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DOUBLE BOOTSTRAP TEST FOR A STRUCTURAL BREAK
WHEN THE DISTURBANCE VARIANCE CHANGES WITH
THE BREAK™

By AKIO NAMBA

In this paper we consider the Wald test statistic proposed by Watt (1979) for testing equality between the
sets of regression coefficients in two linear regression models when the disturbance variances may possibly
be unequal. This test can be also used as a test for a structural break. As shown by Ohtani and Toyoda (1985)
and Honda and Ohtani (1986), the test based on the Wald test statistic suffers from severe size distortion
in small samples when the disturbance variances of the two regression models are unequal. To tackle this
problem, we apply two kinds of bootstrap methods, i.e., the usual bootstrap and the double bootstrap.
Through simulation studies, we show that the size distortion is substantially improved when the bootstrap
methods are utilized.

1. Introduction

The test proposed by Chow (1960) has been widely used to test equality between sets of
coefficients in two linear regression models, or to test the existence of a structural break in a
regression model. However, it is well known that the Chow test suffers from poor performance if
the regression model is heteroscedastic, or the disturbance variances of the two linear regression
models are unequal [See Toyoda (1974) and Schmidt and Sickles (1977)].

In order to tackle this drawback of the Chow test, several authors proposed alternative testing
procedures which are applicable when the disturbance terms are heteroscedastic. Some examples
are Watt (1979), Jayatissa (1977), and Rothenberg (1984).” In particular, Watt (1979) proposed
the test based on the Wald test statistic. According to Ohtani and Kobayashi (1986) and Thursby
(1992), Watt’s (1979) test is more powerful than Jayatissa’s (1977) test.

Though the test statistic proposed by Watt (1979) is easy to compute, its exact distribution is
very complex [See Kobayashi (1986) and Phillips (1986)]. Thus, Watt (1979) proposed to use
critical values of a chi-squared distribution based on its asymptotic distribution. However, if
we use the critical values of a chi-squared distribution, the test proposed by Watt (1979) suffers
from size distortion when the sample size is small. See, e.g., Ohtani and Toyoda (1985) and
Honda and Ohtani (1986). In order to avoid this size distortion, Ohtani and Kobayashi (1986)
and Kobayashi (1986) proposed the bounds test based on the Wald test statistic. Since their test
is based on the upper and lower bounds of the Wald test statistic proposed by Watt (1979), there
inherently exists an inconclusive region for the test statistic. Weerahandi (1987) also proposed a
test which is exact under the normality assumption of disturbances. Though Weerahandi’s (1987)
test is exact, it requires a numerical integration when calculating the p-value of the test statistic
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and thus is not easy to implement.

The above procedures are required since the exact distribution of the Wald test statistic
proposed by Watt (1979) is complex when the sample size is small. When the exact distribution
of a statistic is complex or unknown, the bootstrap method proposed by Efron (1979) is
sometimes useful. Bootstrap is one of the so-called resampling methods where the artificial data
are obtained by resampling from the original data. In particular, as shown by Beran (1987, 1988)
[see also Hall (1992)], the procedure based on the bootstrap methods yields more accurate results
than the conventional asymptotic procedure when the statistic is asymptotically pivotal, i.e., the
asymptotic distribution of the statistic does not depend on unknown parameters. Since the Wald
test statistic is asymptotically distributed as a chi-squared distribution with known degrees of
freedom, it is asymptotically pivotal. Therefore, an improvement is expected if the bootstrap
method is applied to the Wald test statistic proposed by Watt (1979).

Beran (1988) also proposed a bootstrap method where another step of bootstrap resampling is
executed from the bootstrap sample which is obtained by the usual bootstrap. This is called the
double bootstrap method. As discussed in Beran (1988), the performance of the usual bootstrap
method can be further improved by the double bootstrap. Several authors investigated the
performance of the double bootstrap method. See, e.g., Caers (1998), DiCiccio et al. (1992),
Hinkley and Shi (1989), McKnight et al. (2000), Letson and McCullough (1998), McCullough
and Vinod (1998), Nankervis (2005), Vinod (1995), and Vinod and McCullough (1995).

Recent literature includes models which permit multiple structural breaks and unknown break
points and the methods to investigate them. See, e.g., Bai and Perron (1998), Perron (2006),
Boldea et al. (2012), Hall et al. (2012), Perron and Yamamoto (2014) and references therein.
However, to examine the validity of the proposed methods and for simplicity, we focus on the
model with one possible structural break and a known break point. Thus, in this paper, we apply
the usual bootstrap and the double bootstrap methods to the test statistic proposed by Watt (1979).
We examine the sizes and the powers of the bootstrap tests by Monte Carlo simulations. The
organization of the paper is as follows. In the next section, we introduce the model and the test
statistic. Also, the ways to apply the bootstrap methods to the test statistic are explained. It turns
out that the bootstrap procedure gets simplified because of the structure of the test statistic. In
section 3, we examine the performance of the bootstrap tests by simulations. The simulation
results show that the size distortion of Watt’s (1979) test is substantially improved by the
bootstrap methods. Finally, some concluding remarks are given in section 4.

2. Model, test statistic and the bootstrap methods
Consider two linear regression models

yvi=XiBi+e i=12, )

where y; is an n; x 1 vector of observations on a dependent variable, X; is an n; X k matrix of
observations on nonstochastic explanatory variables, B;is a k x 1 vector of coefficients, and €; is an n;

x 1 vector of error terms and € ~ N(0, O'?Ini). Also, we assume that X; is of full column rank.
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The task considered in this paper is to test the null hypothesis Ho : 51 = B2 against the
alternative Hy : B1 # Ba. If i denotes the regime, accepting Ho implies that there is no structural
break.

If O'% = (T%, i.e., the disturbance variances of the two regression models are equal, we
can easily test the null hypothesis using the Chow test proposed by Chow (1960). However,
as shown by Toyoda (1974) and Schmidt and Sickles (1977), the Chow test has a very poor

performance when o-% #* 0‘% . Thus, Watt (1979) proposed the Wald test statistic which takes
the heteroscedasticity into consideration:

W = (b — by) [£(X] X)) + 2(X,X2) "] (b1 — bo), )

where p; and S% are the least squares estimator of f3; and 0'12 . Though this Wald test statistic is
asymptotically valid, as shown by Ohtani and Toyoda (1985) and Honda and Ohtani (1986),
the test based on this statistic suffers from severe size distortion in small samples if the critical
values of a chi-squared distribution are used. One way of coping with this size distortion is
executing the test based on the upper and lower bounds of the Wald test statistic as proposed by
Ohtani and Kobayashi (1986) and Kobayashi (1986). However, this testing procedure inherently
includes the inconclusive region. Weerahandi (1987) also proposed a test which is exact under
normality of the disturbance. However, Weerahandi’s (1987) test requires a numerical integration
when calculating the p-value of the test statistic and is not easy to implement.

Thus, in this paper, we consider more direct methods, i.e., the bootstrap method proposed
by Efron (1979) and the double bootstrap method proposed by Beran (1988). As shown by
Beran (1987, 1988), inferences based on asymptotic distributions can be improved by applying
the bootstrap method if the statistic considered is asymptotically pivotal, i.e., the asymptotic
distribution of the statistic does not depend on unknown parameters. Since the asymptotic
distribution of the Wald test statistic given in (2) is a chi-squared distribution with & degrees of
freedom, it is asymptotically pivotal. Thus, by applying the bootstrap method to W, a reduction in
the size distortion of the test is expected. Beran (1988) also discussed that the performance of the
usual bootstrap can be improved by the double bootstrap method. In the following subsections,
we will explain the ways to apply the usual and the double bootstrap methods to the Wald
statistic given in (2).

2.1 Usual bootstrap method
The application of the usual bootstrap method to # is summarized as follows:

Al. Estimate f; and 0'? by the ordinary least squares (OLS) method and obtain p; and s? .
Calculate the value of the Wald test statistic /¥ given in (2).

A2. Let ¢; = y; — X;b; be the residual vector for i = 1, 2. Following Wu (1986), we first

rescale the residual vector as /n;/(n; — k) e;. Drawing a sample of size p; from the
elements of the rescaled residual with replacement and stacking them as an n; x 1 vector,

we obtain a bootstrap sample vector e;k fori =1, 2.
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A3. Regressing e;" on X;, obtain bootstrap estimates b;" and siz* for i = 1, 2. Using these
estimates, calculate the bootstrap version of the Wald test statistic:

Wy = (b — b%) [ (X)X)) ™" + 525 (X)X2) '] (bF — b2). 3)

A4. Repeating the steps 2 and 3 above B times (i.e., b = 1, 2,...,B), and calculating the ratio
such that W, exceeds W as
18
o =5 2 1(Wy > W), “)
i=1
where /(A4) is an indicator function such that /(4) = 1 when the event 4 occurs and /(4)
= 0 otherwise, we obtain the p-value of the test based on the bootstrap method. Thus, if
the obtained p-value is less than the assigned significance level o, Ho : =0, is rejected.
Note that, in step A2 above, we simply regress e;k on JX; in order to obtain bootstrap estimates.
In the usual bootstrap procedure for a regression model, we usually calculate a bootstrap sample
of the dependent variable y;-k = X;B; + e;k where f3; is any estimator of A, and obtain bootstrap
estimates by regressing y?‘ on X;. Since, when testing a null hypothesis, a bootstrap sample
must be drawn from a model such that the null hypothesis is hold, we need to use an estimator
which satisfies 8; = B, = 8. However, if we regress ¥ instead of €] under the condition
B1 = B2 = B, we obtain
/ —1 v / —1 v
b b5 = (X1 XT — (X)X 5
= (X)) Xfe] — (X%) ' X

This implies that the bootstrap version of the Wald test statistic /¥ given in (3) is independent of
the choice of 3 and that the value of W5 is unchanged whatever estimate 8 may be used. Thus,

by using the zero vector as 3, we can simply regress e,’-k on X;, and the bootstrap resampling gets
simplified because of the structure of the Wald test statistic .

2.2 Double bootstrap method

The double bootstrap method is the procedure which executes another step of resampling from
the bootstrap sample, i.e., the artificial sample obtained by the usual bootstrap resampling. The
double bootstrap method is applied to /¥ in the following way.

B1. Estimate f; and O'i2 by the ordinary least squares (OLS) method and obtain b; and S? .
Calculate the value of the Wald test statistic 7.

B2. In a similar way to the steps A2—A3 in the usual bootstrap, obtain a bootstrap sample 6?
and calculate the bootstrap version of the Wald test statistic .

B3. Let el be the residual vector obtained by regressing e;“ on X; for i = 1, 2. As another

i
step of bootstrap, in the similar manner to step A2 above, drawing a sample of size n;

i

from the elements of e; with replacement,” we obtain a double bootstrap sample vector

3) In this step, we do not rescale the residual since the unconditional expectation of ef is ;2 because €] is rescaled.
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I . % L . .
e;. Regressing €; on X;, and calculating in the similar way to (3), we obtain the double

bootstrap version of the Wald statistic Wy .
B4. Repeating the step B3 D times (i.e., d =1, 2, ...,D) and calculating the ratio such that W, is
greater than or equal to 7, we can obtain an estimate of the p-value of W} as

D
~ Zd=1 I(Wag = W)
b D
B5. Repeating steps B2-B4 B times and calculate the p-value obtained by the double bootstrap as
B ~
2i=1 1(Po < pb)
Pp = B ) (7

where ps» is defined in (4) above. If pp < @, Ho is rejected at the 100X percent
significance level.

. (6)

As we can see above steps, while the usual bootstrap requires B times of iteration, the double
bootstrap requires B x D times of iteration.

3. Simulation results
To investigate the performance of the above mentioned methods, we execute some Monte
Carlo simulations in this section. The design of the simulation is as follows:

1. For simplicity, we assume k =2 and X;; = [1,u j], where X;; is the jth element of X; and
u;is a random sample drawn from U [0, 1]. Thus, the regression model has an intercept
and one explanatory variable.

2. Using the number of iteration of resampling in bootstrap B = 500 and D = 300, and
letting B11 = B2 = 01 = 1, and Ba1, Baz, 02, N1, Ny = several values, where Bij
is the jth element of 5, we iterated the procedure explained in the previous section M =
10000 times and test the null hypothesis at @ = 0.10 (10%), 0.05 (5%) and 0.01 (1%)
significance levels. Calculating the ratio when the null hypothesis is rejected out of M =
10000 times, we obtain the empirical power of the test.

Through our simulations, we found that the size distortion of the Wald test which utilized
critical values of a chi-squared distribution (i.e., asymptotic test) is severe when the differences
between 0, n1 and 0, ny are large. This coincides with the result in Ohtani and Toyoda (1985).
Though we do not show all the results, the results shown here are typical ones obtained by our

experiments.
Tables 1 and 2 show the empirical sizes of the tests for (11, n2) = (10, 50) and (1, ny) = (50,
50) obtained through simulations (i.e., 821 = P22 = 1). To evaluate the correctness of the tests,

we test the null hypothesis that the significance level is a by means of the normal approximation
of a binomial distribution. *, T and I denote that the null hypothesis is rejected at the 10%, 5%
and 1% significance levels, respectively. As we can see from Table 1, the size of the test based on
the asymptotic distribution of ¥ is not correct at all. The empirical size is far from the nominal
size for all values of 0 in this case. By the usual bootstrap method, the correctness of the test is
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much improved. Though the null hypothesis that the significance level is a is rejected in some
cases, the empirical size of the usual bootstrap test is much closer to the nominal size than the
asymptotic test in all cases. The double bootstrap method yields a more accurate empirical size
than the usual bootstrap in some cases, though there are a few cases where the usual bootstrap
method has preferable results to the double bootstrap method. From Table 2, we can see the
results for the case of (11, n2) = (50, 50) . As the difference between n| and ny gets smaller, the
results based on asymptotic distribution of W gets closer to the nominal levels. As mentioned
above, this result coincides with the one in Ohtani and Toyoda (1985). However, the empirical
size of the asymptotic test is not close enough to the nominal level and the null hypothesis for a
is rejected for most of cases considered here. Also, in this case, the usual and double bootstrap
methods yield comparable performance. This implies that the improvement over the usual
bootstrap by the double bootstrap is hard to obtain under the situation when both n; and n,
are not small, and the usual bootstrap method has already corrected the empirical size to some
extent. Though we do not show all the results here, as both 7| and n, get larger, the asymptotic
test yields a more accurate empirical size, however, the bootstrap methods generally provide
with the better performance than the asymptotic test.

Figures 1 and 2 show the power of the tests for (n1,7n2) = (15,15),(50,50), o, = 2.0,
P22 = land B21 = various values, which means that the intercept and the disturbance variance
change with the structural break. We can see that the test based on the asymptotic distribution
of W has a slightly larger power than the bootstrap tests. However, this is caused by the size
distortion of the asymptotic test which can be seen in Tables 1 and 2. Also, the usual bootstrap
and double bootstrap tests have almost same powers. Thus, we may assert that the powers of the
bootstrap tests are almost comparable to the power of the asymptotic test.
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Table 1 Empirical sizes for n; = 10 and n, = 50.

Asymptotic Test Usual Bootstrap Double Bootstrap

lop) 10% 5% 1% 10% 5% 1% 10% 5% 1%
0.1 | 0:1690F  o.1116% 0.0466% | 0.0946*  0.0429f  0.0085 0.0973 0.0461%  0.0097
02| 0:1592F  0.1049F  0.0444f | 0.0936"  0.0441%  0.0080" | 0.0950*  0.0442F  0.0068¢
03 | 0:1592F  0.1057F  0.0469F | 0.0959 0.0497 0.0115 0.09237  0.0460*  0.0094
0.4 | 0:1609F  0.1066F  0.0438F | 0.1005 0.0514 0.0117* | 0.0971 0.0474 0.0089
05| 015978 0.1023F  0.0419f | 0.0988 0.0492 0.0140 0.0953 0.0442  0.0108
0.6 | 0.1486F  0.0932F 003778 | 0.09337  0.0449"  0.0124" | 0.0888"  0.0422f  0.0099
0.7 | 0.1494%  0.0967F  0.0387F | 0.0992 0.0518 0.0114 0.0938"  0.0465 0.0090
0.8 | 0.1465%F  0.09458  0.0385t | 0.0996 0.0514 0.0149F | 0.0946*  0.0475 0.0128*
0.9 | 0.1533%  0.0974F 00386 | 0.1056*  0.0549"  0.0146f | 0.1019 0.0504 0.0118*
1.0 | 0.1470f  0.0911F  0.0339f | 0.1000 0.0500 0.0117* | 0.0944*  0.0460*  0.0102
1.1 | 0.1426 0.0871% 0.0348% 0.0987 0.0528 0.0142% 0.0969 0.0490 0.0130%
12| 0.1406F  0.09228  0.0345F | 0.1037 0.0546"  0.0142F | o0.1011 0.0507 0.0120f
13 ] 0.1358°  0.0834F  0.0310f | 0.0974 0.0478 0.0115 0.0938"  0.04507  0.0105
14| 0.1415% 0.0861% 0.0298% 0.1011 0.0532 0.0132% 0.0978 0.0493 0.0122f
1.5 ] 0.1370F  0.0858F  0.0317F | 0.1009 0.0539*  0.0137F | 0.0987 0.0507 0.0117*
1.6 | 0.1380F  0.0864%  0.0298% | 0.1029 0.0527 0.0129% | 0.1002 0.0499 0.0114
1.7 | 013758 0.0799F  0.0267F | 0.0986 0.0487 0.0119* | 0.0959 0.0471 0.0101
1.8 | 0.1377  0.0818F  0.0285F | 0.1025 0.0504 0.0131F | 0.0998 0.0471 0.0114
1.9 | 0.1390F  0.0826F  0.0297F | 0.1038 0.0524 0.0135% | 0.1002 0.0504 0.0115
2.0 | 0.1365%  0.0838F  0.0291% | 0.1022 0.0523 0.0130% | 0.1007 0.0509 0.0109
2.1 | 0.1407F  0.0880F  0.0314F | 0.1093F  0.0569F  0.0132f | 0.1068"  0.0532 0.0124f
22| 01363 007958 0.0257F | 0.1010 0.0495 0.0117* | 0.0992 0.0479 0.0107
23| 0.1331F  0.0803F  0.0277F | 0.1014 0.0535 0.0120" | 0.0990 0.0496 0.0114
24| 0.1366F  0.0809F  0.0286f | 0.1009 0.0536*  0.0135F | 0.0984 0.0502 0.0123f
25| 0.13428  0.0827F  0.0286F | 0.1041 0.05517  0.0148 | 0.1010 0.0519 0.0139¢
2.6 | 0.13068  0.0793F  0.0284F | 0.0996 0.05557  0.0133% | 0.0991 0.0546"  0.01207
27| 01337 0.0745% 0.0267* 0.0988 0.0508 0.0134% 0.0977 0.0489 0.0105
28 | 0.1366F  0.0813F  0.0269f | 0.1058*  0.0530 0.0138% | 0.1028 0.0517 0.0135¢
29| 0.13468  0.0786F  0.0257F | 0.1022 0.0529 0.0138% | 0.1012 0.0492 0.0129%
3.0 | 0.1274* 0.0775% 0.0269% 0.0980 0.0535 0.0141% 0.0945*  0.0511 0.0128%
3.1 013378 0.0763F  0.0259F | 0.1019 0.0529 0.0144% | 0.1002 0.0506 0.0126F
32| 0.1361F  0.0803F  0.0257F | 0.1068"  0.0533 0.0145% | 0.1038 0.0517 0.0139¢
33| 0.1281F  0.0773%  0.0261F | 0.1018 0.0528 0.01441 | 0.0991 0.0503 0.0131%
34 013258 0.0801F  0.0241F | 0.1053*  0.0541*  0.0133% | 0.1008 0.0519 0.0115
35| 013068 007268 0.0217F | 0.1019 0.0478 0.0114 0.0978 0.0460*  0.0104
3.6 | 0.1360F  0.0794F  0.0254% | 0.1076"  0.05507  0.0136} | 0.1048 0.0531 0.0128*
371 013078 00783 0.0258F | 0.1043 0.0553"  0.0134F | 0.1012 0.0536*  0.0119*
3.8 | 0.12468  0.0698F  0.0225% | 0.0961 0.0504 0.0115 0.0948*  0.0476 0.0104
3.9 | 0.1302F 007518 0.0228F | 0.1034 0.0537*  0.0128 | 0.1012 0.0517 0.0117*
40 | 0.1361F  0.0791%  0.0250f | 0.1084F  0.0547F  0.0136! | 0.1072F  0.05457  0.0133*
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Table 2 Empirical sizes for n; = 50 and n, = 50.

Asymptotic Test Usual Bootstrap Double Bootstrap

lop) 10% 5% 1% 10% 5% 1% 10% 5% 1%
0.1 | 0.1125F  0.0592F  0.0157% | 0.1033 0.0504 0.0130% | 0.1041 0.0512 0.0148*
02| 0.1078%  0.0587F  0.0132% | 0.0988 0.0508 0.0118* | 0.1000 0.0520 0.0131%
03| 0.1135F 00587  0.0149 | 0.1043 0.0522 0.0130% | 0.1045 0.0530 0.0128*
0.4 | 0.10757  0.0573t  0.0134% | 0.1006 0.0503 0.0111 0.1005 0.0526 0.0124f
0.5 | 0.1031 0.0523 0.0112 0.0959 0.0475 0.0090 0.0957 0.0472 0.0093
0.6 | 0.1009 0.0537*  0.0114 0.0966 0.0495 0.0108 0.0978 0.0499 0.0109
0.7 | 0.1092%  0.0584F  0.0133% | 0.1016 0.0512 0.0122F | 0.1010 0.0523 0.0130*
0.8 | 0.1032 0.0545"  0.0122F | 0.0979 0.0484 0.0107 0.0964 0.0490 0.0099
0.9 | 0.1142% 00591 0.0130f | 0.1069"  0.0535 0.0118* | 0.10657  0.0537*  0.0122f
1.0 | o.11158  0.0585F  0.0140% | 0.102 0.0520 0.0128F | 0.1022 0.0525 0.0142%
11| o0.11148  0.0596 0.0159% 0.1046 0.0548" 0.0135% 0.1049 0.0554% 0.0143%
12| 0.1068"  0.05457  0.0129f | 0.0992 0.0499 0.0120" | 0.1005 0.0518 0.0124f
13 ] 0.1032 0.0562f  0.0146" | 0.0957 0.0492 0.0124" | 0.0988 0.0502 0.0136F
1.4 | 0.1083%  0.0588t 0.0156} 0.1011 0.0524 0.0136} 0.1027 0.0535 0.0139%
1.5 ] 0.1058*  0.0552F  0.0129f | 0.0999 0.0503 0.0122F | 0.1003 0.0507 0.0122f
1.6 | 010677 0.0559F  0.0123% | 0.1002 0.0504 0.0105 0.1018 0.0500 0.0119*
1.7 | 0.1099 0.0573F  0.0129 | 0.1008 0.0477 0.0113 0.1007 0.0476 0.0117*
1.8 | 0.1087F  0.0568F  0.0156f | 0.0988 0.0519 0.0133% | 0.1009 0.0524 0.0132¢
19 | 0.10737  0.0583%  0.0120" | 0.0968 0.0520 0.0122F | 0.0968 0.0525 0.0132¢
20| 011348 0.0586F  0.01227 | 0.1034 0.0514 0.0109 0.1053*  0.0520 0.0114
2.1 | 0.1042 0.0582f  0.0113 0.0986 0.0526 0.0100 0.0991 0.0515 0.0106
22| 01111 0.0585  0.0147F | 0.1018 0.0520 0.01217 | 0.1023 0.0529 0.0132¢
23| 0.1043 0.0546"  0.0120" | 0.0962 0.0474 0.0107 0.0950*  0.0481 0.0117*
24| 010697 0.0580F  0.0146F | 0.0992 0.0510 0.01217 | 0.1003 0.0515 0.0133%
25| 0.1084F  0.0579F  0.0127F | 0.1023 0.0513 0.0110 0.1044 0.0535 0.0119*
2.6 | 0.1158F  0.0633  0.0160f | 0.10637 00577  0.0148F | 0.1069"  0.0578%  0.0148!
2.7 | 01107 0.0590% 0.0139% 0.101 0.0537*  0.0116 0.1025 0.0518 0.01374
2.8 | 0.10707  0.0549"  0.0109 0.0996 0.0483 0.0108 0.1015 0.0488 0.0116
29| 0.1068"  0.0576F  0.0124" | 0.1008 0.0507 0.0115 0.1020 0.0525 0.0117*
3.0 | 0.1117F  0.0583% 0.0128% 0.103 0.0519 0.0117* | 0.1049 0.0517 0.01221
3.1 0.1092F 005718 0.0124 0.1016 0.0502 0.0097 0.1009 0.0517 0.0110
32| 0.10707  0.0527 0.0127F | 0.1002 0.0468 0.0107 0.0999 0.0485 0.0111
33| 011198 0.0579F  0.0139% | 0.1032 0.0516 0.0124" | 0.1026 0.0514 0.0124%
34| 0.1144F 00594 001428 | 0.1057F  0.0533 0.0134t | 0.10667  0.0549"  0.0139¢
35| 0.1066"7  0.05500  0.0128% | 0.0995 0.0491 0.0117* | 0.1014 0.0502 0.0118*
3.6 | 0.10777  0.0565F  0.0140f | 0.0996 0.051 0.0137F | 0.1004 0.0511 0.0142%
3.7 0.1145F  0.0600F 001478 | 0.1078%  0.0526 0.0129f | 0.1080F  0.0556"  0.0139¢
38 | 0.1110F  0.0580F  0.0151% | 0.1038 0.0511 0.0124" | 0.1046 0.0519 0.0129¢
3.9 | 0.1098  0.0577  0.0146t | 0.1014 0.0523 0.0138% | 0.1025 0.0524 0.0145%
40 | 0.1072F  0.0523 0.0112 0.0985 0.0468 0.0102 0.0998 0.0478 0.0112
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4. Concluding remarks

In this paper we consider the Wald statistic for a structural break proposed by Watt (1979).
We apply the usual bootstrap and double bootstrap methods to the Wald statistic. Our simulation
results show that the size distortion of the asymptotic test based on the Wald statistic can be
reduced by applying the bootstrap methods. Also, according to our simulation, though the double
bootstrap test has a better empirical size in some cases, the superiority of the double bootstrap
over the usual bootstrap does not always holds. Since the powers of the bootstrap methods are
comparable to the power of the asymptotic test, the superiority of the bootstrap methods over
the asymptotic test is obvious. Thus, as a whole, we can see the effectiveness of the bootstrap
methods.

In the above sections, in order to examine the validity of the bootstrap methods for the model
with structural breaks, we consider a simple model with a possible structural break and a known
break point. However, some authors considered models with multiple breaks and unknown break
points. In particular, when the break points are unknown, the asymptotic distribution of a test
statistic is very complex and the test statistic is not asymptotically pivotal. In such situations,
the double bootstrap method may have a better performance than the usual bootstrap method.
However, investigating such models are beyond the scope of this paper and a remaining problem
for future research.
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