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Abstract

The paper constructs a general equilibrium model model where the rate of tech-

nical progress and the distribution of R&D expenditure by heterogeneous research

firms are simultaneously determined. Using the model, we explore the effects of

the following policy measures on those two endogenous variables: (i) subsidies to

flow variable R&D costs, (ii) subsidies to flow fixed R&D costs, (iii) an increase in

entrant firms into a series of patent races, and (iv) an increase in the supply of hu-

man capital as inputs to R&D. Contrasting results are demonstrated. For example,

subsidies to flow variable R&D costs promote technical progress and induce the exit

of R&D firms with low R&D productivity. That is, the policy accelerates techno-

logical progress through R&D by “elite” firms. On the other hand, the opposite

result holds if subsidies are applied to flow fixed R&D costs.
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1 Introduction

It is widely recognized that the primary engine of long-run growth in modern economies

is technological progress mainly driven by research and development (R&D). Roughly a

half of GDP per capita growth is attributed to technological progress, and this fact is

felt throughout our daily life (e.g. smartphones and medical instruments). On the other

hand, market failures are an inherent feature of R&D activities. Therefore, the role of

governments in affecting the incentives of firms to conduct R&D is of primary importance

to promote long-run growth.

The purpose of this paper is to re-examine the impact of government policy on R&D

in the private sector, using a model of endogenous technological progress. In particular,

we emphasize the explicit role of heterogeneity of R&D firms, which is neglected in the

literature on dynamic general equilibrium models. There are many precursory studies on

policy effects.1 A departure of the present paper from them is to examine the determina-

tion of the distribution of R&D firms as well as R&D expenditure in the analysis of policy

effects. That is, we explore how policy affects the firm and R&D expenditure distribution

in addition to the issue of whether or not government policy promotes innovation.2 In

doing so, we identify types of firms that conduct R&D (and types of firms that do not),

the amount of R&D investment each of them does, the number of such firms.

Policy measures considered in the present paper are (i) subsidies to flow variable

expenditure on R&D, (ii) subsidies to flow fixed expenditure on R&D, (iii) an increase in

the number of entrant firms into R&D (increasing competition), and (iv) an increase in

the supply of human capital used in R&D.

The importance of explicitly considering the distribution of R&D firms and their

expenditure is three-fold. First, the pace of technical progress in an economy is determined

by R&D activities of all firms rather than a small number of “big” firms. Naturally,

the analysis of the R&D firm distribution is imperative to understand the economy-

wide effects of public policy. Second, industrial policy like R&D tax/subsidy is very

much likely to affect incentives of all firms in different ways. Such policy effects may be

realized directly for some and indirectly for others, e.g. in response to changes in R&D

expenditure of the directly affected rival firms. Capturing those differences is important

to understand the aggregate effects of public policy. Third, industrial policy is also likely

to cause exit/entry of R&D firms. Though analysis based on homogeneous firms can deal

with the issue, it does not allow us to identify types of firms which start or stop investing

in R&D when policy changes. Such information is certainly important for policy makers.

In the model, patent races continuously take place across industries, driving growth

in the long run.3 This allows us to examine the afore-mentioned issues in a dynamic

1For example, see Hall and Rosenberg (2010) and Reinganum (1989).
2One of the key issues regarding R&D policy is whether it complements or substitutes private R&D

expenditure. For example, Zúñiga-Vicente, Alonso-Borrego, Forcadell, and Galán (2014)see for survey.
3Pioneering studies on a patent race include Lee and Wilde (1980), Loury (1979), Dasgupta and
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general equilibrium model. Like many theoretical studies, our model shows that subsidies

to flow variable R&D costs increase the rate of technical progress. A contribution of

the present study is that a new channel is identified where this pro-innovation effect is

realized. It is what we call the cleansing effect, which results from two factors; firms with

relatively low R&D productivity exit patent races and the remaining firms expand R&D

investment. That is, innovation accelerates due to increased R&D investment by “elite”

firms with high productivity. On the other hand, the reverse of the cleansing effect arises

in the case of subsidies to flow fixed R&D costs. Innovation decelerates with the entry

of low productivity firms. Quantitatively those two policy measures are diametric in the

sense that nothing changes if subsidies to flow variable and fixed R&D costs are applied

simultaneously.4 The result indicates that the assessment of the impact of R&D subsidies,

which are often taken as a useful tool to correct market failures in R&D, may require a

more careful examination.

Given the above results, we consider the following questions. Should different R&D

firms be subsidized (or taxed) at the same rate? If not, how differently? One approach to

tackle the questions is to consider them in terms of achieving social optimum. Instead, we

assess the issue, taking a balanced government budget as a constraint. More specifically,

we explore the case where subsidies to flow variable R&D costs are financed out of taxes

on flow fixed R&D costs. Note that the both policy are pro-growth. We argue that

the approach considered here is important because the source of financing subsidies is

often neglected in the literature for the reason of simplification. Our model offers a

framework where the question is answered, explicitly taking a balanced government budget

into account. Our analysis demonstrates that firms with high productivity should be

subsidized and low productivity firms be taxed in net. This implies that resources are

required to shift from low to high productivity firms. In this sense, our result is in line

with the idea of minimizing overall R&D costs in an economy as a whole.

We also analyze the effect of a measure to increase the number of firms entering a

patent race. An important message of the result is that it generates a cleansing effect

like subsidies to flow variable R&D costs: low productivity firms are forced to exit and

innovation accelerates. In contrast, boosting human capital used as inputs for R&D

accelerates innovation by inducing low productivity firms to enter a patent race.

The structure of the paper is as follows. Section 2 develops the model. Equilibrium

conditions are derived in Section 3, which also explores the effects of industrial policy.

Section 4 concludes.

Stiglitz (1980) and Reinganum (1982). Partial equilibrium models in those studies contributed to the
development of general equilibrium models of endogenous technical progress. In particular, Lee and
Wilde (1980) laid the foundation of what is now called the quality-ladder models of Aghion and Howitt
(1992) and Grossman and Helpman (1991a) where technical progress is endogenized by introducing profit-
seeking monopoly firms. Our model belongs to this literature. See Aghion, Akcigit, and Howitt (2014)
for a recent survey.

4It assumes that the initial rates of subsidies to flow variable and fixed R&D costs are the same.
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2 The Model

2.1 Consumers, Final and Intermediate Goods

Our model is built on variety expansion models of endogenous technical progress developed

by Romer (1990) and Grossman and Helpman (1991b, Ch 3). However, ours departs from

theirs in R&D technology in order to introduce a series of patent races.

We assume that there are two types of workers, skilled and unskilled. Although they

are different in skill levels, they share the same preferences. The utility function is

U =

∫ ∞
0

e−ρt lnCtdt (1)

where ρ the subjective rate of time preference and Ct is final consumption. Utility maxi-

mization requires the Euler condition Ėt/Et = rt−ρ where rt is the interest rate and Et is

consumption expenditure. Following Grossman and Helpman (1991b, Ch 3), consumption

expenditure is taken to be the numeraire (Et = 1), so that rt = ρ.

Final output is produced under perfect competition, using intermediate products. To

be more specific, we assume a continuum of intermediate goods industries j ∈ [0, 1], in

each of which ktj varieties are produced at time t. ytji denotes the amount of variety

product i in industry j. Given these assumptions, the production function of final output

Yt is assumed to take the following form:

Yt =

∫ 1

0

ktj∑
i=1

yαtjidj

1/α

, 1 > α > 0. (2)

Technical progress is captured by an increase in ktj, which occurs whenever innovation

occurs in a series of patent races. Given that the production function (2) is CES in nature,

derived demand for intermediate goods can be shown to take the form of

ytji =
p
− 1

1−α
tji∫ 1

0

ktj∑
i′=1

p
− α

1−α
tji′ dj

. (3)

where ptji is the price of intermediate goods ytji.

Turning to the intermediate goods industry, products can be produced only after their

blueprints are successfully created through R&D. Since those new ideas are protected

by patents, monopoly firms produce the goods, facing the demand (3) with the price

elasticity being −1/(1− α). Assume that one unit of the intermediate goods is produced
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with one worker. Then, firms set the following monopoly price

ptj =
ωt
α
≡ pt (4)

where ωt is unskilled wages. Using (4), demand for a variety good (3) is reduced to

ytji =
1

ptKt

≡ yt, where Kt =

∫ 1

0

ktjdj. (5)

Kt is the total number of variety intermediate goods. The results (4) and (5) allow us to

derive monopoly profits per variety:

πtj =
1− α
Kt

≡ πt. (6)

Note that profits in (6) are the same for all products across industries. Let Vt denote the

sum of discounted future profits arising from selling a variety intermediate good. It is

determined by

ρVt = πt + V̇t. (7)

Vt is interpreted as the value of a single patent. Since Vt is independent of the industry

index j, R&D is conducted in all intermediate goods industries j ∈ [0, 1] in equilibrium if

it is active at least in any one of them.

2.2 Patent Races of Heterogeneous Firms

Firms have to invest and succeed in R&D in order to create a new intermediate product

and earn monopoly profits protected by patents. Firms compete in a race to obtain a

patent for new variety products in a given intermediate goods industry. The first firm

which generates innovation in a patent race becomes monopoly in the industry, and others

which fail cannot produce goods.5

2.2.1 Assumptions

Heterogeneity of R&D firms is due to differences in research productivity, denoted by a. In

particular, we assume that such heterogeneity arises probabilistically. Firms do not know

their own true productivity before entry into a patent race, and it is revealed only after

entry. R&D productivity levels are distributed according to the following distribution

function:

Z(a), a ∈ [0, aH ], 0 < aH <∞, (8)

which is assumed to be known. On the other hand, we assume that rival firms’ R&D

productivity levels are not observable even during a patent race. We assume that N firms

5The basic structure of a patent race is based on Lee and Wilde (1980).
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enter a patent race whenever it starts afresh. For simplicity, N is taken as exogenously

given.6

After entry, firms incur flow R&D costs which consist of variable and fixed components.

Consider a firm with productivity a. Let Rtj(a) be the number of R&D workers the firm

choose to employ in industry j. Use f to denote a fixed number of R&D workers required

as long as the firm stays in a patent race irrespective of whether or not the variable number

of R&D workers Rtj(a) is positive. More specifically, if the firm employs Rtj(a)+f workers,

then innovation occurs at a Poisson arrival rate of

ah(Rtj(a)), h(Rtj(a)) ≡ Rtj(a)µ, 0 < µ < 1. (9)

In the R&D technology (9), there is no term representing externalities which are an

important characteristic of R&D. Instead, we make the following assumption. When a

firm succeeds in R&D, it is able to creates blueprints for λKt number of variety products.

A parameter λ > 0 measures the degree of positive externalities in R&D, and it plays an

important role in sustaining the rate of technical progress in the long run. Therefore, a

winner in a patent race achieves the firm value λKtVt.

Note that because of the presence of flow fixed costs f , relatively low productivity firms

exit the race after their productivity levels are observed, and relatively high productivity

firms stay in the race. In other words, there exists the threshold level of productivity,

denoted by Atj (0 < Atj ≤ aH), at which firms are indifferent between continuing and ex-

iting the race. This threshold productivity level is an important factor in determining the

distribution of R&D firms in equilibrium. The next section shows how Atj is determined.

A patent race ends once innovation occurs, and another race immediately starts with

the entry of another set of N firms.7 Note that although the intermediate goods industries

are symmetric in structure, the number of varieties is different across those industries since

innovation occurs stochastically.

2.2.2 Optimal Decisions

R&D firms with productivity a are called firms a. The value of R&D firm a, denoted by

vtj(a), is determined by the following recursive equation:

ρvtj(a) = [λKtVt − vtj(a)]ah(Rtj(a))− wt[(1− sR)Rtj(a) + (1− sf )f ]− vtj(a)I−1tj . (10)

The first term on the right-hand side is the expected flow benefit of R&D (an expected

increment of the firm’s value), and the second term gives flow R&D costs with wt as

skilled wages. There are two policy variables in the flow costs. sR is the rate of subsidies

6In principle, N can be endogenized by introducing fixed entry costs. But, we focus on the case of a
fixed N because it is sufficient to establish our key results.

7Following the literature, it is assumed that incumbent firms which earn profits in the intermediate
goods industries do not engage in R&D.
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to variable costs, and sf is the rate of subsidies to fixed costs. I−1tj in the third term is the

expected Poisson rate of rival firms succeeding in R&D. That is, −vtj(a)I−1tj captures the

risk of the firm a losing in the patent race with its value being reduced to nil. Note that

the Poisson rate I−1tj is the same for all firms competing in the race in industry j because

of the assumption that rival firms’ R&D productivity levels are unobservable (incomplete

information).

Taking I−1tj as given, a firm a chooses Rtj(a) to maximize the right-hand side of (10).

The first-order condition is

[λKtVt − vtj(a)] ah′(Rtj(a)) = (1− sR)wt. (11)

Its left-hand side gives the expected marginal benefit of employing an additional R&D

worker, and the associated marginal cost is on the right-hand side.

To explore some implications of this result, we use (10) and (11) to derive(
λKtVt −

λKtVtah(Rtj(a))− wt[(1− sR)Rtj(a) + (1− sf )f ]

ρ+ ah(Rtj(a)) + I−1tj

)
ah′(Rtj(a)) = (1− sR)wt.

(12)

Let Xtj(a) denote the value of Rtj(a) which satisfies (12) (see (28)). Xtj(a) reflects the

firm’s optimal decision on R&D employment, taking rival firms’ decisions as given. It is

easy to show that a firm with a higher a employs more workers.8

Next, substitute Xtj(a) into (10) to obtain

vtj(a) =
λKtVtah(Xtj(a))− wt[(1− sR)Xtj(a) + (1− sf )f ]

ρ+ ah(Xtj(a)) + I−1tj
. (13)

This equation allows us to examine how the R&D firm value vtj(a) changes as productivity

a changes. An increase in a impacts on the firm value directly via a on the right-hand

side of (13) and indirectly through Xtj(a). Invoking the envelope theorem, however, the

indirect effect via the Xtj(a) can be ignored. Therefore, taking I−1tj as given, the following

result holds:
∂vtj(a)

∂a

∣∣∣∣
constant I−1

tj

> 0. (14)

This demonstrates that firms with higher R&D productivity have a greater value of com-

peting in a patent race.

Based on the above results, we next characterize the types of firms which continue

investing in flow R&D expenditure after entry. A patent race starts with N firms. At the

beginning of the race, those firms observe their productivity a and form the expectation

of their firm value vtj(a). It is obvious that firms stay in the race as long as its value

vtj(a) is positive. On the other hand, firms exit the race for vtj(a) < 0. The threshold

8This result can be established by totally differentiating (12) and using the envelope theorem.
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productivity Atj at which firms are indifferent between staying and exiting a patent race

is defined by

vtj(Atj) = 0, (15)

which means

λKtVtAtjh(Xtj(Atj)) = wt[(1− sR)X(Atj) + (1− sf )f ]. (16)

This condition determines the threshold productivity Atj.
9

In addition, making use of (11) and (16), we can show the following result:

Xtj(Atj) =
µ

1− µ
1− sf
1− sR

f ≡ X̄A (17)

λKtVt
wt

=
(1− sR)µ(1− sf )1−µF

Atj
≡ Λ̃(Atj) (18)

where F ≡ f1−µ

µµ(1−µ)1−µ . There are two implications regarding (18). First, the threshold

productivity is the same for all industries, i.e. Atj ≡ At. Second, the threshold At

depends on the value of a patent Vt. Intuitively, an increase in the value of a patent

boosts the value vtj(a) of all firms competing in the patent race, so that even relatively

low productivity firms can afford to stay in the race, incurring flow R&D costs. Because

of this property, the effective value of a “prize” λKtVt
wt

in the patent race is negatively

related to the threshold productivity At. That is, a greater prize of winning in a patent

race induces even lower productivity firms to invest in flow R&D. This mechanism accords

with our intuition. But, we will show that there is a counter-acting effect in the following

analysis.

2.3 Labor Market

There are two types of workers, skilled and unskilled. The latter type of workers are

employed for the production of intermediate goods only. Using (4), (5) and L to denote

the number of unskilled workers, the following full-employment condition holds:

L =

∫ 1

0

ktj∑
i=1

ytjidj = Ktyt =
α

ωt
. (19)

Skilled workers, on the other hand, are used for R&D only. Using H to denote their

total number, the following condition holds for their full employment.

H = N

∫ 1

0

∫ aH

Atj

[Rtj(a) + f ]dZ(a)dj. (20)

9The “interior” value of Atj exists if aH is sufficiently large.
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On the right-hand side is the sum of variable and fixed R&D workers employed for flow

R&D activities in the continuum of the intermediate goods industries j ∈ [0, 1]

2.4 Technical Progress

The number of firms making flow R&D investment is N [1− Z (At)], because firms with

productivity greater than the threshold At stay in a patent race and others exit. Therefore,

the average Poisson rate of innovation in industry j, denoted by ιtj, is given by

ιtj =

∫ aH

At

ah(Rtj(a))
dZ(a)

1− Z(At)
. (21)

Because the industry-wide Poisson rate Itj is equivalent to the product of the number of

active firms and the average Poisson rate, we have

Itj = N [1− Z(At)] ιtj. (22)

This equation is equivalent to the sum of the Poisson rates of all firms conducting flow

R&D, given the assumption that R&D productivity a is randomly distributed.

Similarly, the average Poisson rate of rival firms is

I−1tj = [N(1− Z(At))− 1] ιtj. (23)

Note that this rate is the same for all firms, since R&D productivity levels of rival firms are

unobservable. Making use of the above equations, the following relations can be derived

I−1tj = m(At;N)Itj (24a)

m(At;N) = 1− 1

N [1− Z(At)]
,

∂m

∂At
< 0,

∂m

∂N
> 0. (24b)

This equation relates the Poisson rate of rival firms to the industry-wide Poisson rate.

Next, let us consider the growth of final output. Making use of (19), the production

function (2) can be reduced to Yt = K
1−α
α

t L. Hence, its growth rate is 1−α
α

K̇t
Kt

. To calculate

it, note that the number of variety goods increases by λKt in each industry whenever

innovation occurs at a rate of Itj. Given a continuum of intermediate goods industries,

we can write K̇t =
∫ 1

0
λKtItjdj or

K̇t

Kt

= λ

∫ 1

0

Itjdj. (25)
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3 Steady State Analysis

3.1 Equilibrium Conditions

This section focuses upon steady state, dropping the subscripts t from relevant variables.

Because innovation follows a stochastic process, the timing and the number of variety

products differ across the intermediate goods industries. Other endogenous variables, on

the other hand, are the same for all industries due to the symmetric structure of the

model. This feature allows us to drop the industry subscript j from all variables other

than the number of varieties goods ktj.

We derive equilibrium conditions which determine two variables (I, A). For this, sub-

stitute (18) and (24a) into (12) and rewrite the resulting equation asΛ(A; sR, sf )−
Λ(A; sR, sf )ah(R(a))−R(a)− 1− sf

1− sR
f

ρ+ ah(R(a)) +m(A;N)I

 ah′(R(a)) = 1 (26)

where

Λ(A; sR, sf ) ≡
Λ̃(A)

1− sR
,

∂Λ

∂A
< 0,

∂Λ

∂
(

1−sf
1−sR

) > 0 (27)

and Λ̃(A) is defined in (18). (26) implicitly defines the optimal number of workers em-

ployed by a firm a. It is re-expressed as

R(a) = X (a, I, A; sR, sf , N) ,

∂X(a)

∂k1
> 0, k1 = a, I,N, sR,

∂X(a)

∂k2
< 0, k2 = A, s2.

(28)

The signs of the derivatives can be verified by invoking the envelope theorem. Note that

R&D subsidies sR and sf have opposite effects on R(a). The implications of this result

will be explored later.

Next, substitute (28) into (21) and rewrite the resulting equation, using (22) and

(24a), to obtain

I = N

∫ aH

A

ah(X(a, I, A; sR, sf ))dZ(a). (29)

This equation determines the industry-wide Poisson rate I, taking the threshold produc-

tivity A as given. It is called the R&D equilibrium condition because it is interpreted to

summarize optimal behaviors of all firms conducting flow R&D in all intermediate goods

industries.

To succinctly express the relation between the two variables (I, A) in (29), rewrite it

as

I = Φ(A;N, sR, sf ),
∂Φ(A)

∂A
< 0,

∂Φ(A)

∂N
> 0,

∂Φ(A)

∂
(

1−sf
1−sR

) > 0. (30)
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The signs of the derivatives are due to the assumption regarding “stability” of the model:10

1−N
∫ aH

A

ah′(X(a))
∂X(a)

∂I
dZ(a) > 0. (31)

The R&D equilibrium condition (30) is downward-sloping in Figure 1. To develop an

intuition, recall that it determines I for a given A and suppose that the threshold produc-

tivity A falls. Then, relatively lower productivity firms stay in a patent race and conduct

flow R&D, boosting the industry-wide Poisson rate of innovation. This gives rise to a

negative relationship between A and I.11

To derive another equilibrium condition, substitute (28) into (20) to derive the skilled

labor market condition in terms of two variables (I, A).

H = N

∫ aH

A

[X(a, I, A; sR, sf ) + f ]dZ(a). (32)

It is depicted as an upward-sloping curve in Figure 1. To understand intuition behind the

slope, suppose that the Poisson rate I rises. It requires a greater number of skilled workers

in flow R&D (see (28)), which results in an increase in skilled wages, i.e. higher flow R&D

costs. Consequently, relatively lower productivity firms can no longer afford flow R&D

and exit a patent race, raising the threshold A. Such adjustment instantaneously occurs

so that the labor market condition holds.

The two endogenous variables (I, A) are determined in equilibrium in the system of

two equations (30) and (32). In Figure 1, the intersection point E0 between the two curves

define steady state equilibrium.12

3.2 Policy Effects

3.2.1 R&D Subsidies

This section considers the effects of two different types of R&D subsidies. sR is the rate

of subsidies to variable flow R&D expenditure, and sf is the equivalent to flow fixed R&D

expenditure. The following proposition summarizes the results concerning the former

industrial policy.

Proposition 1. Following an increase in sR,

10Although there may be cases where (31) does not hold, we focus upon a “normal” in which (31) is
met. (31) is essentially equivalent to the assumption that Lee and Wilde (1980) uses to prove Theorem
1 of their paper.

11Furthermore, there is an additional channel where the following chained effects work: I ↑ ⇒ v(a) ↓
⇒ [V − v(a)] ↑ ⇒ R(a) ↑ for a ∈ [A, aH ] (the third “⇒” is due to (11)). This again leads to a higher I.

12To derive a condition which determines skilled wages, note that wt, Rt(a), At and v(a) are constant in
steady state. Therefore, inspecting (11) shows that V̇t/Vt = −K̇t/Kt. Using this, (7) is rewritten as Vt =

πt/(ρ+ K̇t/Kt). This equation, (6) and (25) allows us to reexpress (18) as λ(1−α)
(ρ+λI)w =

(1−sR)µ(1−sf )1−µF
A

Thus, equilibrium skilled wage w is defined in this equation once (I, A) are determined.
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(i) the threshold R&D productivity A rises (the number of active firms N [1 − Z(A)]

decreases),

(ii) the industry-wide Poisson rate I increases, and

(iii) the total and average number of variable R&D workers R(a) employed by active firms

for a ∈ [A, aH ] increases.

Proof. See Appendix A.

In Figure 1, the initial equilibrium is given at a point E0, which moves to a point E1

following a rise in the rate of subsidy sR. To understand this result, consider (12) which

determines the optimal number of variable flow R&D workers for a firm a. A higher

subsidy rate sR reduces the marginal cost of R&D directly. Its indirect effect comes from

the fact that the expected marginal benefit of R&D also falls because the effective “prize”

of a patent race, captured by Λ̃, decreases (see (18) and (26)). Such indirect effect is

realized through the entry/exit process of R&D firms. A higher sR induces relatively

low productivity firms to stay in the race, intensifying competition, and consequently the

effective “prize” of a patent race falls. Because the direct effect dominates the indirect

effect, firms increase variable R&D workers.

But, this fact generates two opposite effects. First, a greater employment of variable

R&D workers raises the industry-wide Poisson rate I, causing a rightward shift in the R&D

equilibrium condition in Figure 1. This is the partial equilibrium effect. On the other

hand, a greater demand for variable R&D workers creates an upward pressure for skilled

wages, given a fixed supply of skilled workers. This induces relatively low productivity

firms to exit a patent race, leading to a higher threshold productivity A. The second

effect is reflected in an upward shift of the (32) curve. It is the general equilibrium effect

of the subsidy policy which works via the labor market.

The subsidy policy unambiguously raises the threshold productivity A because both of

the partial and general equilibrium effects of the policy reinforce each other (Proposition

1-(i)). On the other hand, those two effects work on the industry-wide Poisson rate I

in opposite directions. The partial equilibrium effect of the policy tends to boost the

Poisson rate, whereas it tends to fall due to the general equilibrium effect. Since the

former effect outweighs the latter effect, the industry-wide Poisson rate I unambiguously

rises (Proposition 1-(ii)).

Regarding changes in the employment of variable R&D workers R(a), the result is

ambiguous in general. A rise in sR and a resulting higher I both encourage firms to

employ more skilled workers (see (28)). On the other hand, a higher threshold A which

results from the policy change tends to reduce skilled workers employed, counteracting

the afore-mentioned effect. However, it can be easily established that the total number

of flow variable workers and its average are both unambiguously increase (Proposition

1-(iii)).
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Next, let us consider a higher rate of subsidy to flow fixed costs. The results are

summarized in the next proposition.

Proposition 2. Following a rise in sf ,

(i) the threshold productivity A falls (the number of active firms N [1−Z(A)] increases),

(ii) the industry-wide Poisson rate I drops, and

(iii) the total and average numbers of variable R&D workers R(a) employed by active

firms for a ∈ [A, aH ] decrease.

Proof. See Appendix B.

This is diametric to Proposition 1. The marginal cost of R&D is independent of sf . On

the other hand, as in the case of sR, the expected marginal benefit of R&D is a decreasing

function of sf through the entry/exit process of firms. Thus, firms tend to reduce R&D

employment with a drop in the Poisson rate I for a given threshold A. This is reflected

in a leftward shift of the (30) curve (the R&D equilibrium condition) in Figure 1. On the

other hand, the (32) curve (the labor market condition) shifts downward. Intuitively, the

reduction of demand for flow variable R&D workers tends to reduce skilled wages. This

makes it possible for relatively lower productivity firms, which did not invest in flow R&D

before, start doing so. As a result, the threshold productivity A falls.

It is clear from Figure 1 that the threshold A unambiguously drops, given the directions

of shifts of the equilibrium curves, as explained above (Proposition 2-(i)). The figure also

shows that the industry-wide Poisson rate falls with the entry of less productive firms

(Proposition 2-(ii)).

Having established the above two propositions, we next explore the case where sub-

sidies are applied to both of flow variable and fixed costs simultaneously without distin-

guishing them. The result is summarized below:

Proposition 3. Suppose s ≡ sR = sf . A change in s affects none of the threshold A, the

Poisson rate I and variable R&D employment R(a).

This proposition indicates that the effects of two types of subsidies sR and sf exactly

cancel each other because they are qualitatively and quantitatively opposite in their ef-

fects. This intuition can also be confirmed in the fact that (26) becomes independent

of those policy variables for sR = sf . Proposition 3 contrasts with results reported in

the precursory studies including Aghion and Howitt (1992) and Grossman and Helpman

(1991b). In the literature on endogenous technical progress, R&D subsidies are shown to

promote innovation and instrumental in restoring the socially optimal level of R&D in-

vestment. The difference in policy implications is due to the assumption of heterogeneity

in R&D firms, which is largely neglected in the literature.
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3.2.2 Entry of Firms

Due to the assumption of the Poisson process of innovation, the average length of time

for each patent race is 1/I. Once a race ends in a given industry, a new patent race starts

afresh with an entry of N firms. This section considers how the degree of competition

measured by N affects innovation and the firm distribution.

Proposition 4. As the number of entrant firms N in each patent race increases,

(i) the threshold productivity A increases,13

(ii) the industry-wide Poisson rate I increases, and

(iii) the total and average numbers of variable R&D workers R(a) employed by active

firms for a ∈ [A, aH ] increase.

Proof. See Appendix C.

The results are explained using Figure 2. The two curves shift in the same directions

as in the case of a higher subsidy rate to flow variable costs sR, but for different reasons.

Consider the R&D equilibrium condition (30). As entrant firms rise in number, there

are more firms which stay in the race and invest in flow R&D, intensifying competition.

This means a higher risk of losing a race, thereby reducing the value v(a) of each and

every active firm. As a result, the expected marginal benefit of R&D increases (see (11)),

causing a rightward shift of the (30) curve. With other things being equal, both of the

threshold A and the Poisson rate I increase. This is the partial equilibrium effect of

the policy change. The general equilibrium effect is realized via the skilled labor market

condition (32). More entrant firms boost demand for skilled workers, which is amplified

due to intensified R&D competition, mentioned above. This raises skilled wages, causing

relatively low productivity firms to exit. This causes the threshold productivity A to rise

with an upward shift of the the (32) curve.

It is not clear whether the direct or indirect effects dominates. If the former is dom-

inant, equilibrium is established at E3. In the opposite case, equilibrium settles at E ′3.

In other words, a higher A due to the partial equilibrium effect is reinforced by the gen-

eral equilibrium effect. On the other hand, those two effects work in opposite directions

regarding their impact on the Poisson rate I, hence its overall change is ambiguous.

3.2.3 Skilled Workers

Skilled workers only can serve as inputs for R&D. In this sense, they may be interpreted

as human capital in a narrow sense. Then, how does its increase, e.g. through education,

affect equilibrium?

Proposition 5. Following an increase in H,

13A change in the number of active firms N [1− Z(A)] is ambiguous.
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sR sf sR = sf N H
I + − 0 ± +
A + − 0 + −

N

∫ 1

0

R(a)dZ(a) + − 0 + +∫ 1

0

R(a)
dZ(a)

1− Z(A)
+ − 0 + +

Table 1: Summary of comparative statics results. N
∫ 1

0
R(a)dZ(a) is the total flow variable

R&D employment, and
∫ 1

0
R(a) dZ(a)

1−Z(A) is the average employment.

(1) the threshold productivity A falls (the number of active firms N [1−Z(A)] decreases),

(2) the industry-wide productivity I increases, and

(3) all of active firms for a ∈ [A, aH ] expands flow variable R&D workers R(a) (the total

and average numbers of variable R&D workers R(a) increase).

Proof. See Appendix D.

To understand this proposition, note that the supply of skilled workers H affects the

labor market condition (32) only. In Figure 2, the (32) curve only shifts downward, giving

rise to the results Proposition 5-(1) and (2). It is also easy to confirm an unambiguous

increase in R(a) for all active firms, using (28).

Intuitively, a greater supply of skilled workers cause skilled wages to fall, reducing the

marginal cost of R&D. This induces relatively low productivity firms to start investing

in flow R&D, lowering the threshold productivity A. In addition, this leads to a greater

effective “prize” for a winner of a patent race, as (18) shows. This fact incentivizes active

firms to boost R&D employment, accelerating technical progress.

The growth literature shows that an increase in the supply of skilled workers is con-

ducive to innovation, and it is called the scale effect. Though the prediction is not sup-

ported (e.g. Jones (1995)), education for that purpose draws much attentions in most of

economies. Our result demonstrates that accelerated innovation due to a greater human

capital stock is accompanied by the entry of relatively low productivity R&D firms.

3.3 Self-financed R&D Policy

Table 1 summarizes the effects of changes in policy variables. It shows that the qualitative

effects (i.e. signs) of subsidies to flow variable and fixed costs, sR and sf , are opposite.

Their quantitative effects are also opposite in the sense that the net effects are nil if the

both policy variables marginally change by the same amount for s = sR = sf initially. A

higher sR is pro-innovation, whereas a higher sf is anti-innovation.
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Figure 3 illustrates such differences in terms of the firm distribution. The vertical

axis measures the number of firms, and R&D productivity is on the horizontal axis. The

area under the distribution is equivalent to the number of firms which stay in a patent

race and invests in flow R&D. An increase in sR induces lower productivity firms to exit

a patent race and makes it possible for “elite” firms only to contribute to accelerated

innovation. In contrast, a greater sf retards innovation, giving a greater incentives for

lower productivity firms to join a patent race.

The above results have two important implications for policy makers. First, the litera-

ture shows that R&D subsidies are best used to correct market failures which are prevalent

in R&D. Our result shows that this prediction fails if the policy is applied to flow fixed

costs only, and it even worsens the situation. Second, the literature usually ignores the

source of financing R&D subsidies in developing normative implications for the reason of

simplification. Our paper gives a possible justification for such omission. To understand

this claim, note that in our model, the innovation-promoting effect of subsidizing flow

variable R&D costs can be replicated by taxing flow fixed R&D expenditure. That is,

the combined subsidy-tax policy measures can be self-financed with neutral fiscal stance,

and its total effect is unambiguously pro-innovation. In this sense, policy analysis in the

literature may be justified if flow variable and fixed R&D costs are clearly distinguished.

To explore this second implication further, note that the following budget constraint

should hold for self-financed R&D subsidy/tax policy:14

w(−sf )N [1− Z(A)]f = wsRN

∫ aH

A

R(a)dZ(a) (33)

where −sf > 0 is now interpreted as a tax rate on flow fixed R&D costs. The left-hand

side of (33) is the tax revenue, and the right-hand side gives government spending on

subsidies to flow variable R&D costs. Suppose that the tax rate −sf is endogenously

adjusted for the balanced budget constraint (33) to hold in equilibrium.15 Rearranging

(33) gives

w(−sf )f = wsRR̃(A) (34)

where R̃(A) ≡
∫ aH
A

R(a) dZ(a)
1−Z(A) is the average flow variable R&D workers. This equation

shows that gross tax payments that each R&D firm makes, w(−sf )f , are equal to subsidies

to a firm with the average flow variable R&D employment, wsRR̃(A). Therefore, net tax

14Lahiri and Ono (1999) considers a partial equilibrium model of R&D competition between oligopoly
firms with asymmetric costs. In this sense, their study is similar to our heterogenous firms structure.
However, no discussion is given on the source of financing subsidies in their study.

15In this extended case, three endogenous variables are (I, A, sf ). To solve it, substitute (32) into (33)
to derive

−sf = sR

(
H

N [1− Z(A)]f
− 1

)
.

(I,A, sf ) are determined by the system of three equations (30), (32) and the above equation.
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payments are given by w(−sf )f − wsRR(a) = wsR(R̃(A)−R(a)).16

This demonstrates that firms with flow variable employment lower than the average

are taxed in net, whereas those with the above average employment are subsidized in

net.17 Empirical studies show that the social rate of return is much higher than the

private counterpart, implying underinvestment in R&D. To correct the market failure,

the literature shows that R&D subsidies should be used. Following this widely recognized

argument, suppose that self-financed subsidies are used to address the issue of R&D

underinvestment. According to our analysis, it would be necessary to tax relatively lower

productivity firms and subsidize subsidize relatively higher productivity firms to improve

welfare.

4 Conclusion

The paper developed a model of endogenous technical progress where heterogeneous firms

compete in a series of patent races. In equilibrium, the rate of technical change and

the distribution of R&D firms and their research expenditure are determined. Using the

model, we identified several interesting results concerning the effects of government policy.

In particular, subsidies to flow variable costs and policy to intensify competition with firms

entry generate the cleansing effect in the sense that relatively low productivity firms exit

patent races and innovation accelerates. On the other hand, subsidies to flow fixed R&D

expenditure gives rise to the opposite result. We also explored the issue of whether firms

with high (or low) productivity should be subsidized (or taxed) in net when the industrial

policy is self-financed. Our analysis demonstrated that relatively high productivity firms

should be more favorably treated than lower productivity firms.

Finally, we comment on possible extensions of the model. First, the distribution of

R&D firms and their expenditure can be further endogenized. The firm distribution is

characterized by the distribution function Z(a), the threshold productivity A and the

number of entrant firms N . The second variable A only is enogenized in the paper, but

in principle N can also be optimally chosen by firms. One possible way is to assume a

free entry process at the beginning of each patent race with fixed sunk costs, say fN . Free

entry continues until the expected benefit of entry into a patent race is equalized to the

fixed cost. By so doing, the “hight” of the firm distribution in Figure 3 would respond

to policy changes, and new insight could be gained. Second, the current paper focussed

16Using the equation in footnote 15, one can verify the following:

−dsf
sf

=
dsR
sR

+

(
sR
sf

+ 1

)
z(A)

1− Z(A)
dA

for sf 6= 0 and sR 6= 0. It says that the proportionate rate of changes in sf must be greater than that of
sR when the rate of subsidy sR is changed. It means that a change in the tax rate must be greater than
that of the subsidy rate in order for the budget constraint (33) to hold.

17Note that firms with R̃(A) are not necessarily those with the average R&D productivity for a ∈
[A, aH ], given a general form of the distribution function Z(a).
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upon steady state. But, off steady state analysis is desirable to examine the stability

properties of steady state equilibrium. In addition, dynamic changes in the distribution

in response to policy changes may generate interesting insights.

Appendix

A. Proof of Proposition 1

Totally differentiating (32) and (29) gives

[
P11 P12

P21 P22

]dI
dA

 =

[
MS

1

MS
2

]
dS +

[
MN

1

MN
2

]
dN +

[
MH

1

MH
2

]
dH (A1)

S =
1− sf
1− sR

, P11 = N

∫ aH

A

∂X(a)

∂I
dZ(a) > 0, (A2)

P12 = −NX(A)z(A) +N

∫ aH

A

∂X(a)

∂A
dZ(a)−Nz(A)f < 0, (A3)

P21 = 1−N
∫ aH

A

ah′(X(a))
∂X(a)

∂I
dZ(a) > 0, (A4)

P22 = NAh(R(A))z(A)−N
∫ aH

A

ah′(X(a))
∂X(a)

∂A
dZ(a) > 0, (A5)

MS
1 = −N

∫ aH

A

∂X(a)

∂S
dZ(a) < 0, MS

2 = N

∫ aH

A

ah′(X(a))
∂X(a)

∂S
dZ(a) > 0, (A6)

MN
1 = −

∫ aH

A

X(a)dZ(a)−
∫ aH

A

∂X(a)

∂N
− [1− Z(A)]f < 0, (A7)

MN
2 =

∫ aH

A

ah(X(a))dZ(a) +N

∫ aH

A

ah′(X(a))
∂X(a)

∂N
dZ(a) > 0, (A8)

MH
1 = 1, MH

2 = 0, (A9)

where z(a) is the density function of productivity a. The following can be confirmed:

D = P11P22 − P21P12 > 0. (A10)

Result (i): Using (A1), it is easy to show DS
A = P11M

S
2 −P21M

S
1 > 0. By Cramer’s rule,

dA

dS
=
DS
A

D
> 0 ⇒ dA

dsR
=
dA

dS

dS

dsR
> 0. (A11)

Result (ii): Using (A1),

DS
I = MS

1 P22 −MS
2 P12 = N2

{
z(A)

∫ aH

A

∂X(a)

∂S
Θ(a,A)dZ(a) + ∆(A)

}
(A12)
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where

Θ(a,A) = ah′(X(a))[X̄A + f ]− Ah(X̄A), (A13)

Θ(A,A) = 0, (A14)

∂Θ(a,A)

∂a
=

∂Θ(a,A)

∂ah′(X(a))

∂ah′(X(a))

∂a
= [X̄A + f ]

∂ah′(X(a))

∂a
> 0. (A15)

The sign of (A15) can be confirmed, using (11). Hence, Θ(a,A) > 0. In addition,

∆(A) =

∫ aH

A

∂X(a)

∂S
dZ(a)

∫ aH

A

ah′(X(a))
∂X(a)

∂A
dZ(a)

−
∫ aH

A

ah′(X(a))
∂X(a)

∂S
dZ(a)

∫ aH

A

∂X(a)

∂A
dZ(a)

(A16)

=

∫ aH

A

∂X(a)

∂S
dZ(a)

∫ aH

A

ah′(X(a))
∂X(a)

∂A
dZ(a)

−
∫ aH

A

ah′(X(a))
∂X(a)

∂A

∂A

∂S
dZ(a)

∫ aH

A

∂X(a)

∂S

∂S

∂A
dZ(a)

(A17)

= 0 (A18)

where ∂A
∂S

is given in (A11). Using this result, we have DS
I > 0, and

dI

dS
=
DS
I

D
> 0 ⇒ dA

dsR
=
dA

dS

dS

dsR
> 0. (A19)

Result (iii): Rearranging (32) gives∫ aH

A

R(a)
dZ(a)

1− Z(A)
=

H

N [1− Z(A)]
− f. (A20)

This shows that as the average flow variable employment on the left-hand side increases
as A increases. Hence, (A20) along with Result (i) proves the result.

B. Proof of Proposition 2

Result (i): From (A11),
dA

ds2
=
dA

dS

dS

ds2
< 0.

Result (ii): From (A19),
dA

dsf
=
dA

dS

dS

dsf
< 0.

Result (iii): It is obvious from Result (i) and (A20).

C. Proof of Proposition 3

Result (i): From the second equation of (A2), (A4), (A7) and (A8),

dA

dN
=
P11M

N
2 − P21M

N
1

D
> 0.
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Result (ii): From (A3), (A5), (A7) and (A8),

dI

dN
=
MN

1 P22 −MN
2 P12

D
T 0.

Result (iii): It is obvious from Result (i) and (A20).

D. Proof of Proposition 4

Result (i): From the second equation of (A2), (A4) and (A9),

dA

dH
=
P11M

H
2 − P21M

H
1

D
= −P21

D
< 0.

Result (ii): From (A3), (A5) and (A9),

dI

dH
=
MH

1 P22 −MH
2 P12

D
=
P22

D
> 0.

Result (iii): It is obvious from Result (i) and (A20).
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aH

The R&D Equilibrium
Condition (30)

The Skilled Labor Market
Condition (32)

E0

E1

E2

Figure 1: Following an increase in sR, the rate of subsidies to flow variable R&D costs,
equilibrium moves from E0 to E1. On the other hand, it moves to E2 after an increase in
sf , the rate of subsidies to flow fixed R&D costs.
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I
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aH

The R&D Equilibrium
Condition (30)

The Skilled Labor Market
Condition (32)

E0

E3

E ′3

E4

Figure 2: An increase in the number of entrant firms N moves equilibrium to E3 or E ′3.
Equilibrium moves to E4 after the number of skilled workers H increases.

Nz(a)

A
0

The initial
distribution

aH

The distribution after a rise in sR

The distribution after a rise in sf

Figure 3: The initial distribution of R&D firms is given by thick curves, and the area
inside the curves is equivalent to the number of firms which invest in flow R&D. As the
rate of subsidies to flow variable R&D costs sR increases, the distribution shrinks. On
the other hand, a higher rate of subsidies to flow fixed costs sf expands the distribution.
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