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The Effect of Demand Response on Electricity Consumption in Japan 

 

[Abstract]: The main purpose of this study is to investigate, by using regressions analysis, the DR 

effect on households’ electricity consumption. We employ three kinds of estimation models: a pooled 

OLS model, a random effect model, and a fixed effect model. Major results are as follows. First, the 

DR scheme clearly reduces electricity consumption. As the peak-time price of electricity increases 

by 20 yen/kWh in the form of TOU and CPP, electricity consumption decreases by about 8.1% at 

sample mean. However, consumption after DR tends to increase, most likely due to the rebound 

effect.  Second, the reduction effects of the DR scheme can be strengthened as households’ income 

becomes higher.  In contrast, as more people stay at home during the daytime and the temperature 

rises, the reduction effects of the DR scheme may become weaker. Third, electricity price, household 

characteristics, and external conditions are significant factors affecting electricity consumption. 

Fourth, the effects of some DR schemes such as requests to save electricity, TOU, and CPP, can 

differ largely according to household characteristics and external conditions. 

 

[Key Words]: Demand Response, Electricity Consumption, Time of Use, Critical Peak Pricing 

 

[JEL Classification]: L4, L5, L9 

 

 

1. Introduction 

 Reducing electricity consumption has become an increasingly important issue in terms of 

resource conservation.  One of the most commonly used ways to encourage consumers to save 

electricity is “demand response (DR),” a system by which consumers control their own level of 

consumption.  A DR scheme can be implemented in many ways, such as Time of Use (TOU), 

Critical Peak Pricing (CPP), and Variable Peak Pricing (VPP).  TOU sets a fixed price for 

electricity according to season and time, CPP sets a high price only during peak time in order to 

reduce consumption, and VPP is a variation on CPP in that the price during peak time is adjusted 

according to what demand was on the previous day.  Researchers such as Faruqui and George 

(2005) and Herter et al. (2007) have studied the effect of the DR scheme on electricity consumption, 

but their analyses have limitations which will be addressed in this paper. 

 The purposes of this study are to examine the effect of the DR scheme on electricity 

consumption while considering the characteristics of households, and to simulate the differences in 

the effect of DR among various households.  Our paper makes the following three contributions.  

First, we simulate the effect of DR based on different types of households and make clear its effect 

in various situations.  For example, we examine to what degree households reduce electricity 
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consumption under a DR scheme, in what conditions (e.g. temperature and income) households are 

more sensitive to a DR scheme, and the extent of a DR scheme’s influence in the most and least 

effective cases.  Previous studies have rarely simulated these situations. 

Second, we analyze the effect of DR scheme while controlling for households’ 

characteristics, such as the number of people at home in the daytime.  Although electricity 

consumption can differ largely depending on these characteristics, previous studies have not 

considered this fact.  Whether family members stay at home in the daytime has not been considered 

in any previous work, but our results suggest that when more members stay at home in the daytime, 

the effect of the DR scheme shifts from reducing electricity consumption to increasing it. These 

results suggest the importance of controlling for these factors in the analysis of the DR scheme. 

Third, we define the DR scheme as an ordered variable with five levels in the estimation.  

Moreover, our definition of a DR scheme integrates three types of different DR schemes into one 

variable according to the strength of each scheme on demand levels.  Previous studies mostly 

define the DR scheme as a dummy variable expressing merely whether the DR scheme is 

implemented or not (e.g. Faruqui et al. 2014; Jessoe and Rapson 2014).  By defining the DR 

scheme as an ordered variable, we can obtain less biased results than with an estimation using a 

dummy variable. 

This paper consists of five sections after the introduction.  Section 2 reviews previous 

studies on the DR scheme and electricity consumption.  Section 3 explains the model, data, and 

variables used in the estimation.  Section 4 shows the estimation results by regressions and Section 

5 shows the simulation results.  And finally Section 6 summarizes the conclusions. 

 

 

2. Previous Studies 

 In this section, we summarize the major previous studies on DR and electricity 

consumption, focusing especially on empirical analysis. Major previous studies are summarized in 

Table 1. 

 

************** 

Table 1 

************** 

 

Previous studies on DR and electricity consumption have certain common characteristics. 

First, most studies conclude that DR has a significant effect on electricity consumption but 

that the impact of DR is different depending on the situation.  For example, Herter and Wayland 

(2010) argue that DR surely reduces electricity consumption during the implementation time of DR, 
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while it increases consumption on the previous and subsequent days. Jessoe and Rapson (2014) 

indicate that the effect of DR can change whether the households are provided information about the 

amount of their electricity consumption.  Households provided more information consume less 

electricity, and households able to check their information on home displays more often can reduce 

their consumption through the learning effect.  Similarly, Faruqui et al. (2014) show that ecological 

facilities can enhance the reduction effect of DR on electricity consumption.  They indicate also 

that households are more sensitive than company users to DR. 

Second, most studies use data only about individual households.  For example, Jessoe and 

Rapson (2014) use data on households in Connecticut, and Faruqui and George (2005), Herter et al. 

(2007), and Herter and Wayland (2010) use data from California.  Faruqui and Sergici (2011) use 

data about individual households in Baltimore, and Ida et al. (2013) use household data from Kyoto 

and Kitakyushu in Japan.  While these studies examine the DR from the perspective of demand for 

electricity among households, rarely have studies examined the issue of companies’ electricity 

consumption, though Faruqui et al. (2014) include data on corporate electricity consumers in 

addition to data on households. 

Third, previous empirical studies have included certain variables, such as ecological 

technology, temperature, and the use of certain appliances, and evaluated the effect of these 

variables requiring large amounts of electricity as determinants of electricity consumption.  For 

example, Herter et al. (2007), Faruqui and Sergici (2011), and Faruqui et al. (2014) include the 

variable of ecological facilities at home, and Herter and Wayland (2010), Faruqui and Sergici (2011), 

and Faruqui et al. (2014) include the temperature variable in their estimation. 

Types of DR examined in previous studies cover a wide range: Time of Use (TOU), 

Critical Peak Pricing (CPP), Real Time Price (RTP), Peak Time Rebate, and Variable Peak Pricing 

(VPP).  Faruqui and George (2005) compare the effects of CPP, VPP, and TOU, and conclude that 

VPP is the most effective, CPP is the second best, and TOU is the third best.  Faruqui et al. (2014) 

investigate TOU, CPP, and PTR, while Ida et al. (2013) examine TOU and CPP. Faruqui and Sergici 

(2011) focus on PTR, while Herter et al. (2007), Faruqui and Sergici (2011), and Herter and Wayland 

(2011) focus on CPP. It is worth noting that most of these previous studies include the DR variable in 

the form of a dummy variable. 

In addition to the above-mentioned studies, there have been other kinds of studies: policy 

evaluation studies such as Nishimura’s (2014), which evaluates previous DR schemes in the US, 

France, etc., and discusses the possibility of a future DR scheme in Japan. There have also been 

theoretical studies, such as that by Chao and DePillis (2013). 

 However, previous studies leave certain issues unresolved. The most important task now is 

to use adequate variables in the estimation in order to control for conditional factors influencing 

electricity consumption and to simulate the effect of DR based on estimation results using these 
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adequate variables.  For example, although electricity consumption is determined by individual 

households’ characteristics, previous studies tend to control only experimental conditions such as 

price, group, temperature, and facilities at home.  Some studies such as Ida et al. (2013) and Jessoe 

and Rapson (2014) include the characteristics of households as a form of individual effect of a fixed 

panel data model.  However, this method is not useful in making clear the effects of household 

characteristics on electricity consumption and thus does not allow us to pinpoint what kind of 

households are more sensitive to the DR scheme or which is the most effective DR scheme for 

households with different characteristics.  Thus, we specify the variables expressing households’ 

characteristics and based on the estimation results considering these characteristics we simulate the 

effects of the DR scheme. 

 

 

3. Empirical Analysis 

3.1 Model 

 Our model reflects the assumption that electricity consumption is determined by electricity 

price, DR schemes, characteristics of family, appliances, and house, and other external conditions, as 

shown in equation (1).   

 

 ܳ ൌ ݂ሺܲ,ࡾࡰ,  ሻ             (1)ࡴࢀࡻ,ࡱࡿࡴ,ࡼࡼ࡭,ࡹ࡭ࡲ

 

ܳ is electricity consumption, ܲ is electricity price, ࡾࡰ is the vector of DR effect,	ࡹ࡭ࡲ is the 

vector of characteristics of a household,	ࡼࡼ࡭ is the vector of appliances in a household,	ࡱࡿࡴ is the 

vector of housing conditions, and ࡴࢀࡻ is the vector of the other external conditions.  Based on 

equation (1), we specify three empirical models: (i) Pooled OLS model, (ii) Random effect model1, 

(iii) Fixed effect model2.  

 

(Pooled OLS Model): 

                                                  
1 In the random effect model, ݑ௜ is the unobserved individual effect. The covariances of ݑ௜ and 
explanatory variables are assumed to be zero.   
2 The fixed effect model of panel data controls the individual effect of a household.  The merit of 
this model is that we do not need to specify the variables of individual effect in the form of the above, 
 variables, which can reduce the misspecification bias.  Thus, in equation ܧܵܪ and ,ܲܲܣ ,ܯܣܨ
 variables are not explicitly defined, since the variables which do not ܧܵܪ and ,ܲܲܣ ,ܯܣܨ ,(4)
change during the experimentation period cannot be identified in the fixed effect model.  These 
individual effects are included in ݑ௜. The covariances of ݑ௜ and explanatory variables are assumed 
not to be zero. 
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	݈݊ܳ௜௧ ൌ ߙ ൅ ௣݈݊ߚ ௜ܲ௧ ൅ Σ௞ߚ௞ܴܦ௞,௜௧ ൅ Σ௟ߚ௟ܯܣܨ௟,௜ ൅ Σ௠ߚ௠ܲܣ ௠ܲ,௜ ൅ Σ௡ߚ௡ܧܵܪ௡,௜

൅ Σ௢ߚ௢ܱܶܪ௢.௧ ൅ Σ௟ߚ஽ோ௟ܴܦ௣௘௔௞,௜௧ ∙ ௟,௜ܯܣܨ ൅ Σ௠ߚ஽ோ௠ܴܦ௣௘௔௞,௜௧ ∙ ܲܣ ௠ܲ,௜

൅ ௣௘௔௞,௜௧ܴܦ௣௧௘௠ߚ ∙ ௧௘௠௣,௧ܪܱܶ ൅  ௜௧ߝ

        (2) 

(Random Effect Model): 

݈݊ܳ௜௧ ൌ ߙ ൅ ௣݈݊ߚ ௜ܲ௧ ൅ Σ௞ߚ௞ܴܦ௞,௜௧ ൅ Σ௟ߚ௟ܯܣܨ௟,௜ ൅ Σ௠ߚ௠ܲܣ ௠ܲ,௜ ൅ Σ௡ߚ௡ܧܵܪ௡,௜

൅ Σ௢ߚ௢ܱܶܪ௢.௧ ൅ Σ௟ߚ஽ோ௟ܴܦ௣௘௔௞,௜௧ ∙ ௟,௜ܯܣܨ ൅ Σ௠ߚ஽ோ௠ܴܦ௣௘௔௞,௜௧ ∙ ܲܣ ௠ܲ,௜

൅ ௣௘௔௞,௜௧ܴܦ௣௧௘௠ߚ ∙ ௧௘௠௣,௧ܪܱܶ ൅ ௜ݑ ൅  ௜௧ߝ

         (3) 

(Fixed Effect Model): 

݈݊ܳ௜௧ ൌ ߙ ൅ ௣݈݊ߚ ௜ܲ௧ ൅ Σ௞ߚ௞ܴܦ௞,௜௧ ൅ Σ௢ߚ௢ܱܶܪ௢.௧ ൅ Σ௟ߚ஽ோ௟ܴܦ௣௘௔௞,௜௧ ∙ ௟,௜ܯܣܨ

൅ Σ௠ߚ஽ோ௠ܴܦ௣௘௔௞,௜௧ ∙ ܲܣ ௠ܲ,௜ ൅ ௣௘௔௞,௜௧ܴܦ௣௧௘௠ߚ ∙ ௧௘௠௣,௧ܪܱܶ ൅ ௜ݑ ൅  ௜௧ߝ

         (4) 

݇	݁ݎ݄݁ݓ ൌ ,݇ܽ݁݌ ,݁ݎ݌  ,ݏ݋݌

݈ ൌ ,݁݉݋ܿ݊݅ ,ݎܾ݁݉ݑ݊  ,݁݉݅ݐݕܽ݀

݉ ൌ ,݃݅ݎ݂݁ݎ  ,ݎ݅ܽ

݊ ൌ ܽ݃݁, ,݁ݖ݅ݏ ,݁݌ݕݐ ݈݁݁ܿ, 

݋ ൌ ,݀݊݁݇݁݁ݓ,݌݉݁ݐ ,݌݁ݏ  .݁݉݅ݐ

 

ܳ is the electricity consumption of household per hour, ܲ is the electricity price, ܴܦ is the 

treatment variable of the implementation of DR, which takes 0 to 5 according to the strength of the 

DR scheme.  ܴܦ௣௘௔௞is the treatment variable expressing the implementation time of DR, that is, 

the peak time of 13:00 to 16:00, ܴܦ௣௥௘ is the treatment variable expressing 7 hours before the 

implementation of DR, and ܴܦ௣௢௦  is the treatment variable expressing 7 hours after the 

implementation of DR.  ܴܦ௣௥௘ and ܴܦ௣௢௦ are included because, as Herter and Wayland (2010) 

argue, there can be a rebound effect of DR that increases electricity consumption before and after the 

implementation of DR.   

A household’s characteristics include the household’s income (ܯܣܨ௜௡௖௢௠௘), the number of 

family members per household (ܯܣܨ௡௨௠௕௘௥), and the number of residents in a household during the 

daytime (ܯܣܨௗ௔௬௧௜௠௘ ).  The appliance conditions of a household include the number of 

refrigerators at home (ܲܣ ௥ܲ௘௙௥௜௚) and the number of air conditioners at home (ܲܣ ௔ܲ௜௥).  The 

housing conditions include house age (ܧܵܪ௔௚௘), floor size in the house (ܧܵܪ௦௜௭௘), and type of house 

 The  .(௘௟௘௖ܧܵܪ) and the dummy of whether the facilities at home are fully electrificated ,(௧௬௣௘ܧܵܪ)

other external conditions include the temperature measured at every hour (ܱܶܪ௧௘௠௣), the weekend 

dummy (ܱܶܪ௪௘௘௞), September dummy (ܱܶܪ௦௘௣), and 23 time dummies for every hour (ܱܶܪ௧௜௠௘).   

Since our data used here consist of panel data of household and time, the error terms 
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within a household might have a serial correlation. Therefore, we estimate the standard errors based 

on cluster variances. 

 

3.2 Data 

 We use data from a social experiment on the effect of DR on households’ electricity 

consumption, called Keihanna Ecological City Next Generation’s Energy and Social System 

Experimental Project (Keihanna Ekoshithi Jisedai d Enerugi Syakai Shisutemu Jissho Purojekuto). 

This project was carried out in Kyoto prefectures in Japan between 23 July and 28 September in 

2012.  This experiment was planned by the Ministry of Economy, Trade and Industry and 

implemented by Keihanna Eco-City Promotion Council, an organization consisting of local 

government, energy-related private companies, universities, and various research institutions, with 

the purpose of demonstrating an energy system for a smart community in the above areas. 

Participants in this experiment were 681 households, divided into four groups, with Group 

A as the control group (with no treatment) and Groups B, C and D as treatment groups. Second, 

among treatment groups, Group B was requested to save electricity before the implementation day of 

CPP (Critical Peak Pricing).  Furthermore, Group C and D were treatment groups under TOU 

(Time of Use) and CPP.  Although groups C and D were, respectively, assigned to the winter 

experimentation, we recognize these two groups as the same in this analysis since there were no 

differences between them during the summer experimentation.   

 

3.3 Variables 

 In this section, we will explain the definition of variables used in this study. A summary of 

statistics is shown in Table 2. 

 

************** 

Table 2 

************** 

 

First, Q is the amount of electricity hourly consumed by a household. 

Second, P is the price for a household’s consumption, defined as follows.  Because the 

experiment data do not include electricity price, we must glean these data from other sources3. The 

value of P is equal to 20 yen/kWh if the monthly accumulated consumption of a household is equal 

to or smaller than 120 kWh.  The value of P is equal to 25 yen/kWh if consumption is larger than 

120 kWh and smaller than 200kWh.  The value of P is equal to 26 yen/kWh if consumption is 

                                                  
3 These values are based on the variable price A in the areas of Kansai Electric Power in August and 
September 2012. 
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equal to or larger than 300 kWh. In the estimation, P is included as the form of the logarithm, lnP. 

In our study, three types of DR are examined: (i) a request for electricity saving, (ii) TOU 

(Time of Use), and (iii) CPP (Critical Peak Pricing). “A request for electricity saving” means that 

consumers are simply requested to reduce electricity consumption voluntarily, with no obligation to 

do so. “TOU” adds 20 yen/kWh to the ordinary price for the peak hours of 13:00~16:00 only.  

“CPP” sets a higher price if the temperature will exceed 30 degrees according to the previous day’s 

weather forecast.  Of these three types of DR, TOU is stronger than a request for electricity saving, 

and CPP is stronger than TOU.  Moreover, our CPP has three levels: CPP40, CPP60, and CPP80.  

In CPP40, CPP60, and CPP80, 40 yen/kWh, 60 yen/kWh, and 80 yen/kWh are added, respectively, 

as peak pricing to the ordinary price.  Thus, our DR scheme has five levels in ascending order: a 

request for electricity saving, TOU, CPP40, CPP60, and CPP80.  

In the analysis, the value of DR at the peak time (DRpeak) is defined in Table 3. For 

example, DRpeak is equal to one, if the group is under a request for electricity saving (Group B), and 

the group is under a request for electricity saving on the date, and the time is between 13:00 and 

16:00.  As another example, the value of DRpeak is equal to two, if the group is any treatment group 

(Group C or D), the treatment day is under TOU, and the time is between 13:00 and 16:00. 

Furthermore, the value of DRpeak is equal to three, if the group is any treatment group, the day is 

under CPP40, and the time is between 13:00 and 16:00. Thus, as DRpeak becomes larger, the 

treatment of DR scheme as price becomes higher. 

 

************** 

Table 3 

************** 

 

Demand response by individual users is also affected before and after the DR scheme is 

implemented. We set up the variable of DR 7 hours before the plan is announced (DRpre) and the 

variable of DR 7 hours after the plan is announced (DRpos). The variables DRpre and DRpos are 

defined in a way similar to DRpeak.  That is, the value of DRpre (DRpos) is equal to one, if the group 

is B, the day is under the request for electricity saving, and the time is 7 hours before (after) the DR 

implementation, and so on. 

Household characteristics have an important effect on demand for electricity. We also 

include three kinds of household characteristics. First, FAMincome is the income level of a household. 

This variable is an index from 1 to 12 categories. 1 is the lowest category (less than 2 million yen) , 

2 is the second lowest (2 to 3 million yen) and 12 is the highest category (more than 15 million yen). 

Second, FAMnumber is the number of people per household. Third, we also include daytime residence. 

FAMdaytime is the number of residents present in a household during the daytime.   
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Appliance conditions and housing conditions are also important factors determining 

demand for electricity. As for these conditions, first, APPrefrig is the number of refrigerators at home 

and APPair is the number of air conditioners at home.  Second, HSEage is house age and HSEsize is 

the floor area in a house.  HSEtype is the dummy variable which takes a value of one if the house is a 

communal building, otherwise zero.  HSEelec is the dummy variable which takes a value of one if 

the facilities at home are fully electrificated, otherwise zero. 

Finally, we include five kinds of other external conditions. First, OTHtemp is the 

temperature measured every hour. Second, OTHweek is the weekend dummy variable. This takes a 

value of one if the day is a weekend day, otherwise zero. Third, OTHsep is the dummy variable on a 

date in September. This takes a value of one if the day is in September, otherwise zero.  Finally, we 

include temperature variable of the day, OTHtemp. In this study, we take this variable as the form of 

the logarithm, lnOTHtemp. 

 

 

4. Estimation Results 

 Table 4 shows the estimation results of equations (2) to (4), which are the pooled OLS 

model, the random effect model and the fixed effect model. As this table shows, most coefficients 

show a reasonable sign. Furthermore, the coefficients of significant variables are relatively stable 

among these models, which suggests that the results are robust in terms of model specification in 

panel data models (the fixed effect and the random effect models). Among these three models, test 

results show that the fixed effect model is considered as best and the random effect model as second 

best4. Therefore, we base our discussion on the results of the fixed effect model. 

 

************** 

Table 4 

************** 

 

As we mentioned before, the results seem reasonable because important coefficients show 

the expected signs.  For example, the coefficient of electricity price (lnP) is negative with statistical 

significance, which indicates that higher price leads to less consumption of electricity. Since the 

magnitude of the coefficient is between -0.059 and -0.074, as the price increases by one hundred 

percent, the electricity consumption decreases by 5.9% to 7.4%.  

Next, we will explain the results of the effect of the DR. First, the most important result is 

                                                  
4 First, according to the Breusch-Pagan test, the random effect model is better than the pooled OLS 
model.  Second, according to the robust F test, the fixed effect model is better than the pooled OLS 
model.  Third, according to the robust Hausman test, the fixed effect model is better than the 
random effect model. 
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that DRpeak has a negative sign with strong statistical significance, which means that DR surely 

reduces electricity consumption.  As the peak-time price of electricity increases by 20 yen/kWh in 

the form of TOU and CPP, electricity consumption decreases by about 8.1%.  This value of change 

rate is calculated based on the interpretation of the semi-log linear model.  The change rate in the 

semi-log linear model, which we specify here as DRpeak variable and cross-terms, can be calculated 

approximately as ݁ߚൣ݌ݔ௣௘௔௞ ൅ ∑ ஽ோ௟௟ߚ ௣௘௔௞,௜௧ܴܦ ∙ ௟,௜ܯܣܨ ൅ ∑ ஽ோ௠௠ߚ ௣௘௔௞,௜௧ܴܦ ∙ ܲܣ ௠ܲ,௜ ൅

௣௘௔௞,௜௧ܴܦ௣௧௘௠ߚ ∙ ௧௘௠௣,௧൧ܪܱܶ െ 1.  Thus, in the fixed effect model, since values for DRpeak variable 

and cross-terms are about -0.084, the value of exp(-0.084)-1 is about -0.081, that is, about -8.1%5.  

It is worth noting that the results of the random effect model are similar to those of the fixed effect 

model6. 

As for consumption 7 hours after and before DR implementation, the following results are 

obtained. First, since the coefficient of DRpos is positive with statistical significance, the 

consumption after DR time tends to increase. Presumably this result reflects a rebound effect.  This 

is consistent with the result of Herter and Wayland (2010), which shows that DR reduces electricity 

consumption during the implementation time, but increases it after the DR time.  Our results also 

suggest that consumers shift electricity consumption from the DR time (the peak time of 13:00 to 

16:00) to non-DR time (the off-peak time of 16:00 to 23:00).  However, second, the coefficient of 

DRpre is not statistically significant. Consumption before the DR time would not change. 

Some cross-terms of DRpeak with other factors are statistically significant. For example, 

DRpeak・FAMincome shows the negative sign with statistical significance. This result shows that the 

reducing effects of DR would be larger as households’ income becomes higher.  In contrast, the 

coefficients of DRpeak・FAMdaytime and DRpeak・lnOTHtemp show a positive relationship with statistical 

significance. These results mean that as more people stay at home in the daytime and the weather 

becomes hotter, the reducing effects of DR could diminish.   

As stated above, the negative coefficient of lnP indicates that higher price leads to less 

electricity consumption.  Since the magnitude of the coefficient is between -0.059 and -0.074, as 

the price increases by one percent, electricity consumption decreases by 5.9% to 7.4%. 

The coefficients of most other variables are also reasonable.  For example, since 

FAMnumber APPrefrig and APPair are positive, as the family becomes larger or has more refrigerators 

and air conditioners, electricity consumption would be larger.  As the number of household 

increases by one, electricity consumption increases by about 11.5%.  As the number of refrigerators 

increases by one, electricity consumption increases by 7.9%.  As the number of air conditioners 

                                                  
5 In this case, we calculate values at sample mean for DRpeak variable and the cross terms with 
statistical significance. From Table 4, we obtain results as follows:	ߚ௣௘௔௞ ൅ ௣௘௔௞ܴܦ௣௘௔௞௜௡௖௢௠௘ߚ ∙
௜௡௖௢௠௘ܯܣܨ ൅ ௣௘௔௞ܴܦ௣௘௔௞ௗ௔௬௧௜௠௘ߚ ∙ ௗ௔௬௧௜௠௘ܯܣܨ ൅ ௣௘௔௞ܴܦ௣௧௘௠ߚ ∙ ௧௘௠௣ܪܱ݈ܶ݊ ൌ െ0.084 . 
Therefore, the value of exp(-0.084)-1 is about -0.081. 
6 Results in the case in the random effect model, obtained in a similar way, are about -7.8%. 
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increases by one, electricity consumption increases by 11.6%. On the other hand, the coefficients of 

FAMincome and FAMdaytime show a positive sign but the magnitudes are very small: the effects of an 

increase in income or in the number of residents present in the daytime are only 1.1% and 3.7%, 

respectively.  Similarly, the coefficients of HSEage, HSEsize, and HSEelec have positive signs. These 

results indicate that, as the house becomes older or larger, or the house is fully electrificated, 

electricity consumption is larger.   

Moreover, since lnOTHtemp and OTHweek show the positive sign with statistical significance, 

electricity consumption tends to increase on a hot day or during the weekend.  As the temperature 

increases by one percent, electricity consumption also increases by about 33%.  Thus, electricity 

consumers are more sensitive to changes in the weather than to changes in price.  In contrast, the 

coefficients of OTHsep show the negative sign so that households consume less electricity if the day 

is in September.  Variables such as HSEtype, DRpeak・FAMnumber, DRpeak・APPair, DRpeak・APPrefrig, and 

DRpre are not statistically significant.   

 

 

5. Simulation Results 

 In this section, based on the regression results, we simulate how much electricity 

consumption would be changed by the implementation of DR. When households need a large 

amount of electricity, DR is inadequate to bring about electricity saving, as DR works least 

effectively in severe situations such as “when the weather is hot, a household has a low income, and 

people stay at home during the daytime.” Table 5 shows the effect of each DR on electricity 

consumption. In this case, we take three different scenario cases: (i) the least effective case, (ii) the 

case of average effectiveness, and (iii) the most effective case.  

 

************** 

Table 5 

************** 

 

 The combination of the conditions such that “temperature is 34.1℃, income category is 3, 

and the number of residents during the daytime is 2” is the case in which DR is least effective.  In 

contrast, households can control their electricity consumption largely by DR when they face a 

favorable situation.  The combination of conditions such that  “temperature is 27.5℃, income 

category is 10, and the number of residents during daytime is 0” is the most effective case.   The 

case such that “temperature is 31.4℃, income category is 5, and the number of people at home in the 

daytime is 1” is the average effective case. 

 Based on these calculations, Table 5 shows the following results.  First, the effect on 
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electricity consumption of a request for electricity saving is -0.7% at the least and -11.6% at the most.  

This means that only showing the quantitative indicators for consumers to save electricity, if it works 

most effectively, can reduce electricity consumption more than in the case of TOU working 

averagely.  Second, the TOU can reduce by between 1.4% and 21.9%.  The most effective case of 

TOU is nearly the same as the averagely effective case of CPP80.  Third, CPP can reduce 

electricity consumption by 2.1% to 41.0%.  If the effect of CPP80 were to be maximized, electricity 

consumption could be reduced nearly by a half.  Thus, the effect of each DR can differ largely 

depending on household characteristics and external conditions. 

 Because electricity consumption increases immediately subsequent to a period of DR 

implementation, it is important to see the net effect of the scheme. As stated in the previous section, 

while DR surely reduces electricity consumption, it also induces a rebound effect in that a household 

consumes more electricity than usual after the DR time.  Next, in Table 6, we see the simulation 

results of the net consumption of electricity during and after DR. 

 

************** 

Table 6 

************** 

 

 The left side of Table 6 shows the effect of this rebound, and the right side shows the net 

effect of DR in a day, which is calculated by taking the difference between the reduction rate during 

DR and the increase rate after DR.  In this table, we consider three scenario cases: (i) the least 

effective case, (ii) the case of average effectiveness, and (iii) the most effective case. These are the 

same as in Table 5. 

In Table 6, there are cases where the rebound effect outweighs the reduction effect of DR 

on consumption.  The positive sign of the change rates means that DR increases electricity 

consumption.  In the cases where DR works least effectively, net consumption increases by at least 

1.0% and at most 5.4%.  However, if DR works at least averagely, it can reduce electricity 

consumption as a net effect over the course of a day.  

Last, Table 7 shows the simulation results of the DR effect depending on temperature, 

income, and the number of people at home in the daytime.   

 

************** 

Table 7 

************** 

 

The case on the left has temperature changing, the other two factors being fixed as 
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“income category of 5 and with one person staying at home in the daytime.”  The case in the 

middle has income changing, the temperature being fixed at 31.4℃ and with one person staying at 

home in the daytime.  The case on the right has the number of people at home in the daytime 

changing, with the income category being 5 and the temperature 31.4℃.  As more people stay at 

home during the daytime, as the temperature becomes higher, or as the income level becomes lower, 

DR loses its reducing effect.  When the household income category is at 10, CPP80 can reduce 

electricity consumption by 32.5%.  Higher income leads to a greater reduction rate of electricity use 

perhaps because high-income households generally use more electricity than lower income 

households and thus have more room in which to reduce consumption. 

 

 

6. Conclusions 

 By using regression analysis and simulating how much electricity consumption can be 

saved through DR schemes, this paper investigates the DR effect on households’ electricity 

consumption. We employ three kinds of estimation models: a pooled OLS model, a random effect 

model, and a fixed effect model.  The main results of our analyses are as follows. 

First, the DR scheme clearly reduces electricity consumption.  As the peak-time price of 

electricity increases by 20 yen/kWh in the form of TOU and CPP, electricity consumption decreases 

by about 8.1% depending on the other factors specified.  However, consumption after DR tends to 

increase, probably due to the rebound effect.  This suggests that consumers shift their electricity 

consumption from DR time (the peak time of 13:00 to 16:00) to non-DR time (the off-peak time of 

16:00 to 23:00).   

 Second, the effect of the DR scheme is related to the other factors.  For example, the 

reduction effects of the DR scheme can be strengthened as households’ income becomes higher.  In 

contrast, as more people stay at home during the daytime and the temperature rises, the reduction 

effects of DR scheme can diminish. 

 Third, electricity price, households’ characteristics, and external conditions are significant 

factors related to electricity consumption.  A higher price surely leads to less electricity 

consumption.  When the price increases by one hundred percent, electricity consumption decreases 

by 5.9% to 7.4%. The household with more family members, more air conditioners and more 

refrigerators, consumes more electricity.  Electricity consumption tends to increase on hot days or 

on the weekend.   

 Fourth, the effects of certain DR schemes such as a request for electricity saving, TOU, 

and CPP, can largely differ depending on household characteristics and external conditions.  At its 

most effective, the mere practice of showing consumers quantitative indicators to motivate them to 

save electricity can reduce electricity consumption more than in the case where TOU works 
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averagely. 

 Fifth, there are some cases in which the rebound effect outweighs the reduction effect of 

the DR scheme on electricity consumption.  In the cases where the DR scheme works least 

effectively, the net electricity consumption increases by 1.0% to 5.4%.  However, if DR works at 

least averagely, it can reduce electricity consumption as a net effect over the course of a day. The net 

reduction of electricity is between 3.4 and 32.2%. 

 Last, the effect of the DR scheme depends on the number of residents present during 

daytime, temperature, and income. A higher number of people at home in the daytime, a higher 

temperature, and a lower income level lead to a lower reduction effect created by the DR scheme.   
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Table 1 Previous Studies 
 

Study Data and Method Major Results 
Faruqui and George 
(2005) 

Data: California, US; Household and 
Business; July, 2003 – December, 2004 

Method: No explanation (probably 
regression analysis) 

-Effect of electricity consumption saving through DR, 
-All DR schemes (VPP, CPP, TOU) are effective: VPP＞CPP>TOU． 

Herter (2007) Data: California, US; Household; 2003 - 
2004 

Method: Matching estimation 
 

-CPP can reduce household electricity consumption. 
-High-use customers respond significantly more in kW reduction than do 

low-use customers, while low-use customers save significantly more in 
percentage reduction of annual electricity bills than do high-use customers. 

Herter et al. (2007) Data: California, US; Household; July 2003 
- September 2004 

Method: Matching estimation 
 

-CPP can reduce household electricity consumption. 
-Households with automated air-conditioning controls can reduce electricity 

consumption more than those without the device through the CPP scheme.  

Faruqui and Sergici 
(2010) 

Summarize 15 DR social experiments in the 
US. 

Method: Survey research 

-CPP can reduce electricity consumption. 
-Households with automatic controlling devices can reduce electricity 

consumption more than those without the device through the CPP scheme. 
Capper et al. (2010) 
 

Summarize the existing contribution of DR 
resources in U.S. electric power markets. 

-The currently existing DR resource contribution, in terms of potential peak 
load reduction, has increased since 2006 by about 10%.  

Herter and Wayland 
(2010) 

Data: California, US; Household, July and 
September 2004 

Method: OLS 

-Effect on electricity consumption per hour 
-Negative effect: Peak-time of DR day (-) 
-Positive effect: Next day of DR day (+), Previous day of DR day (+) 

Kim and 
Shchervakova (2011) 

Summarize obstacles to DR scheme success -Consumer barriers: (i) customer knowledge of DR scheme, (ii) availability of 
technology, (iii) information feeds, (iv) response fatigue, (v) technology 
cost and financing, (vi) potential saving of electricity, (vii) sacrificing 
behavior in switching patterns 

-Producer barriers: (i) investment recovery, (ii) promotional responsibility, 
(iii) managerial incentives 

-Structural barriers: (i) DR program structure, (ii) regulatory process and 
policy support 

Faruqui and Sergici 
(2011) 

Data: Baltimore, US; Household, 2008 and 
2009 

-Model 1: effect on peak-off peak ratio of electricity consumption per day; 
Price ratio・THI Difference (-), THI Difference (+), Price ratio・THI 
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Method: SUR, Fixed effect model, 
Simulation by PRISM 

Difference・PTR (+), Price ratio・THI Difference・Tech (-) 
-Model 2: effect on average electricity consumption per day; Price・THI (-)  

Joskow and Wolfram 
(2012) 

Summarize lessons of DR schemes based on 
previous studies 

-Merits of DR schemes: (i) saving electricity consumption at peak time, (ii) 
saving excess investment in facilities, (iii) suppression of electric power 
company’s market control 

-Possibility of implementation of DR schemes: (i) technology innovation, (ii) 
public opinion on deregulations, (iii) aging of existing facilities, (iv) 
promotion of renewable energy 

-Problems of DR schemes: (i) installation cost of meters, (ii) increase of cost 
of firms due to complexity of price system, (iii) lack of understanding by 
consumers, (iv) redistribution of income 

Ida et. al. (2013) Data: Kyoto and Kita-Kyushu, Japan; 
Household; July – September 2012 

Method: Fixed effect model 

-Electricity consumption per 30 minutes 
-Negative effect: Warning (-), Warning・income (-), CPP (-) 
-Positive effect: CPP・income (+), CPP・Mean Usage (+) 

Faruqui et al. (2014) Data: Connecticut, US; Household and 
small business; June-August 2009 

Method: SUR, Fixed effect model, 
Simulation by PRISM 

-Model 1: effect on peak-off peak ratio of electricity consumption per day; 
Price ratio・THI Difference (-), THI Difference (+), Price ratio・THI 
Difference・PTR (+), Price ratio・THI Difference・Tech (-) 

-Model 2: effect on average electricity consumption per day; Price・THI (-) 
Jessoe and Rapson. 
(2014) 

Data: Connecticut, US; Household; July - 
August 2011 

Method: OLS for ITT, 2SLS for TOT, Fixed 
effect model  

-Effect on electricity consumption per 15 minutes 
-Price (-), Price+IHD(-),  (Price+IHD)・ (number of seeing IHD) (-), 

(Price+IHD) ・ (number of confirming DR announcement) (-), 
(Price+IHD)・post DR (+) 
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Table 2 Summary of Statistics 

 

Variable Mean Std. Dev. Min Max 

Q (Hourly electricity consumption: kwh) 0.565 0.592 0.000 13.800 

P (Electricity price) 23.388 2.605 20.000 26.000 

DRpeak (Demand response at peak hours) 0.168 0.699 0.000 5.000 

DRpre (Demand response at pre-hours) 0.296 0.905 0.000 5.000 

DRpos (Demand response at post-hours) 0.296 0.905 0.000 5.000 

FAMincome (Income category: 1 - 12) 5.915 2.715 1.000 12.000 

FAMdaytime (Residence at home during daytime) 1.298 0.965 0.000 4.000 

FAMnumber (Number of people per household)  3.191 1.198 1.000 7.000 

APPrefrig (Number of refrigerators per household) 1.136 0.432 0.000 3.000 

APPair (Number of air conditioners per household) 3.576 1.705 0.000 10.000 

HSEage (House age: year) 3.156 1.616 1.000 6.000 

HSEsize (Floor area per house: m2) 4.306 1.057 1.000 7.000 

HSEtype (Type of house: collective housing = 1, otherwise = 0) 0.773 0.419 0.000 1.000 

HSEelec (Dummy of fully-electrificated house: fully-electrificated house=1, otherwise=0) 0.312 0.463 0.000 1.000 

OTHtemp (Temperature measured every hour : C degree) 26.635 4.074 14.900 35.800 

OTHweek (Weekend dummy: weekend=1, otherwise=0) 0.288 0.453 0.000 1.000 

OTHsep (September dummy: September=1, otherwise=0) 0.475 0.499 0.000 1.000 

(Note) The number of the observations is 698,088 for each variable. 
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Table 3 Definition of Variable of DRpeak 

 

Variable of DRpeak Group Date Time 

DRpeak = 1 Treatment group 

(Group B) 

Date of the request for 

electricity saving 

13:00 to 16:00 

DRpeak = 2 Treatment group 

(Group C or D) 

Date of TOU 13:00 to 16:00 

DRpeak = 3 Treatment group 

(Group C or D) 

Date of CPP40 13:00 to 16:00 

DRpeak = 4 Treatment group 

(Group C or D) 

Date of CPP60 13:00 to 16:00 

DRpeak = 5 Treatment group 

(Group C or D) 

Date of CPP80 13:00 to 16:00 

DRpeak = 0 otherwise 
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Table 4 Estimation Results 

Model 
Pooled  
OLS 

Random 
Effect  

Fixed  
Effect 

lnP 0.897*** -0.059** -0.074*** 
(0.070) (0.023) (0.023) 

DRpeak -1.007*** -0.745*** -0.741*** 
(0.114) (0.101) (0.102) 

DRpre 0.001 0.002 0.002 
(0.006) (0.004) (0.004) 

DRpos 0.017** 0.017*** 0.017*** 
(0.007) (0.004) (0.005) 

FAMincome 0.010* 0.011* 
(0.005) (0.006) 

FAMdaytime  0.033** 0.036** 
(0.016) (0.017) 

FAMnumber 0.099*** 0.109*** 
(0.012) -0.013 

APPrefrig 0.068*** 0.076*** 
(0.012) (0.013) 

APPair 0.108*** 0.110*** 
(0.038) (0.040) 

HSEage 0.021** 0.023** 
(0.009) (0.010) 

HSEsize 0.035** 0.038** 
(0.017) (0.019) 

HSEtype 0.0266 0.0326 
(0.0440) (0.0488) 

HSEelec 0.287*** 0.329*** 
(0.031) (0.034) 

lnOTHtemp 0.718*** 0.343*** 0.337*** 
(0.034) (0.020) (0.020) 

OTHweek  0.0521*** 0.051*** 0.051*** 
(0.008) (0.006) (0.006) 

OTHsep  -0.016** -0.084*** -0.085*** 
(0.007) (0.006) (0.006) 

DRpeak・FAMincome -0.006** -0.005** -0.005** 
(0.003) (0.002) (0.002) 

DRpeak・FAMdaytime 0.016* 0.018** 0.018** 
(0.009) (0.007) (0.007) 

DRpeak・FAMnumber 0.002 -0.004 -0.004 
(0.006) (0.005) (0.005) 

DRpeak・APPrefrig 0.003 0.001 0.001 
(0.004) (0.004) (0.004) 



21 
 

DRpeak・APPair 0.016 0.017 0.017 
(0.016) (0.013) (0.013) 

DRpeak・lnOTHtemp 0.274*** 0.204*** 0.202*** 
(0.030) (0.023) (0.023) 

Constant -7.068*** -2.957*** -1.665*** 
(0.311) (0.140) (0.116) 

N 693417  693417  693417  
R2 0.276 0.259 0.137 
log likelihood -686987 - -597149 
Number of households - 493 493 

(Note) Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

Table 5 Simulation Results of the Effects of DR Policy 

DR Type Least effective case
Average effective 

case 
Most effective case

Random Effect Model 

Request for Electricity 

Saving 
-0.7% -5.1% -11.6% 

TOU -1.4% -9.9% -21.9% 

CPP40 -2.1% -14.5% -30.9% 

CPP60 -2.8% -18.8% -38.9% 

CPP80 -3.5% -22.9% -41.0% 

Fixed Effect Model 

Request for Electricity 

Saving 
-0.7% -5.0% -11.6% 

TOU -1.3% -9.8% -21.8% 

CPP40 -2.0% -14.4% -30.8% 

CPP60 -2.7% -18.7% -38.8% 

CPP80 -3.3% -22.8% -40.9% 

(Note)  
(1) The least effective case is temperature of 34.1℃, income category of 3, daytime residence of 2. 
(2) Average effective case is temperature of 31.4℃, income category of 5, daytime residence of 1. 
(3) The most effective case is temperature of 27.5℃, income category of 10, daytime residence of 0. 
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Table 6 Net Effect of DR by Simulation 

 DR Type 

Increasing rate 
of electricity 
consumption 

after 7 hours of 
DR 

Net effect of DR 

Least effective 
case 

Average 
effective case 

Most effective 
case 

Random Effect Model 
Request of Electricity Saving 1.7% 1.0% -3.4% -9.9% 
TOU 3.4% 2.0% -6.5% -18.5% 
CPP40 5.1% 3.0% -9.3% -25.8% 
CPP60 6.9% 4.1% -11.9% -32.0% 
CPP80 8.7% 5.3% -14.2% -32.3% 
Fixed Effect Model 
Request of Electricity Saving 1.7% 1.0% -3.4% -9.9% 
TOU 3.4% 2.1% -6.4% -18.4% 
CPP40 5.1% 3.1% -9.2% -25.7% 
CPP60 6.9% 4.3% -11.8% -31.9% 
CPP80 8.7% 5.4% -14.１% -32.2% 
(Note)  
(1) Net effect is calculated by taking the difference between the reduction rate during DR and the 

increase rate after DR. 
(2) The least effective case is temperature of 34.1℃, income category of 3, daytime residence of 2. 
(3) Average effective case is temperature of 31.4℃, income category of 5, daytime residence of 1. 
(4) The most effective case is temperature of 27.5℃, income category of 10, daytime residence of 0. 
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Table 7 DR Effects on Temperature, Income, and the Number of Residents of Households 

  
Temperature (℃) Income Category Number of Residence of Household 

27.1 31.4 34.5 3 5 10 0 1 2 

Random Effect Model 

Request for Electricity Saving -7.6% -5.1% -3.5% -4.1% -5.1% -7.6% -6.7% -5.1% -3.4% 

TOU -14.6% -9.9% -6.8% -8.0% -9.9% -14.6% -13.0% -9.9% -6.7% 

CPP40 -21.1% -14.5% -10.1% -11.7% -14.5% -21.0% -18.9% -14.5% -9.8% 

CPP60 -27.1% -18.8% -13.2% -15.3% -18.8% -27.0% -24.4% -18.8% -12.9% 

CPP80 -32.7% -22.9% -16.2% -18.8% -22.9% -32.5% -29.5% -22.9% -15.8% 

Fixed Effect Model 

Request for Electricity Saving -7.6% -5.0% -3.4% -4.0% -5.0% -7.5% -6.7% -5.0% -3.3% 

TOU -14.5% -9.8% -6.8% -7.9% -9.8% -14.5% -13.0% -9.8% -6.6% 

CPP40 -21.0% -14.4% -10.0% -11.6% -14.4% -20.9% -18.8% -14.4% -9.7% 

CPP60 -27.0% -18.7% -13.1% -15.2% -18.7% -26.9% -24.2% -18.7% -12.7% 

CPP80 -32.5% -22.8% -16.1% -18.6% -22.8% -32.4% -29.3% -22.8% -15.6% 

[2015.2.5 1187] 


