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Abstract

A practical approach to protecting networks against epidemic processes such as spreading of

infectious diseases, malware, and harmful viral information is to remove some influential nodes

beforehand to fragment the network into small components. Because determining the optimal

order to remove nodes is a computationally hard problem, various approximate algorithms have

been proposed to efficiently fragment networks by sequential node removal. Morone and Makse

proposed an algorithm employing the non-backtracking matrix of given networks, which outper-

forms various existing algorithms. In fact, many empirical networks have community structure,

compromising the assumption of local tree-like structure on which the original algorithm is based.

We develop an immunization algorithm by synergistically combining the Morone-Makse algorithm

and coarse graining of the network in which we regard a community as a supernode. In this way,

we aim to identify nodes that connect different communities at a reasonable computational cost.

The proposed algorithm works more efficiently than the Morone-Makse and other algorithms on

networks with community structure.
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INTRODUCTION

Identification of influential nodes in a network is a topic of interest in network analysis,

enjoying numerous applications. For example, a removal or immunization of an influential

node may suppress spreading of an infectious disease that may occur later. A viral infor-

mation spreading campaign starting from an influential node may be more successful than

a campaign starting from other nodes. There are various notions of influential nodes, as

evinced by a multitude of definitions of node’s centrality corresponding to the aforemen-

tioned and other applications [1]. Among them, a major criterion of the influential node is

that the removal of a node, or immunization, efficiently fragments the network into small

pieces. Because the problem of finding the minimal set of nodes to be immunized to frag-

ment the network is NP-hard [2], various immunization algorithms to determine the order

of the nodes to be removed to realize efficient fragmentation of the network have been pro-

posed [2–12], sometimes with the constraint that the information about the network is only

partially available [6, 13–17]. Notably, although immunizing hubs (i.e., nodes with a large

degree) first is intuitive and much better than randomly selecting nodes to be immunized

[18–20], many immunization algorithms outperform the hub-first immunization algorithm.

Morone and Makse proposed a scalable and powerful algorithm to sequentially remove

nodes and fragment the network into small components as early as possible [9]. Founded on

the message passing approach and theory of non-backtracking matrices, the method calcu-

lates the so-called collective influence (CI) for each node to rank the nodes for prioritization.

Their method, which is referred to as the CI algorithm, outperforms various other known

methods in model and empirical networks. In the present study, we propose a new CI-based

immunization algorithm that is designed to perform well when the network has community

structure.

The CI algorithm assumes that the given network is locally tree-like. In fact, a majority

of empirical networks are not locally tree-like. At a microscopic level, empirical networks

are usually clustered, i.e., full of triangles [1]. At a mesoscopic level, many networks are

composed of communities such that links are dense within communities and sparse across

different communities [21]. Although the CI algorithm also seems to work efficiently in loopy

networks unless loops are not excessive [9], the performance of the CI algorithm on networks

with community structure is unclear. Some extant immunization algorithms are explicitly
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or implicitly informed by community structure [4–6, 10, 15, 16, 22, 23]. The immuniza-

tion algorithms using the betweenness centrality are effective on networks with community

structure [6, 7, 16, 22, 23]. However, they are not scalable due to a high computational

cost of calculating the betweenness centrality [24]. For other immunization algorithms ex-

ploiting community structure of networks, their performance relative to the CI algorithm

is unknown in general [5, 10] or at least for networks with community structure [4, 9]. Yet

other community-based immunization algorithms impose that only local information about

the network is available, mimicking realistic constraints [6, 15, 16]. This constraint naturally

limits the performance of an immunization algorithm.

We develop an immunization algorithm by formulating a CI algorithm for a coarse-grained

network, in which a node represents a community, and a weighted link represents the num-

ber of links between different communities. We compare the performance of the proposed

algorithm with that of the CI algorithm [9], and the conventional algorithm targeting hubs

[18–20], and others [5, 10] when networks have community structure.

THEORY

Consider an undirected and unweighted network having N nodes. The aim of an im-

munization algorithm is to sequentially remove nodes to fragment the network as soon as

possible, i.e., with a small number of removed nodes.

Collective influence

The CI algorithm is based on the scoring of nodes according to the CI value [9]. The CI

of node i is defined as

CI�(i) = zi
∑

j∈∂Ball(i,�)

zj, (1)

where

zi ≡ ki − 1, (2)

ki is the degree of node i, and ∂Ball(i, �) is the set of nodes at distance � from node i. When

� = 0, the CI is equivalent to the degree as long as the rank order is concerned.

3



The CI algorithm calculates the CI�(i) value of all nodes and removes the node with the

largest CI value in one step. Then, the CI values of all the remaining nodes are recalculated,

and the same procedure is repeated.

In fact, we use the order of nodes to be removed determined above as a tentative order.

To improve the overall performance, we reorder the nodes by reinserting them as follows. We

start from the situation in which the fraction of nodes in the largest connected component

(LCC) is equal to or less than 0.01 for the first time. Then, we calculate for each removed

node i the number of components that node i connects if it is reinserted in the current

network. Next, we add back the node that connects the smallest number of connected

components. We repeat this procedure until all the removed nodes are reinserted such that

the initial network is restored.

The computation time of the CI algorithm is evaluated as follows [9]. The calculation

of CI�(i) requires O(1) time for one node, and hence O(N) time for all nodes. Because

sorting the CI�(i) values consumes O(N logN) time, each step of the CI algorithm consumes

O(N logN) time. Therefore, the total computation time until O(N) nodes are removed is

evaluated as O(N2 logN). However, by exploiting the fact that the CI values of only O(1)

nodes are affected by the removal of a single node, one can accelerate the same algorithm

with a max-heap data structure, yielding O(N logN) total computation time [25].

Community-based collective influence

Community structure may make a network not locally tree-like. We propose an immuniza-

tion algorithm by running a weighted-network variant of the CI algorithm on a coarse-grained

network in which a community constitutes a supernode. We first run a community detection

algorithm. Denote by NC the number of communities and by Ã the NC×NC coarse-grained

weighted adjacency matrix whose (I, J) element is equal to the number of links that connect

communities I and J (I �= J). We use lowercases (e.g., i, j) to denote individual nodes and

uppercases (e.g., I, J) to denote supernodes, i.e., communities, throughout the text. The

diagonal elements of Ã are set to zero.

Assume that the coarse-grained network is locally tree-like. By taking into account the

fact that the coarse-grained network is generally a weighted network, we define the CI of
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community I in the coarse-grained network by

CI′�(I) = z′I
∑

J∈∂̃Ball(I,�)

z′′J , (3)

where ∂̃Ball(I, �) denotes the set of the communities whose distance from community I is

equal to � in the coarse-grained network.

We set

z′I ≡
NC∑
I′=1

ÃII′ −min
I′

ÃII′ . (4)

This definition is analogous to zi ≡ ki − 1 in Eq. (1). With this definition of z′I , the CI of

community I is equal to zero when I has only one neighbor, as in the original CI [9, 26].

We set

z′′J ≡
NC∑
J ′=1

ÃJJ ′ − ÃJJ− (� ≥ 1), (5)

where J is a community that is at distance � from I, and J− is the community that is at

distance �− 1 from I and on the path between I and J (Fig. 1(a)). It should be noted that

z′′J is equal to zero if J− is the only neighbor of J . It should also be noted that, when every

community consists of only one node in the original network, CI′�(i) = CI�(i) for 1 ≤ i ≤ N .

Equation (5) is ill-defined for � = 0. To be consistent with the original definition of the CI,

we define z′′J ≡ z′J for � = 0. Then, CI′0(I) is large when node I has a large degree in the

coarse-grained network.

Let A = (Aij) be the adjacency matrix of the original network. Equation (3) is rewritten

as

CI′�(I) = z′I
∑

i∈ community I

∑
I′∈∂̃Ball(I,1)

∑
i′∈I′ Aii′

ÃII′

∑
J∈∂̃Ball(I,�)

I+=I′

z′′J , (6)

where I+ is the community adjacent to I (hence distance one from I) through which J is

reached from I (Fig. 1(b)). On the basis of Eq. (6), we define the community-based collective

influence (CbCI) of node i, denoted by CbCI(i), as

CbCI(i) = z′I
∑

I′∈∂̃Ball(I,1)

∑
i′∈I′ Aii′

ÃII′

∑
J∈∂̃Ball(I,�)

I+=I′

z′′J , (7)

where node i belongs to community I. In Eq. (7), the importance of a node stems from

three factors. First, CbCI(i) is proportional to z′I , which is essentially the number of inter-

community links of the community to which i belongs. Second, CbCI(i) is large if I has
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many high-degree nodes at distance � in the coarse-grained network (i.e., sum of z′′J). Third,

CbCI(i) is large if node i has many inter-community links relative to the total number of

inter-community links that community I has (i.e.,
∑

i′∈I′ Aii′/ÃII′). We set � = 2 in the

following numerical simulations. When � = 2, I+ in Eqs. (6) and (7) coincide with J− in

Eq. (5) (Fig. 1(b)).

We remove the node with the largest CbCI value. If there are multiple nodes with

the same largest CbCI value, we select the node having the largest degree. If there are

multiple nodes with the same largest CbCI and degree, we break the tie at random. Then,

we recalculate the CbCI for all remaining nodes, remove the node with the largest CbCI,

and repeat the same procedure until the size of the LCC becomes equal to or less than

0.01N . We further optimize the obtained order of node removal by reinsertion, as in the

CI algorithm. We use the coarse-grained network, not the original network, to inform the

reinsertion process in the CbCI algorithm. In other words, the number of communities

that belong to the same component as the reinserted node is measured for each tentatively

reinserted node. We decide to reinsert the node whose presence connects the least number

of communities (Fig. 1(c)).

Given a partitioning of the network into communities, the calculation of CbCI(i) for one

node consumes O(1) time. Therefore, if we adapt the original implementation of the CI

algorithm [9] to the case of the CbCI, sorting of CbCI(i) dominates the computation time of

the CbCI algorithm. The time complexity of the CbCI algorithm is the same as that of the

CI algorithm in Ref. [9], i.e., O(N2 logN), if community detection is not a bottleneck. The

use of the max-heap data structure makes the CbCI algorithm run in O(N logN) time if

NC = O(N) such that the CbCI values of O(1) nodes are affected by the removal of a single

node. Generally speaking, the CbCI algorithm with the max-heap data structure runs in

O(N logN)×O(N/NC) = O((N2/NC) logN) time.

We use the following six algorithms for community detection: (i) Infomap [27, 28], re-

quiring O(M) time [21], where M is the number of links, and hence O(N) time for sparse

networks; (ii) Walktrap, which requires O(N2 logN) for most empirical networks [29]; (iii)

the label-propagation algorithm, requiring nearly linear time in N [30]; (iv) a fast greedy al-

gorithm for modularity maximization, requiring O(N(logN)2) time for sparse networks [31];

(v) modularity maximization based on simulated annealing, which is practical up to ≈ 104

nodes in the original paper [32] and time-consuming because modularity must be maximized
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in a parameter-dependent manner [33]; (vi) the Louvain algorithm, which practically runs

in O(N) time [34]. The last three algorithms intend to maximize the modularity, denoted

by Q. The first three algorithms detect communities according to different criteria.

Except for the simulated annealing algorithm, the computational cost is at most that for

the CbCI algorithm given the partitioning of the network, i.e., O(N2 logN). Therefore, if the

CbCI algorithm is naively implemented, community detection is not a bottleneck in terms

of the computation time when any of these five community detection algorithms is used. If

NC = O(N) and we implement the CbCI algorithm using the max-heap data structure, a

community detection algorithm requiring more than O(N logN) time presents a bottleneck.

In this case, the Infomap when the network is sparse (i.e., M = O(N)), label-propagation

algorithm, and Louvain algorithm retain O(N logN) total computation time of the CbCI

algorithm. The total computation time with any of the other three community detection

algorithms is governed by that of the community detection algorithm.

RESULTS

In this section, we compare the performance of the CbCI algorithm with the CI and other

immunization algorithms (see Methods) on two model networks and 12 empirical networks.

Let q be the fraction of removed nodes. The size of the LCC after qN nodes have been

removed, divided by N , is denoted by G(q).

Scale-free network models with and without community structure

We start by testing various immunization algorithms on a scale-free network model with

built-in community structure (Methods). We sequentially remove nodes from this network

according to each immunization algorithm and track the size of the LCC. We use the com-

munity structure imposed by the model to inform the CbCI and CbDI algorithms. The

results for a range of immunization algorithms are shown in Fig. 2(a). Both CbCI and

CbDI algorithms considerably outperform the CI algorithm. The CbCI algorithm performs

better than the CbDI algorithm. The performance of the CbCI algorithm is close to the

Betweenness algorithm. It should be noted that the Betweenness algorithm, while efficient,

is not scalable to larger networks.
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Next, we consider a scale-free network without community structure, which is generated

by the original BA model withN = 5000 and 〈k〉 ≈ 12 (the parameters of the model are equal

to m0 = m = 6). We run the CbCI and CbDI strategies by applying a community detection

algorithm to the generated network although the BA model lacks community structure. In

fact, all but the label-propagation algorithm returns a partitioning result. The performance

of the different immunization algorithms for this network is compared in Fig. 2(b). The CbCI

algorithm combined with Infomap or Walktrap outperforms the Degree and LSP algorithms.

The performance of the CbCI algorithm is close to that of the CI algorithm except in an

early stage of node removal. A different community-based immunization algorithm, CbDI,

lacks this feature. This result suggests that the CbCI algorithm combined with Infomap or

Walktrap can work efficiently even when the network does not have community structure.

The results for the CbCI and CbDI algorithms combined with the other four community

detection algorithms are shown in Fig. S2(a). The figure suggests that the CbCI algorithm

combined with Infomap or Walktrap performs better than when it is combined with a

different community detection algorithm.

Empirical networks

In this section, we run the CbCI and other algorithms on the following 12 empirical net-

works with community structure. (i) Two networks of Autonomous Systems of the Internet

constructed by the University of Oregon Route Views project [35–37]: A node is an Au-

tonomous System. The network collected on 2 January 2000 and that on 31 March 2001 are

referred to as AS-1 and AS-2, respectively. (ii) Pretty Good Privacy network (PGP) [38]:

Two persons are connected by a link if they share confidential information using the PGP

encryption algorithm on the Internet. (iii) World Wide Web (WWW) [39]: A network of

websites connected by hyperlinks, which is originally a directed network. (iv) Email-based

communication network at Kiel University (referred to as email-uni) [40]: E-mail sending

activity among students, which provides a directed link, recorded over a period of 112 days.

(v) Email-based communication network in Enron Corporation (email-Enron) [36, 41, 42]:

Two e-mail users in the data set are connected by an unweighted directed link if at least

one e-mail has been sent from one user to the other user. (vi) Collaboration networks

in General Relativity and Quantum Cosmology (CA-GrQc), Astro Physics, (CA-Astroph),
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and Condensed Matter, (CA-Condmat) categories [36, 43] and High Energy Physics – Phe-

nomenology (CA-HepPh) and High Energy Physics – Theory (CA-HepTh) categories in

arXiv [35, 36]. By definition, two authors are adjacent if they coauthor a paper. (vii) High-

energy physics citation network within the hep-th category of arXiv (HEP) [44], which is

originally a directed network. For each network, we removed the link weight, self-loops, and

direction of the link, and submitted the LCC to the following analysis. Summary statistics

of these networks including the modularity, Q, are shown in Tables S1 and S2.

We do not investigate the Betweenness immunization algorithm due to its high compu-

tational cost (i.e., O(NM) time for calculating the betweenness centrality of all nodes [24],

hence O(N2M) time for removing O(N) nodes).

The performance of the different immunization algorithms is compared on two empirical

networks in Fig. 3. Among the 12 empirical networks that we tested, these two networks

yielded the smallest and largest modularity values as maximized by the Louvain algorithm.

The figure indicates that the CbCI algorithm combined with Infomap or Walktrap performs

better than the previously proposed algorithms including the CI algorithm in both networks.

The CbCI algorithm performs better than the CI algorithm in many other empirical net-

works as well (Fig. S2(b)–(m)). Furthermore, the CbCI algorithm combined with a different

community detection algorithm also outperforms the CI algorithm in most of the networks

(Fig. S2(b)–(m)).

To be quantitative, we measure the fraction of removed nodes at which the network

fragments into sufficiently small connected components, i.e.,

qc ≡ inf{q : G(q) < θ}, (8)

where we remind that G(q) is the size of the LCC normalized by N . We set θ = 0.05. We

calculate qc for each combination of a network and an immunization algorithm.

The value of qc for each immunization algorithm normalized by the qc value for the CI

algorithm is plotted in Fig. 4. A symbol represents a network. A small normalized value

of qc implies a high efficiency of the immunization algorithm. As expected, the Degree

immunization algorithm performs worse than the CI in all the tested networks (Fig. 4(c)).

For the CbCI algorithm combined with Infomap, qc is smaller by 15.0% to 49.7% than that

for the CI algorithm (Fig. 4(a)). The CbCI algorithm combined with Walktrap shows a

similar performance for all but one networks (Fig. 4(b)). The CbCI algorithm combined
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with three of the other four community detection algorithms performs better than the CI

algorithm for networks with relatively strong community structure (Fig. S3). The CbDI

algorithm combined with Infomap performs better than the CI algorithm for all networks,

but to a lesser extent than the CbCI algorithm combined with Infomap does (Fig. 4(d)).

The CbDI algorithm combined with Walktrap (Fig. 4(e)) and the other four community

detection algorithms (Fig. S3) performs worse than the CI algorithm. The LSP algorithm

performs worse than the CI algorithm in a majority of the networks (Fig. 4(f)).

Even if two immunization algorithms yield the same qc value on the same network, G(q)

may considerably drop at a smaller q value with one immunization algorithm than the

other algorithm. To quantify the performance of immunization algorithms in this sense, we

measure the size of the LCC integrated over q values [7, 45], i.e.,

G ≡ 1

N

N∑
i=0

G(i/N). (9)

It should be noted that G is the area under the curve when G(q) is plotted against q and

ranges between 0 and 1/2. A small G value implies a good performance of an immunization

algorithm.

The value of G for each immunization algorithm normalized by that for the CI algo-

rithm is plotted in Fig. 5. The CbCI algorithm combined with Infomap outperforms the CI

algorithm in 11 out of the 12 networks in terms of G (Fig. 5(a)). Similarly, the CbCI algo-

rithm combined with Walktrap outperforms the CI algorithm in ten out of the 12 networks

(Fig. 5(b)). The CbCI combined with any of the other four community detection algorithms

outperforms the CI algorithm in roughly half of the networks and tends to be efficient for

networks having large modularity values as determined by the Louvain algorithm (Fig. S4).

In particular, for the three networks with the largest modularity, the CbCI algorithm com-

bined with any of the six community detection algorithms outperforms the CI algorithm.

The Degree, CbDI, and LSP algorithms are less efficient than the CI algorithm in terms of

G (Figs. 5(c)–(f) and S4).
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Why do Infomap and Walktrap marry better with the CbCI algorithm than the

other community detection algorithms?

We have shown that the CbCI algorithm is more efficient when it is combined with In-

fomap or Walktrap, in particular Infomap, than with the other four community detection

algorithms. To explore why, we start by measuring the clustering coefficient [46] of the

unweighted version of the coarse-grained networks. We do so because in theory the CI as-

sumes locally tree-like networks [9, 47]. High clustering in the coarse-grained network may

discourage the CbCI algorithm. For each empirical network, we measure the Pearson corre-

lation coefficient between the clustering coefficient and qc normalized by the value for the CI

algorithm. We use the result for each community detection algorithm as a data point such

that the correlation coefficient is calculated on the basis of six data points. The results are

shown in Table I. We find that the clustering coefficient is not consistently correlated with

the normalized qc. The results are qualitatively the same with a weighted clustering coeffi-

cient [48, 49] (Table I). We obtain similar results if G instead of qc is used as a performance

measure (Table II). It should be noted that different community detection algorithms yield

sufficiently different clustering coefficient values including large values (Fig. S5(a)). We con-

clude that the lack of local tree-like structure in the coarse-grained networks is not a strong

determinant of the performance of the CbCI algorithm. This result does not contradict

those for the original CI algorithm, which assumes local tree-like networks, because the CI

algorithm is practically efficient on loopy networks as well [9].

We have set � = 2, thus ignoring the contribution of nodes in coarse-grained networks

three or more hops away from a focal node. In fact, large coarse-grained networks may have

a large mean path length and deteriorate the performance of the CbCI algorithm. There-

fore, we calculate the correlation coefficient between NC, i.e., the number of the detected

communities, and qC, and between the mean path length in the unweighted coarse-grained

network and qC (Table I). The correlation efficient between G and either NC or the mean

path length is also measured (Table II). The tables indicate that the performance of a com-

munity detection algorithm is not consistently correlated with the mean path length. It is

correlated with NC, but in the manner such that the performance of the CbCI algorithm

improves as NC increases, contrary to the aforementioned postulated mechanism. Therefore,

the use of � = 2 does not probably explain the reason why a community detection algorithm
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marries the CbCI algorithm better than another.

In fact, the CbCI algorithm performs well when the detected communities have relatively

similar sizes. To show this, we measure the entropy in the partitioning, which is defined

by
∑NC

c=1(N
′
c/N) log(N ′

c/N), where N ′
c is the number of nodes in the cth community. The

entropy ranges between 0 and logNC. A large entropy value implies that the partitioning

of the network is relatively egalitarian. The correlation coefficient between the entropy and

the normalized qc is shown in Table I for each network. The entropy and qc are negatively

correlated with each other for all networks and strongly so for most of the networks. This

result is robust when we normalize the entropy by the largest possible value, i.e., logNC

(Table I), and when the performance measure is replaced by G (Table II).

To assess the robustness of this finding, we calculate the same correlation coefficient

between either the unnormalized or normalized entropy and one of the two performance

measures, but for each community detection algorithm. Now each empirical network consti-

tutes a data point based on which the correlation coefficient is calculated. The correlation

coefficient values are shown in Table III. Although the correlation is weaker than in the

previous case, the correlation between the entropy and either the normalized qC or G is

largely negative, which is consistent with the results shown in Tables I and II. The correla-

tion coefficient between Q and each of the performance measure is also shown in Table III.

The entropy provides a weaker determinant of the performance as compared to Q, which is

expected because the CbCI algorithm is designed for networks with community structure.

Nevertheless, the entropy provides a larger (i.e., more negative) correlation value than Q

does in some cases (Table III).

Infomap tends to detect a large number of communities (Table S2) whose size is less

heterogeneously distributed than the case of the other community detection algorithms

(Figs. S5(i) and (k)). We consider that this is a main reason why Infomap is effective when

combined with the CbCI algorithm. Roughly speaking, the label-propagation algorithm

tends to yield a similarly large number of communities, NC (Table S2). However, the size

of the community is more heterogeneously distributed with the label-propagation algorithm

than with Infomap, as quantified by the entropy measures (Figs. S5(i) and (k)).
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DISCUSSION

We showed that the CbCI immunization algorithm outperforms the CI and some other

algorithms when a given network has community structure. The algorithm aims to pinpoint

nodes that connect different communities at a reasonable computational cost. The CbCI

algorithm is in particular efficient when Infomap [27, 28] is used for detecting communities

beforehand. Infomap runs sufficiently fast at least for sparse networks [21] such that the

entire CbCI algorithm runs as fast as the CI algorithm at least asymptotically in terms

of the network size. The Walktrap community detection algorithm [29] is the second best

among the six candidates to be combined with the CbCI algorithm in terms of the quality of

immunization. However, Walktrap is slower than Infomap. Walktrap consumes longer time

than the main part of the CbCI algorithm, i.e., sequential node removal, when the max-heap

data structure is used for implementing the CbCI algorithm. In this case, the community

detection before starting the node removal is the bottleneck of the entire CbCI algorithm,

and the CbCI algorithm is slower than the CI algorithm. To our numerical efforts, we

recommend Infomap to be combined with the CbCI algorithm.

We argued that Infomap works better in combination with the CbCI algorithm than

the other community detection algorithms do mainly because Infomap yields a relatively

egalitarian distribution of the community size. However, the distribution of the community

size is usually skewed even with Infomap [50]. The CbCI algorithm may work even better if

we use a community detection algorithm that imposes that the detected communities are of

the equal or similar sizes. This problem is known as k-balanced partitioning, where k refers

to the number of communities. Although k-balanced partitioning for general k is notoriously

hard to solve, there are various approximate algorithms for this problem [51–53]. Combining

these algorithms with the CbCI algorithm may be profitable.

We partitioned the network just once in the beginning of the CbCI algorithm and used

the obtained community structure throughout the node removal procedure. This property is

shared by the CbDI algorithm [5] and another immunization algorithm [11]. We may be able

to improve the performance of immunization by updating the community structure during

the node removal. Our preliminary numerical simulations did not yield an improvement of

the CbCI algorithm with online updating of community structure (section S1 in the SI). We

should also bear in mind the computational cost of community detection, which would be
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repeatedly applied in the case of online updating. Nevertheless, this line of improvement

may be worth investigating.

The CI assumes locally tree-like networks [9]. Although the CI algorithm is practically

efficient in moderately loopy networks as well [9], many empirical networks are abundant

in triangles and short cycles such that they are highly loopy [1]. Dense connectivity within

a community implies that there tend to be many triangles and short cycles in a network

with community structure [54, 55]. Then, coarse graining effectively coalesces many tri-

angles and short cycles into one supernode, possibly suppressing their detrimental effects.

At the same time, however, coarse-grained networks tend to have a large clustering coeffi-

cient (Fig. S5(a)). We may be able to improve the performance of the CbCI algorithm by

suppressing the effect of short cycles in coarse-grained networks. Recently, a method has

been proposed to improve the accuracy of estimating the percolation threshold using non-

backtracking matrices, where redundant paths are suppressed in the counting of the paths

[47]. This method applied to both CI and CbCI algorithms may enhance their performance

in the immunization problem.

The recently proposed collective influence propagation (CIp) algorithm, which can be

interpreted as the CI algorithm in the limit of � → ∞, generally yields better solutions than

the CI algorithm does [25]. Given that we have not implemented the CIp algorithm in the

present article, we are not arguing that the CbCI algorithm is better than the CIp algorithm.

It should also be noted that we may be able to combine the CbCI algorithm with the idea of

the CIp algorithm (i.e., using the leading left and right eigenvectors of the non-backtracking

matrix) to devise a new algorithm.

METHODS

Immunization algorithms to be compared

We compare the performance of the CI and CbCI algorithms against the following im-

munization algorithms.

• High degree adaptive (abbreviated as Degree) [18–20]: We sequentially remove the

node having the largest degree. If multiple nodes have the largest degree, we break

the tie by selecting one of the largest-degree nodes at random. We recalculate the

14



degree after each node has been removed.

• Community-based dynamical importance (CbDI) [5]: This method exploits the com-

munity structure of a network, similar to the CbCI algorithm, but calculates the

importance of a community in the coarse-grained network in terms of the so-called dy-

namical importance [3]. The CbDI algorithm needs a community detection algorithm.

We use each of the six community detection algorithms used in the CbCI algorithm.

The CbDI algorithm runs as follows [5]. We denote by λ̃ and ũ = (ũ1 · · · ũNC
)�

the largest eigenvalue and the corresponding eigenvector of Ã, respectively. Owing to

the Perron-Frobenius theorem, it holds true that λ̃ > 0 and ũi ≥ 0 (1 ≤ i ≤ NC).

The number of links between node i and to the Jth community is denoted by kiJ ≡∑
j∈ community J Aij. We define x =

(∑NC

J=1,J �=I kiJ ũJ

)
/λ̃, where I is the community to

which node i belongs. The CbDI of node i is defined by (2ũI −x)
∑NC

J=1,J �=I kiJ ũJ . We

remove the nodes in descending order of the CbDI. If there are multiple nodes that

have the same largest CbDI value, we break the tie by selecting the node that has the

largest number of intra-community links. We recalculate the CbDI values of all the

remaining nodes after removing each node. Once all the communities are disconnected,

we sequentially remove the nodes in descending order of kiI . We recalculate kiI of all

the remaining nodes after removing each node.

• The Laplacian spectral partitioning (LSP) algorithm runs as follows [10]:

1. For the largest connected component (LCC), calculate the Fiedler vector, i.e.,

the eigenvector associated with the smallest positive eigenvalue of the Laplacian,

L ≡ DLCC−ALCC, where DLCC denotes the NLCC×NLCC diagonal matrix whose

(i, i) element is equal to the degree of the ith node in the LCC, NLCC is the

number of nodes in the LCC, and ALCC is the adjacency matrix of the LCC.

2. Partition the NLCC nodes into two non-empty groups by thresholding on the

value of the element in the Fiedler vector. Group 1 (group 2) consists of the

nodes whose corresponding element in the Fiedler vector is higher (lower) than a

threshold. There are NLCC − 1 possible ways to bipartition the nodes.
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3. Calculate

Q = min ln

(
2min

K2
1 +K2

2

)
+mout ln

(
mout

K1K2

)
, (10)

for each bipartition, wheremin andmout are the numbers of intra-group and inter-

group links, respectively. K1 and K2 represent the sum of the nodes’ degrees in

groups 1 and 2, respectively.

4. Find the partition that maximizes Q.

5. Given the partition, remove the node that has the largest number of inter-group

links. Then, recalculate the number of inter-group links for each remaining node.

Repeat the node removal until the two groups are disconnected.

6. Repeat steps 1–5 until the size of the LCC becomes less than θN , where θ = 0.01.

• High betweenness centrality adaptive (abbreviated as Betweenness) [6, 16, 22, 23]:

We remove the node with the largest betweenness centrality. If multiple nodes have

the same largest betweenness centrality value, the node having the largest degree is

removed. We recalculate the betweenness of all nodes every time we remove a node.

We excluded the dynamical importance [3] because it is less successful than the CI on

various networks [9] and than the CbDI on networks with community structure [5]. We also

excluded the immunization algorithms on the basis of the PageRank, closeness centrality,

and k-core, which had been shown to be outperformed by the CI algorithm [9]. This is

because these algorithms do not particularly exploit community structure of the network

such that there is no reason for believing that they would perform competitively on networks

with community structure.

A scale-free network model with community structure

We constructed a scale-free network with built-in community structure as follows [5]. We

first generate a coarse-grained network whose node is regarded as community, using the

Barabási-Albert (BA) model [56] having NC = 100 nodes and mean degree six. The initial

network is the clique composed of m0 = 3 nodes, and each added node has m = 3 links.

After generating a coarse-grained network, we assign 50 nodes to each community, resulting
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in N = 50×NC = 5000 nodes in total. For each community, the intra-community network is

given by the BA model with m0 = m = 4, which yields the mean within-community degree

equal to 〈k〉� = 2 [(N −m0)m+m0(m0 − 1)/2] /N = 7.6. Additionally, if communities I

and J are adjacent in the coarse-grained network, then nodes i ∈ I and j ∈ J are connected

with probability 〈k〉g/(6N/NC). This guarantees that a node is adjacent to 〈k〉g nodes in

different communities on average. We set 〈k〉g = 1. The mean degree of the entire network

is equal to 〈k〉 = 8.58 ≈ 〈k〉� + 〈k〉g.
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FIG. 1. Concept of the community-based collective influence. (a) Egocentric view of the coarse-

grained network. Each circle represents a community. Two communities are adjacent by a weighted

link if a node in one community is connected to at least one node in the other community. The

link weight in the coarse-grained network is equal to the number of links that connect the two

communities in the original network. Local tree-like structure of the coarse-grained network is

assumed. (b) Illustration of z′I and z′′J for � = 2, in which case I+ = J−. A line represents

a link in the original network. The dashed circle represents the Ith community. (c) Schematic

of community-based reinsertion. A dashed circle represents a community. Suppose that we will

reinsert either node i or j. If reinserted, node i and j would have a path to two and three

communities, respectively. Therefore, we reinsert node i.
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FIG. 2. Normalized size of the LCC, G(q), plotted against the fraction of removed nodes, q, in

model networks with N = 5000. A curve corresponds to an immunization algorithm. See Methods

for the abbreviations. (a) Scale-free network with prescribed community structure. (b) BA model.
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FIG. 3. Normalized size of the LCC, G(q), plotted against the fraction of removed nodes, q, in two

empirical networks. (a) E-mail communication network in Enron. (b) World Wide Web.
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FIG. 4. The fraction of removed nodes to fragment the network, qc, for an immunization algorithm

divided by the value for the CI algorithm. (a) CbCI combined with Infomap. (b) CbCI combined

with Walktrap. (c) High degree adaptive (Degree). (d) CbDI combined with Infomap. (e) CbDI

combined with Walktrap. (f) Laplacian spectral partitioning (LSP). A symbol represents a network.

The cross represents the model network used in Fig. 2(a). The modularity value, Q, is determined

by the Louvain algorithm.
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FIG. 5. The G value normalized by that for the CI algorithm. (a) CbCI combined with Infomap.

(b) CbCI combined with Walktrap. (c) Degree. (d) CbDI combined with Infomap. (e) CbDI

combined with Walktrap. (f) LSP. The Q value is determined by the Louvain algorithm.
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TABLE I. Correlation coefficient between an explanatory variable and the normalized qc. The

clustering coefficient is defined by the number of triangles containing the ith node divided by

ki(ki − 1)/2, which is averaged over all nodes 1 ≤ i ≤ N . The weighted clustering coefficient is

defined by
∑N

j,k=1;j,k �=i(ŵijŵjkŵki)
1/3/[ki(ki − 1)], which is averaged over i [48, 49]. Here, ŵij =

wij/max1≤i′,j′≤N (wi′j′), and wij is the weight of the link between the ith and jth nodes. We

calculated the correlation coefficient for each network on the basis of the data points obtained

from the six community detection algorithms. The scattergrams based on which the correlation

coefficient has been calculated are shown in Figs. S5(a), (c), (e), (g), (i), and (k).

clustering
coefficient

weighted
clustering
coefficient

NC
mean path
length

entropy normalized
entropy

AS-1 0.238 0.120 −0.415 −0.354 −0.523 −0.608

AS-2 −0.258 0.119 −0.417 0.065 −0.319 −0.203

PGP 0.298 0.490 −0.603 −0.534 −0.667 −0.781

WWW −0.005 −0.430 0.306 −0.375 0.216 −0.169

email-uni 0.213 −0.053 −0.362 0.125 −0.446 −0.568

email-Enron −0.278 −0.398 −0.073 −0.136 −0.650 −0.817

CA-GrQc 0.438 0.345 −0.773 −0.458 −0.891 −0.934

CA-Astroph −0.154 −0.005 −0.406 −0.144 −0.764 −0.826

CA-Condmat 0.121 −0.181 −0.653 0.219 −0.820 −0.918

CA-HepPh 0.729 0.792 −0.845 −0.569 −0.932 −0.781

CA-HepTh −0.200 −0.118 0.178 0.325 −0.067 −0.320

HEP 0.314 0.204 −0.718 −0.042 −0.842 −0.759
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TABLE II. Correlation coefficient between an explanatory variable and the normalized G for each

network. We calculate the correlation coefficient for each network on the basis of the data points

obtained from the six community detection algorithms. The scattergrams based on which the

correlation coefficient has been calculated are shown in Figs. S5(b), (d), (f), (h), (j), and (l).

clustering
coefficient

weighted
clustering
coefficient

NC
mean path
length

entropy normalized
entropy

AS-1 0.064 0.284 −0.813 −0.259 −0.813 −0.604

AS-2 −0.369 0.416 −0.693 0.105 −0.660 −0.449

PGP 0.084 0.295 −0.489 −0.586 −0.603 −0.766

WWW −0.367 0.111 −0.713 0.281 −0.820 −0.694

email-uni 0.394 0.362 −0.810 0.043 −0.823 −0.595

email-Enron −0.381 −0.224 −0.474 −0.258 −0.804 −0.798

CA-GrQc 0.034 0.045 −0.467 −0.043 −0.679 −0.909

CA-Astroph −0.313 −0.112 −0.137 −0.232 −0.526 −0.700

CA-Condmat 0.334 −0.024 −0.706 0.387 −0.851 −0.839

CA-HepPh 0.227 0.419 −0.424 −0.214 −0.607 −0.685

CA-HepTh 0.248 0.629 −0.632 −0.129 −0.754 −0.730

HEP −0.067 0.400 −0.636 0.395 −0.759 −0.722
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TABLE III. Correlation coefficient between an explanatory variable and a performance measure for

each community detection algorithm. We calculate the correlation coefficient for each community

detection algorithm on the basis of the data points obtained from the 12 empirical networks. qc

and G indicate the values normalized by those for the CI algorithm. The scattergrams based on

which the correlation coefficient has been calculated are shown in Fig. S6.

entropy normalized entropy Q

qc G qc G qc G

Infomap −0.088 0.358 −0.017 −0.206 −0.576 −0.210

Walktrap −0.506 0.014 −0.434 −0.201 −0.348 −0.128

label propagation −0.690 −0.659 −0.630 −0.687 −0.689 −0.797

fast greedy −0.211 −0.099 0.067 −0.081 −0.015 −0.310

simulated annealing −0.695 0.057 −0.288 −0.005 −0.330 −0.391

Louvain −0.791 −0.001 −0.267 −0.370 −0.707 −0.370

[] [] [] [] [] [] [] [] []



Supplementary Information:

Fragmenting networks by targeting collective influencers at a

mesoscopic level

Teruyoshi Kobayashi and Naoki Masuda

S1. CBCI ALGORITHM UNDER AN ONLINE UPDATING OF COMMUNITY

STRUCTURE

As described in the main text, the CbCI algorithm carries out community detection only

once at the beginning of the node removal process. This saves computation time but may

worsen the performance of the immunization because the organization of communities may

change as we remove nodes. In this section, we investigate the impact of recalculating

the community structure repeatedly during the node removal process. We recalculate the

partitioning of the network every time we remove 10−3N nodes. By feeding the most up-

to-date partitioning to the CbCI algorithm, we determine the tentative order of the node

removal. Then, we reinsert the nodes in the same manner as the original CbCI algorithm

does. The entire reinsertion procedure uses the community structure of the original network,

i.e., that determined before the node removal. We reinsert the nodes one by one. We focus

on Infomap and Walktrap, with which the CbCI algorithm performs the best. We use AS-1,

PGP, and CA-GrQc networks for illustration.

The immunization results for the CbCI algorithm with online updating of the community

structure are compared with those for the original CbCI algorithm and the CI algorithm in

Fig. S1. The figure indicates that online updating of the community structure improves the

performance of the CbCI algorithm in some cases but not in others.
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FIG. S1. Online updating of the community structure in the CbCI algorithm. In each panel, the

size of the LCC under the original CbCI algorithm, the CbCI algorithm with online updating of

the community structure, and the CI algorithm is plotted against q.
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FIG. S2. Normalized size of the LCC, G(q), plotted against the fraction of removed nodes, q,

for different networks and immunization algorithms. In (a), the results for the label-propagation

community detection algorithm are absent because it yields no community (i.e., Nc = 0) for this

network. 3
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FIG. S3. Threshold fraction of removed nodes to fragment the network, qc, for the CbCI and

CbDI algorithms combined with different community detection algorithms. The shown qc values

are normalized by those for the CI algorithm. Each panel represents an immunization algorithm. A

symbol represents a network. We calculated the modularity (i.e., Q) using the Louvain algorithm.

The results for Infomap and Walktrap are identical to those shown in Figs. 4(a), (b), (d), and (e).
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FIG. S4. The normalized size of the LCC averaged over q, i.e., G, for the CbCI and CbDI

algorithms. The shown values are normalized by those for the CI algorithm. See the caption of

Fig. S3 for the legends. The results for Infomap and Walktrap are identical to those shown in

Figs. 5(a), (b), (d), and (e).
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FIG. S5. Comparison of the community detection algorithms on the basis of the relationships

between structural measures of the coarse-grained network and performance measures. The struc-

tural measure is calculated for each partitioning of the network. Plotted are the relationships

between (a) the unweighted clustering coefficient and qc, (b) the unweighted clustering coefficient

and G, (c) the weighted clustering coefficient and qc, (d) the weighted clustering coefficient and

G, (e) Nc and qc, (f) Nc and G, (g) the mean path length and qc, (h) the mean path length and

G, (i) the unnormalized entropy and qc, (j) the unnormalized entropy and G, (k) the normalized

entropy and qc, and (l) the normalized entropy and G. The qc and G values are those for the CbCI

algorithm normalized by the values for the CI algorithm.
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FIG. S6. Comparison of the different networks using the relationship between the entropy and

performance measures. (a) Relationship between the unnormalized entropy and the normalized qc.

(b) Relationship between the normalized entropy and the normalized qc. (c) Relationship between

the unnormalized entropy and the normalized G. (d) Relationship between the normalized entropy

and the normalized G.
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TABLE S1. Summary statistics of the model and empirical networks. N , M , and 〈k〉 represent

the number of nodes, that of links, and the average degree, respectively.

Network N M 〈k〉 References

scale-free with
communities

5,000 21,440 8.58 [1]

BA 5,000 29,979 11.99 [2]

AS-1 6,474 12,572 3.88 [3, 4]

AS-2 10,670 22,002 4.12 [3, 4]

PGP 10,680 24,316 4.55 [5]

WWW 99,193 178,840 3.61 [6]

email-uni 63,495 96,777 3.05 [7]

email-Enron 33,696 180,811 10.73 [4, 8–10]

CA-GrQc 4,158 13,422 6.46 [4, 11]

CA-Astroph 17,903 196,972 22.00 [4, 11]

CA-Condmat 21,363 91,286 8.55 [4, 11]

CA-HepPh 11,204 117,619 21.00 [3, 4, 12]

CA-HepTh 8,638 24,806 5.74 [3, 4, 12]

HEP 27,400 352,021 25.69 [13]
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TABLE S2. Community structure of the model and empirical networks detected by different algo-

rithms. The number of communities, NC, and the modularity, Q, are shown for each community

detection algorithm. LP: label propagation. SA: simulated annealing. We implemented the In-

fomap, label propagation, and simulated annealing algorithm using the codes available at [14], the

Walktrap using the codes available at [15], the fast greedy algorithm using the codes available at

[16], and the Louvain algorithm using the codes available at [17].

Infomap Walktrap LP fast greedy SA Louvain

Network NC Q NC Q NC Q NC Q NC Q NC Q

BA 256 0.174 219 0.166 0 n.a. 12 0.250 19 0.250 13 0.253

AS-1 358 0.551 184 0.599 172 0.552 38 0.603 33 0.590 30 0.626

AS-2 524 0.544 262 0.599 241 0.549 42 0.614 33 0.579 33 0.629

PGP 924 0.813 946 0.830 959 0.817 205 0.853 118 0.812 96 0.883

WWW 3,643 0.823 3,607 0.805 4,334 0.815 1,067 0.850 936 0.822 186 0.890

email-uni 2,534 0.705 1,731 0.716 2,183 0.689 310 0.728 389 0.718 121 0.777

email-Enron 1,385 0.544 1,056 0.544 958 0.324 525 0.511 235 0.585 191 0.608

CA-GrQc 323 0.785 290 0.799 358 0.780 70 0.796 63 0.792 43 0.848

CA-Astroph 735 0.561 1,154 0.542 344 0.292 183 0.492 55 0.586 42 0.627

CA-Condmat 1,186 0.646 1,302 0.627 1,475 0.634 266 0.628 189 0.600 53 0.726

CA-HepPh 627 0.612 910 0.596 373 0.451 138 0.583 74 0.628 39 0.658

CA-HepTh 596 0.680 549 0.676 640 0.666 115 0.703 101 0.661 53 0.755

HEP 674 0.579 773 0.608 477 0.613 120 0.525 33 0.606 29 0.653
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[5] Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A., and Arenas, A. Models of social networks

based on social distance attachment. Phys. Rev. E 70, 056122, Nov (2004).

[6] Albert, R., Jeong, H., and Barabási, A.-L. Internet: Diameter of the world-wide web. Nature

401(6749), 130–131 (1999).

[7] Ebel, H., Mielsch, L. I., and Bornholdt, S. Scale-free topology of e-mail networks. Phys. Rev.

E 66, 035103(R) (2002).

[8] Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. Community structure in large

networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math.

6(1), 29–123 (2009).

[9] Klimt, B. and Yang, Y. The enron corpus: A new dataset for email classification research. In

Machine Learning: ECML 2004, 217–226. Springer (2004).

[10] https://www.cs.cmu.edu/~./enron/.

[11] Leskovec, J., Kleinberg, J., and Faloutsos, C. Graph evolution: Densification and shrinking

diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007).

[12] Gehrke, J., Ginsparg, P., and Kleinberg, J. Overview of the 2003 kdd cup. ACM SIGKDD

Explorations Newsletter 5(2), 149–151 (2003).

[13] http://vlado.fmf.uni-lj.si/pub/networks/data/.

[14] https://sites.google.com/site/andrealancichinetti/software.

[15] https://www-complexnetworks.lip6.fr/~latapy/PP/walktrap.html.

[16] http://igraph.org/python/.

[17] https://sites.google.com/site/findcommunities/.

28


