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DOUBLE BOOTSTRAP TEST FOR A STRUCTURAL BREAK
WHEN THE DISTURBANCE VARIANCE CHANGES WITH

THE BREAK*1)

By AKIO NAMBA

In this paper we consider the Wald test statistic proposed by Watt (1979) for testing equality between the 
sets of regression coefficients in two linear regression models when the disturbance variances may possibly 
be unequal. This test can be also used as a test for a structural break. As shown by Ohtani and Toyoda (1985) 
and Honda and Ohtani (1986), the test based on the Wald test statistic suffers from severe size distortion 
in small samples when the disturbance variances of the two regression models are unequal. To tackle this 
problem, we apply two kinds of bootstrap methods, i.e., the usual bootstrap and the double bootstrap. 
Through simulation studies, we show that the size distortion is substantially improved when the bootstrap 
methods are utilized.

1. Introduction

The test proposed by Chow (1960) has been widely used to test equality between sets of 
coefficients in two linear regression models, or to test the existence of a structural break in a 
regression model. However, it is well known that the Chow test suffers from poor performance if 
the regression model is heteroscedastic, or the disturbance variances of the two linear regression 
models are unequal [See Toyoda (1974) and Schmidt and Sickles (1977)].

In order to tackle this drawback of the Chow test, several authors proposed alternative testing 
procedures which are applicable when the disturbance terms are heteroscedastic. Some examples 
are Watt (1979), Jayatissa (1977), and Rothenberg (1984).2) In particular, Watt (1979) proposed 
the test based on the Wald test statistic. According to Ohtani and Kobayashi (1986) and Thursby 
(1992), Watt’s (1979) test is more powerful than Jayatissa’s (1977) test. 

Though the test statistic proposed by Watt (1979) is easy to compute, its exact distribution is 
very complex [See Kobayashi (1986) and Phillips (1986)]. Thus, Watt (1979) proposed to use 
critical values of a chi-squared distribution based on its asymptotic distribution. However, if 
we use the critical values of a chi-squared distribution, the test proposed by Watt (1979) suffers 
from size distortion when the sample size is small. See, e.g., Ohtani and Toyoda (1985) and 
Honda and Ohtani (1986). In order to avoid this size distortion, Ohtani and Kobayashi (1986) 
and Kobayashi (1986) proposed the bounds test based on the Wald test statistic. Since their test 
is based on the upper and lower bounds of the Wald test statistic proposed by Watt (1979), there 
inherently exists an inconclusive region for the test statistic. Weerahandi (1987) also proposed a 
test which is exact under the normality assumption of disturbances. Though Weerahandi’s (1987) 
test is exact, it requires a numerical integration when calculating the p-value of the test statistic 

*  Kobe University, Graduate School of Economics has entered into an electronic licensing relationship with EBSCO, 
the world’s most prolific aggregator of full text journals, magazines and other sources. The full text of Kobe 
University Economic Review can be found in the EconLit with Full Text collection.

1)  This work was supported by JSPS KAKENHI Grant Numbers 23243038, 26780136.
2)  See also Thursby (1992) for comparisons of several testing methods and their performances.



AKIO NAMBA34

and thus is not easy to implement.
The above procedures are required since the exact distribution of the Wald test statistic 

proposed by Watt (1979) is complex when the sample size is small. When the exact distribution 
of a statistic is complex or unknown, the bootstrap method proposed by Efron (1979) is 
sometimes useful. Bootstrap is one of the so-called resampling methods where the artificial data 
are obtained by resampling from the original data. In particular, as shown by Beran (1987, 1988) 
[see also Hall (1992)], the procedure based on the bootstrap methods yields more accurate results 
than the conventional asymptotic procedure when the statistic is asymptotically pivotal, i.e., the 
asymptotic distribution of the statistic does not depend on unknown parameters. Since the Wald 
test statistic is asymptotically distributed as a chi-squared distribution with known degrees of 
freedom, it is asymptotically pivotal. Therefore, an improvement is expected if the bootstrap 
method is applied to the Wald test statistic proposed by Watt (1979).

Beran (1988) also proposed a bootstrap method where another step of bootstrap resampling is 
executed from the bootstrap sample which is obtained by the usual bootstrap. This is called the 
double bootstrap method. As discussed in Beran (1988), the performance of the usual bootstrap 
method can be further improved by the double bootstrap. Several authors investigated the 
performance of the double bootstrap method. See, e.g., Caers (1998), DiCiccio et al. (1992), 
Hinkley and Shi (1989), McKnight et al. (2000), Letson and McCullough (1998), McCullough 
and Vinod (1998), Nankervis (2005), Vinod (1995), and Vinod and McCullough (1995).

Recent literature includes models which permit multiple structural breaks and unknown break 
points and the methods to investigate them. See, e.g., Bai and Perron (1998), Perron (2006), 
Boldea et al. (2012), Hall et al. (2012), Perron and Yamamoto (2014) and references therein. 
However, to examine the validity of the proposed methods and for simplicity, we focus on the 
model with one possible structural break and a known break point. Thus, in this paper, we apply 
the usual bootstrap and the double bootstrap methods to the test statistic proposed by Watt (1979). 
We examine the sizes and the powers of the bootstrap tests by Monte Carlo simulations. The 
organization of the paper is as follows. In the next section, we introduce the model and the test 
statistic. Also, the ways to apply the bootstrap methods to the test statistic are explained. It turns 
out that the bootstrap procedure gets simplified because of the structure of the test statistic. In 
section 3, we examine the performance of the bootstrap tests by simulations. The simulation 
results show that the size distortion of Watt’s (1979) test is substantially improved by the 
bootstrap methods. Finally, some concluding remarks are given in section 4.

2. Model, test statistic and the bootstrap methods
Consider two linear regression models

	 (1)

where yi is an ni × 1 vector of observations on a dependent variable, Xi is an ni × k matrix of 
observations on nonstochastic explanatory variables,  is a k × 1 vector of coefficients, and i is an ni 
× 1 vector of error terms and . Also, we assume that Xi is of full column rank.
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The task considered in this paper is to test the null hypothesis  against the 
alternative . If i denotes the regime, accepting H0 implies that there is no structural 
break.

If , i.e., the disturbance variances of the two regression models are equal, we 
can easily test the null hypothesis using the Chow test proposed by Chow (1960). However, 
as shown by Toyoda (1974) and Schmidt and Sickles (1977), the Chow test has a very poor 
performance when  . Thus, Watt (1979) proposed the Wald test statistic which takes 
the heteroscedasticity into consideration:

	 (2)

where  and  are the least squares estimator of  and  . Though this Wald test statistic is 
asymptotically valid, as shown by Ohtani and Toyoda (1985) and Honda and Ohtani (1986), 
the test based on this statistic suffers from severe size distortion in small samples if the critical 
values of a chi-squared distribution are used. One way of coping with this size distortion is 
executing the test based on the upper and lower bounds of the Wald test statistic as proposed by 
Ohtani and Kobayashi (1986) and Kobayashi (1986). However, this testing procedure inherently 
includes the inconclusive region. Weerahandi (1987) also proposed a test which is exact under 
normality of the disturbance. However, Weerahandi’s (1987) test requires a numerical integration 
when calculating the p-value of the test statistic and is not easy to implement.

Thus, in this paper, we consider more direct methods, i.e., the bootstrap method proposed 
by Efron (1979) and the double bootstrap method proposed by Beran (1988). As shown by 
Beran (1987, 1988), inferences based on asymptotic distributions can be improved by applying 
the bootstrap method if the statistic considered is asymptotically pivotal, i.e., the asymptotic 
distribution of the statistic does not depend on unknown parameters. Since the asymptotic 
distribution of the Wald test statistic given in (2) is a chi-squared distribution with k degrees of 
freedom, it is asymptotically pivotal. Thus, by applying the bootstrap method to W, a reduction in 
the size distortion of the test is expected. Beran (1988) also discussed that the performance of the 
usual bootstrap can be improved by the double bootstrap method. In the following subsections, 
we will explain the ways to apply the usual and the double bootstrap methods to the Wald 
statistic given in (2).

2.1 Usual bootstrap method
The application of the usual bootstrap method to W is summarized as follows:
A1. Estimate βi and  by the ordinary least squares (OLS) method and obtain  and  . 

Calculate the value of the Wald test statistic W given in (2).

A2. Let  be the residual vector for i ＝ 1, 2. Following Wu (1986), we first 
rescale the residual vector as . Drawing a sample of size  from the 
elements of the rescaled residual with replacement and stacking them as an  × 1 vector, 
we obtain a bootstrap sample vector  for i ＝ 1, 2.
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A3. Regressing  on , obtain bootstrap estimates  and  for i ＝ 1, 2. Using these 
estimates, calculate the bootstrap version of the Wald test statistic:

	 (3)

A4. Repeating the steps 2 and 3 above B times (i.e., b ＝ 1, 2,...,B), and calculating the ratio 
such that Wb exceeds W as

	 (4)

where I(A) is an indicator function such that I(A) ＝ 1 when the event A occurs and I(A) 
＝ 0 otherwise, we obtain the p-value of the test based on the bootstrap method. Thus, if 
the obtained p-value is less than the assigned significance level α , H0 : β1=β2 is rejected.

Note that, in step A2 above, we simply regress  on Xi in order to obtain bootstrap estimates. 
In the usual bootstrap procedure for a regression model, we usually calculate a bootstrap sample 
of the dependent variable where  is any estimator of βi, and obtain bootstrap 
estimates by regressing  on . Since, when testing a null hypothesis, a bootstrap sample 
must be drawn from a model such that the null hypothesis is hold, we need to use an estimator 
which satisfies  However, if we regress  instead of  under the condition 

, we obtain

	
(5)

This implies that the bootstrap version of the Wald test statistic Wb given in (3) is independent of 
the choice of  and that the value of Wb is unchanged whatever estimate  may be used. Thus, 
by using the zero vector as , we can simply regress  on Xi, and the bootstrap resampling gets 
simplified because of the structure of the Wald test statistic W.

2.2 Double bootstrap method
The double bootstrap method is the procedure which executes another step of resampling from 

the bootstrap sample, i.e., the artificial sample obtained by the usual bootstrap resampling. The 
double bootstrap method is applied to W in the following way.

B1. Estimate βi and  by the ordinary least squares (OLS) method and obtain bi and  . 
Calculate the value of the Wald test statistic W.

B2. In a similar way to the steps A2–A3 in the usual bootstrap, obtain a bootstrap sample 　 
and calculate the bootstrap version of the Wald test statistic Wb.

B3. Let  be the residual vector obtained by regressing  on Xi for i = 1, 2. As another 
step of bootstrap, in the similar manner to step A2 above, drawing a sample of size ni 
from the elements of  with replacement,3) we obtain a double bootstrap sample vector 

3)  In this step, we do not rescale the residual since the unconditional expectation of  is  because  is rescaled. 
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. Regressing  on Xi, and calculating in the similar way to (3), we obtain the double 
bootstrap version of the Wald statistic Wd .

B4. Repeating the step B3 D times (i.e., d = 1, 2, ...,D) and calculating the ratio such that Wd is 
greater than or equal to Wb, we can obtain an estimate of the p-value of Wb as

	
(6)

B5. Repeating steps B2–B4 B times and calculate the p-value obtained by the double bootstrap as

	 (7)

where pb is defined in (4) above. If  , H0 is rejected at the 100  percent 
significance level.

As we can see above steps, while the usual bootstrap requires B times of iteration, the double 
bootstrap requires  times of iteration.

3. Simulation results
To investigate the performance of the above mentioned methods, we execute some Monte 

Carlo simulations in this section. The design of the simulation is as follows:
1. For simplicity, we assume k  2 and , where  is the jth element of Xi and 

 is a random sample drawn from U . Thus, the regression model has an intercept 
and one explanatory variable.

2. Using the number of iteration of resampling in bootstrap B  500 and D  300, and 
letting , and   several values, where  
is the jth element of , we iterated the procedure explained in the previous section M  
10000 times and test the null hypothesis at  0.10 (10%), 0.05 (5%) and 0.01 (1%)  
significance levels. Calculating the ratio when the null hypothesis is rejected out of M = 
10000 times, we obtain the empirical power of the test.

Through our simulations, we found that the size distortion of the Wald test which utilized 
critical values of a chi-squared distribution (i.e., asymptotic test) is severe when the differences 
between ,  and ,  are large. This coincides with the result in Ohtani and Toyoda (1985). 
Though we do not show all the results, the results shown here are typical ones obtained by our 
experiments.

Tables 1 and 2 show the empirical sizes of the tests for ( )  (10, 50) and ( )  (50, 
50) obtained through simulations (i.e.,   1). To evaluate the correctness of the tests, 
we test the null hypothesis that the significance level is α by means of the normal approximation 
of a binomial distribution.  and  denote that the null hypothesis is rejected at the 10%, 5% 
and 1% significance levels, respectively. As we can see from Table 1, the size of the test based on 
the asymptotic distribution of W is not correct at all. The empirical size is far from the nominal 
size for all values of  in this case. By the usual bootstrap method, the correctness of the test is 
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much improved. Though the null hypothesis that the significance level is α is rejected in some 
cases, the empirical size of the usual bootstrap test is much closer to the nominal size than the 
asymptotic test in all cases. The double bootstrap method yields a more accurate empirical size 
than the usual bootstrap in some cases, though there are a few cases where the usual bootstrap 
method has preferable results to the double bootstrap method. From Table 2, we can see the 
results for the case of ( )  (50, 50) . As the difference between  and  gets smaller, the 
results based on asymptotic distribution of W gets closer to the nominal levels. As mentioned 
above, this result coincides with the one in Ohtani and Toyoda (1985). However, the empirical 
size of the asymptotic test is not close enough to the nominal level and the null hypothesis for α 
is rejected for most of cases considered here. Also, in this case, the usual and double bootstrap 
methods yield comparable performance. This implies that the improvement over the usual 
bootstrap by the double bootstrap is hard to obtain under the situation when both  and  
are not small, and the usual bootstrap method has already corrected the empirical size to some 
extent. Though we do not show all the results here, as both  and  get larger, the asymptotic 
test yields a more accurate empirical size, however, the bootstrap methods generally provide 
with the better performance than the asymptotic test.

Figures 1 and 2 show the power of the tests for ,  
 and  various values, which means that the intercept and the disturbance variance 

change with the structural break. We can see that the test based on the asymptotic distribution 
of W has a slightly larger power than the bootstrap tests. However, this is caused by the size 
distortion of the asymptotic test which can be seen in Tables 1 and 2. Also, the usual bootstrap 
and double bootstrap tests have almost same powers. Thus, we may assert that the powers of the 
bootstrap tests are almost comparable to the power of the asymptotic test.
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Table 1 Empirical sizes for n1 = 10 and n2 = 50.

Asymptotic Test Usual Bootstrap Double Bootstrap
10% 5% 1% 10% 5% 1% 10% 5% 1%

0.1 0:1690 0.1116 0.0466 0.0946* 0.0429 0.0085 0.0973 0.0461* 0.0097
0.2 0:1592 0.1049 0.0444 0.0936 0.0441 0.0080 0.0950* 0.0442 0.0068
0.3 0:1592 0.1057 0.0469 0.0959 0.0497 0.0115 0.0923 0.0460* 0.0094
0.4 0:1609 0.1066 0.0438 0.1005 0.0514 0.0117* 0.0971 0.0474 0.0089
0.5 0.1597 0.1023 0.0419 0.0988 0.0492 0.0140 0.0953 0.0442 0.0108
0.6 0.1486 0.0932 0.0377 0.0933 0.0449 0.0124 0.0888 0.0422 0.0099
0.7 0.1494 0.0967 0.0387 0.0992 0.0518 0.0114 0.0938 0.0465 0.0090
0.8 0.1465 0.0945 0.0385 0.0996 0.0514 0.0149 0.0946* 0.0475 0.0128
0.9 0.1533 0.0974 0.0386 0.1056* 0.0549 0.0146 0.1019 0.0504 0.0118*

1.0 0.1470 0.0911 0.0339 0.1000 0.0500 0.0117* 0.0944* 0.0460* 0.0102
1.1 0.1426 0.0871 0.0348 0.0987 0.0528 0.0142 0.0969 0.0490 0.0130
1.2 0.1406 0.0922 0.0345 0.1037 0.0546 0.0142 0.1011 0.0507 0.0120
1.3 0.1358 0.0834 0.0310 0.0974 0.0478 0.0115 0.0938 0.0450 0.0105
1.4 0.1415 0.0861 0.0298 0.1011 0.0532 0.0132 0.0978 0.0493 0.0122
1.5 0.1370 0.0858 0.0317 0.1009 0.0539* 0.0137 0.0987 0.0507 0.0117*

1.6 0.1380 0.0864 0.0298 0.1029 0.0527 0.0129 0.1002 0.0499 0.0114
1.7 0.1375 0.0799 0.0267 0.0986 0.0487 0.0119* 0.0959 0.0471 0.0101
1.8 0.1377 0.0818 0.0285 0.1025 0.0504 0.0131 0.0998 0.0471 0.0114
1.9 0.1390 0.0826 0.0297 0.1038 0.0524 0.0135 0.1002 0.0504 0.0115
2.0 0.1365 0.0838 0.0291 0.1022 0.0523 0.0130 0.1007 0.0509 0.0109
2.1 0.1407 0.0880 0.0314 0.1093 0.0569 0.0132 0.1068 0.0532 0.0124
2.2 0.1363 0.0795 0.0257 0.1010 0.0495 0.0117* 0.0992 0.0479 0.0107
2.3 0.1331 0.0803 0.0277 0.1014 0.0535 0.0120 0.0990 0.0496 0.0114
2.4 0.1366 0.0809 0.0286 0.1009 0.0536* 0.0135 0.0984 0.0502 0.0123
2.5 0.1342 0.0827 0.0286 0.1041 0.0551 0.0148 0.1010 0.0519 0.0139
2.6 0.1306 0.0793 0.0284 0.0996 0.0555 0.0133 0.0991 0.0546 0.0120
2.7 0.1337 0.0745 0.0267 0.0988 0.0508 0.0134 0.0977 0.0489 0.0105
2.8 0.1366 0.0813 0.0269 0.1058* 0.0530 0.0138 0.1028 0.0517 0.0135
2.9 0.1346 0.0786 0.0257 0.1022 0.0529 0.0138 0.1012 0.0492 0.0129
3.0 0.1274 0.0775 0.0269 0.0980 0.0535 0.0141 0.0945* 0.0511 0.0128
3.1 0.1337 0.0763 0.0259 0.1019 0.0529 0.0144 0.1002 0.0506 0.0126
3.2 0.1361 0.0803 0.0257 0.1068 0.0533 0.0145 0.1038 0.0517 0.0139
3.3 0.1281 0.0773 0.0261 0.1018 0.0528 0.0144 0.0991 0.0503 0.0131
3.4 0.1325 0.0801 0.0241 0.1053* 0.0541* 0.0133 0.1008 0.0519 0.0115
3.5 0.1306 0.0726 0.0217 0.1019 0.0478 0.0114 0.0978 0.0460* 0.0104
3.6 0.1360 0.0794 0.0254 0.1076 0.0550 0.0136 0.1048 0.0531 0.0128
3.7 0.1307 0.0783 0.0258 0.1043 0.0553 0.0134 0.1012 0.0536* 0.0119*

3.8 0.1246 0.0698 0.0225 0.0961 0.0504 0.0115 0.0948* 0.0476 0.0104
3.9 0.1302 0.0751 0.0228 0.1034 0.0537* 0.0128 0.1012 0.0517 0.0117*

4.0 0.1361 0.0791 0.0250 0.1084 0.0547 0.0136 0.1072 0.0545 0.0133
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Table 2 Empirical sizes for n1 = 50 and n2 = 50.

Asymptotic Test Usual Bootstrap Double Bootstrap
10% 5% 1% 10% 5% 1% 10% 5% 1%

0.1 0.1125 0.0592 0.0157 0.1033 0.0504 0.0130 0.1041 0.0512 0.0148
0.2 0.1078 0.0587 0.0132 0.0988 0.0508 0.0118* 0.1000 0.0520 0.0131
0.3 0.1135 0.0587 0.0149 0.1043 0.0522 0.0130 0.1045 0.0530 0.0128
0.4 0.1075 0.0573 0.0134 0.1006 0.0503 0.0111 0.1005 0.0526 0.0124
0.5 0.1031 0.0523 0.0112 0.0959 0.0475 0.0090 0.0957 0.0472 0.0093
0.6 0.1009 0.0537* 0.0114 0.0966 0.0495 0.0108 0.0978 0.0499 0.0109
0.7 0.1092 0.0584 0.0133 0.1016 0.0512 0.0122 0.1010 0.0523 0.0130
0.8 0.1032 0.0545 0.0122 0.0979 0.0484 0.0107 0.0964 0.0490 0.0099
0.9 0.1142 0.0591 0.0130 0.1069 0.0535 0.0118* 0.1065 0.0537* 0.0122
1.0 0.1115 0.0585 0.0140 0.102 0.0520 0.0128 0.1022 0.0525 0.0142
1.1 0.1114 0.0596 0.0159 0.1046 0.0548 0.0135 0.1049 0.0554 0.0143
1.2 0.1068 0.0545 0.0129 0.0992 0.0499 0.0120 0.1005 0.0518 0.0124
1.3 0.1032 0.0562 0.0146 0.0957 0.0492 0.0124 0.0988 0.0502 0.0136
1.4 0.1083 0.0588 0.0156 0.1011 0.0524 0.0136 0.1027 0.0535 0.0139
1.5 0.1058* 0.0552 0.0129 0.0999 0.0503 0.0122 0.1003 0.0507 0.0122
1.6 0.1067 0.0559 0.0123 0.1002 0.0504 0.0105 0.1018 0.0500 0.0119*

1.7 0.1099 0.0573 0.0129 0.1008 0.0477 0.0113 0.1007 0.0476 0.0117*

1.8 0.1087 0.0568 0.0156 0.0988 0.0519 0.0133 0.1009 0.0524 0.0132
1.9 0.1073 0.0583 0.0120 0.0968 0.0520 0.0122 0.0968 0.0525 0.0132
2.0 0.1134 0.0586 0.0122 0.1034 0.0514 0.0109 0.1053* 0.0520 0.0114
2.1 0.1042 0.0582 0.0113 0.0986 0.0526 0.0100 0.0991 0.0515 0.0106
2.2 0.1111 0.0585 0.0147 0.1018 0.0520 0.0121 0.1023 0.0529 0.0132
2.3 0.1043 0.0546 0.0120 0.0962 0.0474 0.0107 0.0950* 0.0481 0.0117*

2.4 0.1069 0.0580 0.0146 0.0992 0.0510 0.0121 0.1003 0.0515 0.0133
2.5 0.1084 0.0579 0.0127 0.1023 0.0513 0.0110 0.1044 0.0535 0.0119*

2.6 0.1158 0.0633 0.0160 0.1063 0.0577 0.0148 0.1069 0.0578 0.0148
2.7 0.1107 0.0590 0.0139 0.101 0.0537* 0.0116 0.1025 0.0518 0.0137
2.8 0.1070 0.0549 0.0109 0.0996 0.0483 0.0108 0.1015 0.0488 0.0116
2.9 0.1068 0.0576 0.0124 0.1008 0.0507 0.0115 0.1020 0.0525 0.0117*

3.0 0.1117 0.0583 0.0128 0.103 0.0519 0.0117* 0.1049 0.0517 0.0122
3.1 0.1092 0.0571 0.0124 0.1016 0.0502 0.0097 0.1009 0.0517 0.0110
3.2 0.1070 0.0527 0.0127 0.1002 0.0468 0.0107 0.0999 0.0485 0.0111
3.3 0.1119 0.0579 0.0139 0.1032 0.0516 0.0124 0.1026 0.0514 0.0124
3.4 0.1144 0.0594 0.0142 0.1057* 0.0533 0.0134 0.1066 0.0549 0.0139
3.5 0.1066 0.0550 0.0128 0.0995 0.0491 0.0117* 0.1014 0.0502 0.0118*

3.6 0.1077 0.0565 0.0140 0.0996 0.051 0.0137 0.1004 0.0511 0.0142
3.7 0.1145 0.0600 0.0147 0.1078 0.0526 0.0129 0.1080 0.0556 0.0139
3.8 0.1110 0.0580 0.0151 0.1038 0.0511 0.0124 0.1046 0.0519 0.0129
3.9 0.1098 0.0577 0.0146 0.1014 0.0523 0.0138 0.1025 0.0524 0.0145
4.0 0.1072 0.0523 0.0112 0.0985 0.0468 0.0102 0.0998 0.0478 0.0112
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Figure 1 Powers of the tests for (n1, n2) = (20, 20) at the 10% significance level.

Figure 2 Powers of the tests for (n1, n2) = (50, 50) at the 10% significance level.
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4. Concluding remarks
In this paper we consider the Wald statistic for a structural break proposed by Watt (1979). 

We apply the usual bootstrap and double bootstrap methods to the Wald statistic. Our simulation 
results show that the size distortion of the asymptotic test based on the Wald statistic can be 
reduced by applying the bootstrap methods. Also, according to our simulation, though the double 
bootstrap test has a better empirical size in some cases, the superiority of the double bootstrap 
over the usual bootstrap does not always holds. Since the powers of the bootstrap methods are 
comparable to the power of the asymptotic test, the superiority of the bootstrap methods over 
the asymptotic test is obvious. Thus, as a whole, we can see the effectiveness of the bootstrap 
methods.

In the above sections, in order to examine the validity of the bootstrap methods for the model 
with structural breaks, we consider a simple model with a possible structural break and a known 
break point. However, some authors considered models with multiple breaks and unknown break 
points. In particular, when the break points are unknown, the asymptotic distribution of a test 
statistic is very complex and the test statistic is not asymptotically pivotal. In such situations, 
the double bootstrap method may have a better performance than the usual bootstrap method. 
However, investigating such models are beyond the scope of this paper and a remaining problem 
for future research.
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