller than under the Nash
equilibrium, which is in turn smaller than under the social optimum.

n— Wx

9 Leadership by exporters

Now let us turn to the other case, where the cartel of exporters know the reaction functions of the importers to its pricing
policyp = 6 — A\Y whered < A andX = 0. Then it seems tempting for the cartel to choose the “best” paramketers
and ) to maximize its integral of discounted profits.

From our analysis of the previous section we know that the importers respédfid\idoy setting

0=—Br—pury

where (assumingr/M < 7),

and

And




and

1 r r\2 Ar
R R _
Nt () = —pr 2[ f+2)\+\/<7\') +4<’y )1
Then the importers’ tax setting reaction function is
0F = R (6, \) + i (V)Y

and the consumer price is
pe=p+ 0t =5-2Y + %5\ + (VY.

The transition equation becomes
V=M[A-p—0%] = M{A— (BN +3} - M%) - Y

where

e[ G o (-3

Thus the patlY (¢) converges to a steady state,

v (A—5)(;°7/M)
T M
and
Y(t)=Y 4 (Yo — Y)exp []\24 []\Z - \/<]C[)2—|—4 (’y— ;;>‘| t]
—V + (Yo - Y)exp [; [T—M\/(AZ)QH(V—;;)H . (58)
Define ,
FO\) = (&) +4 (’y— T) > 0for A < My/r.

Then

Y(t) =Y + (Yo —Y)exp [(W) t|.

The profit of the cartel is

T=pg=(0—-X\Y)[M{A—-(c"(5,N) +5} — M(n"(\) - NY].
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Substituting eq (58) into the above expressionfowe get

- (Mw /F(N) — 7’) A

M 2M [
(r — M\VF)

2(yM —rX)

- f/} 2 o(r—MVF)t

(07 = ArA/M] [Yy = ¥ | e =MV,

In what follows, we sef\/ = 1 for simplicity. Then the integral of discounted profit flow is

[Fermoa - W2 sasy? -

+(r— VEN)) [0y — rAX] {Yo 3 ’I“(A—(S):l .
(r+ VE) (v =)

The task of the oil cartel, acting as leader, is to chobs@dd to maximize the right-hand side of eq. (59). The first
order conditions that determine the optimal p@iré) would involve the ternt,. Suppose that at some future time

if the leader can replan, by choosingandé again to maximize the integral of instantaneous profit flow starting from
time 7, whereY’ is the current pollution stock:

® ttr FQA) =7 A (A — 572
Jr(Yr) = /T e )W(t)dt:( QW) [YT— f(yA)\f)}

_’_(r—\/F()\))[é’y—rA)\} {YT—T(A_(;)} . (60)

(oEm) ey L7 7

Then the new first order conditions that determine the optimal(pair) would involve the ternY’., which is different
from Y;. This observation leads us to conclude that the optimal policy of the leader is also time-inconsistent.

To resolve the problem of time inconsistency, we again use the approach advocated by Fujiwara and Long (2011).
They propose that the leader’s choice of the parameters of the tax function should lead to the socially optimal steady
state. The rationale for this requirement is that if a policy leades to a steady state that is not efficient, there will be
incentive for the leader to deviate from it to achieve gains. In terms of our model, this requirement is

(A—96)(r/M) Ar

g_A-oe/ A
Y3 Mo

M
This condition implies
Al

) M

(61)

26



Substituting the condition (61) into the objective function (60) we get

VEQ) =r/M) A Ar?
v - N ) v (62)

Then the choice ok that maximizes (62) is independent¥df. The FOC for this maximization problem is

(M

rF(\) +2\% — F(\)2 = 0.

We can show that the above FOC has a unique positivex@ste the Appendix). Unfortunately, it is not possible to
express the leader’s optimal choice ofis an explicit function of the parameter valueand~y. We must therefore
resort to numerical computations.
Numerically, given the numerical valuesoand-~y, we must solve foA. The solution proceeds as follows. Define
the new variable by
z=1r-+ 4—7 — 4\
T

First, we must find the unique positive root of the following cubic equation in

4 4 2
423—1",22—27"(74—7")2:7’(7—}—7“) .
r T

By an argument similar to that made in the preceding section, we can show that there is azuniquleat satisfies
the above cubic equation.

Then we solve fon and compute=(\)'/2. Finally, we compute/, (Y;).

Numerical example

AssumeM = 1,r = 0.05, v = 0.02, A = 5. Solving the cubic equation,

4 4 2
423—7”22—27'(7—1—7“)2—7”(7—4—7“) =0
r T

we obtain the unique real ro6t370 .
Then we find\ = 0.319, andd = 3.997. Next,

VF(\) =0.136 19.

Let Yy, = 0. Then the payoff of the cartel (as the leader) is
Jo(Yp) = 15.810.

This is greater than its Nash payoff (which ws88).
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The resulting payoff to the importing countries is

oy

! (2f+ (A— 5+ﬂ1)2)

"o

where

a-o (- rib-9)

V@) +40-3)
Computing with the assumed numerical values, we oltaia —0.464, anda; = 2. 901,which is lower than its Nash
equilibrium payoff.

Thus the world welfare under the exporter’s leadership is 15.810+2§90&hich is greater than that under im-
porter’s leadership,6.966 + ?

To check the robustness of our results, we have computed a number of numerical examples to make the welfare

Br =

comparisons for three entities (world welfare, importer and exporter welfare) across four regimes (social planner,
Nash, leadership by exporters, and leadership by importers). Calculations are conducted with different values of
keeping other parameters fixedat = 1,A = 5,+ = 0.02. The rate of discount varies frotm001 to 0.10. The

results are summerized here by the following Table 1. For all the different valuesvef find that world welfare is

highest under social planning, which dominates world welfare under Nash, which is in turn superior to world welfare
when the exporters are the Stackelberg leader. World welfare is always lowest when the coalition of importers is the
Stackelberg leader. The last inequality is interesting. This direction of inequality seems hold in general (or at least over
all numerical examples of ours.) This could be model specific since the exporters manage to control the resource and
to act as the conservationist’s friend and by that reason, atmostpheric carbon accumulates at a slower rate.
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Games and Nonlinear Dynamics and the 10th Biennial Pacific Rim Conference of the Western Economoc Association
International. We thank the participants for many useful comments; however the usual disclaimer applies.
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Appendix

A.1 Appendix 1: Proof of Proposition 0

Suppose the social planner chooses a tifh@vhich may be finite or infinite) at which extraction ceases, and the
terminal stockR(T') = R < Ry. Then the utility flow from timel” on is

M M ~12
0+ME73%%f:Mﬁ~éq%+%fR]mmsz
The present value of the integral of this flow is

/f¥7¢{Mx%?{%+I%§r}ﬁe7qi{MxA?[%+}%Er}eTTSGa.

The optimall’ andR and the optimal extraction patfit) must solve the problem

1 1 M~ ~
rt 2 2 —rT
H}@?;/O e [Aq(t) 5 q(t)° + Mz 5 Y (t) ] dt+e ™S (R)

subject to
Y (t) = q(t) fort € [0, T

Y(T)=Yo+ Ry — R
R < R,.

Let u(¢) be the co-state variable. The Hamiltonian is

a0+ Mz - S0+ p(t)ale).

HlgYot) =" [ Ag(0) = 51

Thenecessary conditions include

OH ot q(t)
— = " |A- ==+ =0fort<T
94 e { Al +pu(t) =0fort <

. OH ot

=—— =¢" <
a(t) 5y — ¢ M~Y (t)fort <T
Y (t) = q(t)
The transversality condition with respectfas lim;_, {H + a% {e*’”TS (E)} } = 0, which is equivalent to
1 M~ ~
. T . 2 - 21 _ 13 —rT =
}%e Aq(T) oYY qT)" + Mz 5 Y(T) } tl%re S (R) 0
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which is satisfied if )
: —rT o 2 _
251217116 {Aq(T) 2]Mq(T) ] 0.

(This is satisfied if(T") = 0 at some finitel", or if lim;_,~, ¢(t) = 0.)
The transversality condition with respectﬁds

lim {M(T) + % {e”"TS (Eﬂ } >0,R)—R>0

t—T

lim, {M(T) + a% [e’TTS (E)H (Ro - 173) —0.

If we define the current-value shadow priceloby v (t)

U(t) =€ pu(t) <= u(t) =e"""Y(t)

then the above conditions become

{A—QJS)} +y(t)=0fort <T

Y =r+ MyY(t)

Y=gq

lim e "¢(T) = 0

t—T

M ~ ~
lim e~"7 {w(T) += (Yo + Ro - RH >0,Ry~R>0

t—=T

lim e~"T [u)(T) + @ [YO + Ry — EH (RO - E) —0.

t—=T
Differentiate (A.1) with respect to
q=1.
Substituting into (A.2)

Lo
4= ’I“|:A M}—FM’yY.

Consider the system of differential equations
G=—1MA+rq+~yM?Y

Y =q.

This system has a unique steady state
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This steady state has the saddlepoint property. It takes infinite time to reach the steady state. Define
z=Y-Y.

Then we have the homogeneous system
G=rq+yM2

HEESSIHE SN

The characteristic equation of this marix is
(r=X)0—=X) —yM?*=0 <= Xy —rA—yM? =0.

Let \; and)\; be the charateristic roots. Then

1
A= (r= v+ ay2) <o (A.9)
1
do =3 (r+ VT +900%) > 0. (A.10)
The general solution is
t 1 1
q( ) _ hlex\lt + h2e>\2t (All)
z(t) U1 Vg
where
v1 = —(a12) " Han — A1) andvg = —(a12) (a1 — A2)

andh; andh, are determined by the boundary conditions.

_7‘—)\1

<O

v =

It what follows, we assumg, < Y.

Now, consider two cases.

Casel Ry >Y - Y,

Case2 Ry <Y - Y,

Case 1:Clearly, there exists a unique positive valde< R, such thatY,+Ro— R = Y. Then the social planner’s
optimal program is to take the stable branch of the saddlepoint and approach the stea((fy gladsymptotically. As
t— T, q(t) — 0andR(t) — R.

For the stable branch of the saddle-point, wehset 0.
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Then
At

¢—q=(q — e = hie
=Y - Y =Yy = V)eMt = zpeMt = vy hye!

whereYj is known butg, has to be determined. We can determindrom

2(0) = vihy
ie. >
— 2 -~
pyo= 22 B0 VIIME ey < 9
U1 —(r—A1)

Hence the optimal path of extraction expressed as a function of time is

4 — Yo)yM?
q(t)qA('*M( f\)) eMtfor0 <t < oo.
r— A

Thus, undep < X% < 4 andY, + Ry > Y, the consumer’s price is

P = Al =4~ =4 - T

The optimal consumer price is rising, and asymptotically approaches the chokel@#te— o~c.

rA
(Zp — Yo)yM At

(A.12)

(A.13)

Remark 1: Instead of expressing the optimal extractipas a function of time, it is sometimes more convenient to

express the optimal control in the feedback forms ¢'2(Y'). This is done as follows. Since= Y = ¢, we have,

using (A.8)

V() = 4(t) = rq(t) + yM32(t) = Y + yM? [Y(t) - ?}

which again gives the characteristic equatien— A — yM? = 0, and hence, with; < 0 and\, > 0,

2(t) = AjeMt 4+ Aget?t.
To ensure convergence to the steady state, wdset 0. Then
2(t) = AjeMt = zoeMt

Differentiate with respect to
Z(f,) = /\1206>\1t = /\12(t).

Thus the optimal control in feedback form is

(r— \/ T2 +4’yM2) z=

q:>\12:

N
N
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_ oM
- 7‘—)\1 :

With ¢ = —)\1(37 —Y), the optimal consumer’s price in feedback form is

This is consistent with eq (A.12) sinee\;

q
b Mo T
This indicates that the price rises ¥ét) approache¥’.
Remark 2: The value function approach.
Instead of solving (2) using the maximum principle, we can solve it using the Hamilton-Jacobi-Belman (HJB)
equation, by seeking a value functidi{Y") that satisfies the HIB eq.
q2 M’}/YQ

rV(Y)=max |Aqg — — + Mz —
a

517 +V'(Y)ql. (A.15)

Maximizing the right-hand side of eq. (A.15) we get

q /
A—r=-V'() (A.16)

as the necessary condition. In the case whgre Ry > Y, we can show that a quadratic value function would satisfy
the HJIB equation. To prove this, let us try the quadratic value function

§

V(Y)=a+BY + 5Y2 (A.17)
whereq, § and¢ are to be determined.
Then
V(Y)=p+¢Y. (A.18)
Substituting this into (A.16) we get
q —_— p—
A— i B =&Y (A.19)
Eq (A.19) gives the linear feedback control rule
g=M((A+p+&Y). (A.20)
Then the differential equation faf is
Y =M(A+B+EY). (A.21)

The solution path for the differential eq. (A.21) approaches a steady state iff.
The steady state is

wheres and¢ are determined below.
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Substitute (A.18) and (A.20) into the right-hand side of eq. (A.15)

AM(A+5+§Y)_%(A+,6+5Y)2+Mf—MW2+(5+§Y)M(A+B+§Y)
i.e. ) V2
M{A(A+5+§Y)—2(A+B+§Y)2+x—72+(ﬁ+§Y)(A+5+gY)}.

So the RHS of the HIB equation is

YZM
2

(52’Y)+€MY(A+ﬁ)+MB(A+ﬁ2)+4 .

The LHS of the HIB equation is

¢
2
Since the LHS must equal the RHS for all feasible valueg ofve must equate the coefficientsof

ra+rpY + =Y?2.

M
772 )

ME —réE —yM =0
r+ /12 4+ 4yM?
2M '
We take the negative root to ensure that the solution path for the differential eq. (A.21) approaches a steady state. Then
7 — /12 4 4y M2

= since .
13 Wi <0 v >0

€= (A.22)

Next, equating the coefficients bf
rB=EM(A+ D).

Thus AEM

Then

VI(Y)=B+EY <0
and
AEM?

+ MEY.

Compare with .
¢=3 (—r—i— r2—|—4’y]\/[2> ()/}—Y) .

The two equations are the same becauseﬁ (r — T2+ 47M2) .
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The steady state is

A+p r Ar
Y, = =A = —.
—£ |:T§ + M{z] M~
Finally, we can solve fox
M s oy M AeM \® Mz

Case 2:Clearly, if Yo + Ry < Y = %p then there does not exist a valRe< Ry such thatYy + R=Y. Thusit
is not feasible to reach, given thatR, is so small. The optimal solution in this case is to exhaust the resource stock
in finite (at some tim&™ < o), andR*(T*) = 0, Y*(T*) = Yy + Ry < Y. The optimal path is not a saddle path,

but lies below the saddle path, wigfi(7*) = 0. Then
T =Y*T*)-Y = (Yo+ Ry) - Y
and
¢ (T%) = 0.

Sincez(0) = Yy — Y, we get from (A.11) the following 4 equations to solve for the 4 unknowns, 7* and

AR

0= hle)‘lT + h2€)\2T

~

Yo —Y =vihy + vohs.
A.2 Finding the Nash equilibrium values

Equations (42) and (43) can be used to solveXfandy. After that, we can solve far ando, using eq.s (40) and (41).
From (43),

N r T\2 2
2)‘—77+MX(77)_277+M_ (M) T

(%)2 + %nr =2(n—A)+ %

Squaring both sides

(L) + Zor =4t 27+ (1) + 400X
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Thus

2M
(2A—n) = T(A —n)?>0. (A.25)
This equation requires that > 7 .
Consider next eq. (42)
1(r r 2
— | _ _ _ — )2
n=—3 |1 —2A \/(M 2/\) +A(y A)] (A.26)

2(n—/\)+]\7;[=\/<J\Z—2/\>2+4(7—)\2).

Squaring both sides

r\2 9 T r 2 9
(5) +40=N2+4m- N1 = (5 -22) +40 -2
B 7\ 2 9 r 9
= (M) TN - AL 4y - 02
So
2 M
(n—2\) +M v >0
Thus v v
—r=n=—OA=-n? (A.27)

From eg. (A.27) and (A.25) we get

So

or
oM

r

n v —2X > 0 by condition (38). (A.28)

Substitute (A.28) into (A.25)

or

or

36



or

or oM 1?2
w7 T {”‘ﬂ}
- 9/\2+4(M> M7y
T T
M~y 2 M~y \ 2
9)\2—)\(1 7+7‘>+4<7> =0 (A.29)
r M r

Solving this quadratic eq. fox. The discriminant is

2 2
A_<12Mv+2r) 36[4(Mv) .
r M T

So there are two positive real roofs, and )\,

12 14 ( )

11 My r 7\ 2
A1—9[6T+M— 37+(M)1>0

Note: \; > 0 because

B ()
/\QZé [6]\{7+AZ+ 37+(]7\"4)2] > 0.

Can we use both; and)\;?
We now show thah, (the bigger root) must be ruled out because it cannot satisfy simultaneously the conditions
(A.28) and (A.26). To see this, suppossatisfy both (A.28) and (A.26). Then

—% [&—2)\—\/(]\2—2)\)2—#4(7—)\2)] :n:2<1‘?—x>

ie.
1] 2 A M~
=3 [M_Q)\_\/(M) +4(7_M)] —”—2<T‘A>
Then
4M~ r r\2 A
A-—L = - (M) (- 1), (A.30)
Recall the restriction that (see eq. (38)):

Therefore the right hand side of (A.30) is negative.
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This in turn implies that

AM
6A——?1<0

A<§<%7). (A.31)

So the root\; would be admissible only if

5[5 oG] < ()
T fare (1) <o

But this inequality cannot be satisfied given that 0.
Therefore the only admissible rootJs, i.e., the Nash equilibrium is unique
Having found\?, the associateg is

1| r r 2
o | — — ¥ _ _ _ * _ *)2
n zlmf 2! %(A[ 2X) + 4 4QJ:+

i.e only if

Note thatp; > 0 iff

Since we require thatt > 0 (to ensure that” > 0), we will impose the restrictiony > (\})? for a Nash equilibrium.
Making use of (A.28) we get

M
ﬁ:z(rv—ﬁ)>u

Before calculating* ando™ let us state an important lemma:

LEMMA 1 .
piA) + AL = 5 (ux (n7) — ;) <0
Proof
1| r T 2
= | — — — — 2)\* 4 o \*2
4+ A QlM \/(M M) 44y = 2 )1
while

GG
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QED.
Fromeq.d = 1(A — o — B%(0,n)), we get

25— A+o—(A-0) {"_“Xz] — 0. (A.32)
n—Mx + 37

Fromeq.c = —37, we get
2(pi + )
c—(A=9§ =0.
W05+ N — D)

Using Lemma 1, the above equation becomes

o— (A0 {”_"Xz] —0. (A.33)
n—px + 37

Define

* 77_:“;(
I SET
ﬁ_ﬂx+12\7

Note thatd < @ < 1. Then the system of eq.s (A.32) and (A.33) becomes

2 1+Q | | AQ+Q)
Q 1 o | AQ
Then AL+ Q- Q)
* + B
5= - 011 Q) (A.34)
= U0 (A.35)
This implies that
20" — A =o".

A.3 Proof of linear relationship betweend* and \*

We must prove that for the smaller roat,, the following equation holdsi* = %.

We must show
A1+ Q)(1-Q) M Ar
2-Q(1+Q) M

N1 Ar
- (1-23) = 50—
ie v N
T T
1+ Q) (1 — 7M> =i
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We must show
r

r
1 A=) =)2—.
L+Q)y = A3p) = Ag;
Now, let us computé + @. Recall that

:[ n— iy }: —2(p3 (A7) + A7)
n—w+ 3] =2ui(N) + ) + 3%

where

—2(uj(N) + ) = -7 + \/(AZ —on) iy - a2

Thus

So we must show

2y — 3| /(L 2+4(7—7):72. (A.36)
M M M M
Square both sides of (A.36)
o) () w0 3) = ()" ()
Then we have
o0 G <t () +0-30) - G ()
Dividing both sides byr/M)?, we get

2
[4%%2 9N — 12A7Af] ((&)2 +4(y - ;;)) - (E) (A.37)

2
But9AZ — \ (12@ + %) +4 (MV) + v = 0 (eq. (A.29) above). Therefore

r

M? M 2
422 N2 1oay e = 22
LR LV
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Then eq. (A.37) becomes

r\2 9 r r 3_ A\ 2
—y (M) — 472 +129A7 + 2 (M) - (M) :
Divide by (r/M)?
2r\

M\? M
4 (7) F1a ) TR g2 (A.38)
r r M

which is true, by (A.29).

A.4 Proof that the FOC of the importing coalition acting as leader has a unique positive root

We have the FOC
3rG — [r(3n+ 1) — 29]r = 2G3/2.

Define
s=2n+r.
ThenG = rs and the FOC becomes

3s r 2
12 (928 [ &Y — 9g3/2
r (2+2+r> R

Squaring both sides, we get the equation

Define

g(s):r<;+2:>2.

Graphing the LHS, we see it is a curve that goes through the origin, and cuts the horizontal axis at aqceitil/a

9r ro 2y
2_ 74 — 4 =L =
[45 1S 3r(2+r>} 0.

Furthermoreg(s) — oo ass — oo. Sog(s) intersects the RHS (which is a horiontal line) at a unique vafue s; >
0.

negativess, wheres; andss solve
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A.5 Proof that the FOC of the oil cartel acting as leader has a unique positive root

We have the FOC
3
2

rF(\) +2M% — F(\)2 = 0.

Define the new variable by A
z=r+ = _ 4.
T

Then the FOC becomes

/2 [2—;—7“ +2’q 12 =22

Squaring both sides, we obtain the following cubic equation in

4 4 2
423—rz2—2r(7+r>z:r<7+r> .
r r

Next, find A using the formula

Next, compute
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Table 1 Welfare Comparison by Time Discount Rate

Example. 0
(r=0.05)

World welfare

importer welfare

exporter welfare

Social planning

Mx +21.983275
r

Nash equilibrium

MX +20.832849
r

Mx +6.9442906
r

3.8384

Exporter

Stackelberg

¥+18.712

¥+ 2.9019

15.810

Importer

Stackelberg

w+16.99611
r

Mx +13.644777
r

3.3213284

Example. 1
(r=0.01)

Social planning

# +5.8234

Nash equilibrium

MX +5.7572
r

%+1.9188
r

3.8384

Exporter
Stackelberg

g +5.3768

g +0.33423

5.0426

Importer

Stackelberg

g +5.19396

MX 4 4.7857
r

0.40826

Example.2
(r=0.1)

Social planning

w+31.25
r

Nash equilibrium

w+ 28.215
r

Mx +9.4045
r

18.810

Exporter

Stackelberg

Mx +25.4781
r

Mx +5.4541

20.024

Importer

Stackelberg

m+ 21.949
r

MX +16.061

5.8878

Example.3
(r=0.001)

Social planning

Mx +0.62062
r




0.41137

—— - -

ash equilibrium 1 MX_ g 01245 MX . 0.20605
r r

E . X X )
xporter MX., 0.60658 MX | 000ssser | 029786

Stackelberg r r

I X X .
mporter MX . 0.60199 MX | 05911 0.01089

Stackelberg

r

r
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