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Abstract

This note relumes fractal analysis on macroeconomics. We present a fractal
market hypothesis for US stock prices.
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JEL classification: C18, E39, G14

Fractals are the concern of a new geometry, whose primary object is to describe the great
variety of natural structures that are irregular, rough or fragmented, having irregularities
of various sizes that bear a special ‘scaling’ relationship to one another. (Mandelbrot, et
al., 1984)

1 Introduction

The recent financial crisis has cast doubt on traditional macroeconomics repeatedly.
During the crash, international financial markets crashed simultaneously, and the fragility
of numerous financial institutions and private banks was exposed. However, if agents in
the real world had been rational and therefore had perfect foresight, the crisis would have
been less severe.

Kindleberger (1977, Chap. 5) also criticized the rational expectations hypothesis from
a historical perspective: the rational expectations response immediately to shocks on the
long-run equilibrium, but in reality, expectations change more slowly.

The efficient market hypothesis also fails to capture certain aspects of financial mar-
kets’ behavior. The hypothesis suggests that asset prices follow a random walk, which
implies that shocks to asset prices are not persistent because the current price contains
all available information and responds immediately to new shocks through the rational
expectations of agents.
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Fractal geometry, established by Benoit B. Mandelbrot, addresses the problem of
market efficiency. Mandelbrot (1971) sheds light on the long-memory property of asset
prices, which he labeled the “Joseph Effect”— a shock that occurred in the distant past
does not disappear, but rather continues to affect current prices. The intuitive definition
of fractals provided by Mandelbrot (1986) is: A fractal is a shape made of parts similar
to the whole in some way. Consistent with this definition, we examine the self-affinity
(fractal dimension) of the S&P 500 stock price index in the US stock market.1

A translation that scales time and distance by different factors is called affine, and
curves that reproduce themselves in some sense under an affine transformation are called
self-affine (Feder, 1988, Chap. 9). In general, stock prices are an example of this.2

This paper provides new perspectives on the US stock market using fractal geometry.3

We emphasize that US stock prices are fractal. To this end, we depend on rescaled range
analysis to determine the fractal dimension of the stock price index.

This paper proceeds as follows. Section 2 describes our empirical methods for identify-
ing the fractal dimension. Section 3 presents our empirical findings. Section 4 concludes.

2 Methodology

This section provides a brief summary of Hurst’s rescaled range analysis for specifying
the fractal dimension D of the US stock price index.

We describe the stock price return for any given time t as the stochastic process
x(t) ∈

(
x(1), ..., x(T )

)
. Let ⟨⟩ be an ensemble average over window size τ :

⟨x(t)⟩ = 1

τ

l+τ∑
t=l

x(t), (1)

for l ∈ (1, T ). Then, let x(t, τ) be the accumulated dispersion for x(t) from the average:

x(t, τ) =
T∑
t=1

(
x(t)− ⟨x(t)⟩

)
, (2)

and let R(τ) be the range for x(t, τ) over the window size τ :

R(τ) = max
l≤t≤l+τ

x(t, τ)− min
l≤t≤l+τ

x(t, τ). (3)

Clearly, the range R is an increasing function of τ .
Hurst (1951, 1955) uses the dimensionless ratio R/S, where S is the standard de-

viation of x(t).4 He found that the observed rescaled range, R(τ)/S(τ), is very well
described by the power law as:

R(τ)/S(τ) ∝ τH , 0 ≤ H ≤ 1. (4)
1Fractal geometry is related closely to chaos theory because the shape of a strange attractor is a type

of fractal. See Branch and MacGough (2010) for beautiful bifurcations of the New Keynesian system
with dynamic predictor selection of the agents.

2I would like to thank Shinichi Sato and Jun-ichi Wakita for raising this point.
3Branch and Evans (2011, 2013) develop sophisticated models of stock price dynamics with adaptive

learning algorithms.
4Hurst investigates many natural phenomena such as the storage capacity of the Nile River.
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Here, H corresponds to the Hurst exponent. We can deduce the fractal dimension D by
the relationship, D = 2−H (Mandelbrot, 1985).5 The noise in the system decreases as
H increases, implying that the trend in the variable is increasing. We distinguish three
cases using H as follows.

(i) Antipersistence (0 ≤ H < 0.50): very noisy process. A time series that was
increasing (decreasing) in the past will decrease (increase) today.

(ii) Random walk (H = 0.50): ordinary Brownian motion frequently used in many
applications. On average, past shocks have no effects on the series today.

(iii) Long memory (0.50 < H ≤ 1.00): superpersistent behavior. The noise in the
distant past never disappears and therefore continues to affect the dynamics forever.

In case (iii), a Joker occurs on the time series with silent steps. It is possible that
a previously increasing trend may suddenly become a decreasing trend in the future.
Apart from the random walk hypothesis, the fractal market hypothesis, by its nature,
considers the possibility of a large crash in stock markets, as is seen frequently in reality.

3 Empirical results

This section shows the estimated Hurst exponent for determining the fractal dimension
of US stock prices. To this end, weekly values of the S&P 500 stock price index from
the first week of September 2006 to the first week of September 2016 are used in log-
differential form.67 In our regression, we use nonparametric bootstrapping to calculate
95% confidence intervals for the Hurst exponent because it is impossible to define the
variance of the regressand in the long-memory case.

3.1 Benchmark results

Figure 1 presents the fitted lines for equation (4) in logarithms and the scatter plot of
the realized values for the rescaled range of S&P growth rates against the corresponding
time windows. Note that the fitted lines generated by 5555 bootstrapping contain almost
all realized values, which justifies our regression.

The estimated value of the Hurst exponent is reported in Table 1. As shown in the
table, the Hurst exponent is 0.7250, and therefore the stock price return is fractal rather
than a random walk. Furthermore, note that the 95% confidence intervals contain the
range of 0.50 < H ≤ 1.00, so that our insist is prominent.8

5I would like to thank Tamàs Vicsek for making this point.
6We use all available data from the Federal Reserve Economic Data (FRED) database.
7All results in this paper are robust with respect to data frequency and index type. Results for the

Dow Jones Industrial Average index are available upon request.
8This result is amazing because Hurst’s original estimates for H using his random walk simulation is

0.714± 0.091.
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3.2 Five-year cycle of US stock prices9

The high Hurst exponent indicates that stock prices are strongly non-Gaussian. However,
in Figure 1, we find that the fitted line does not perfectly replicate the scatter plot: the
plots deviate from the line for low values of τ . This suggests that the slope of the fitted
line, H, may vary by τ . According to Feder (1988, Chap. 11), there exists a cycle in
which the fitted value of H changes substantially. To show the dependence of H on τ ,
we implement sequential OLS by τ .

Figure 2 presents the Hurst exponent by sequential regression over all time spans.10

The Hurst exponent is unstable and records values smaller than 0.7250 over time spans
of less than five years, while it converges to the estimated value thereafter. This result
suggests that the stock price is less persistent and fickle during short horizons but becomes
stable over horizons of longer than five years.

In sum, we found that US stock prices are fractal.

4 Conclusion

This paper revives fractal analysis in macroeconomics. Our results suggest that US stock
prices are fractal, rather than random walks.
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Figures and Tables

Figure 1: Fitted and realized values for the rescaled range

Note: (i) log(R/S) denotes the rescaled range for the S&P growth rates. (ii) Gray lines are

generated by regressions using 5555 bootstrapping.



Table 1: Hurst exponent for the S&P 500

Hurst exponent (H)
0.7250

(0.4953) (1.1022)

Note: (i) Figures in parentheses denote bootstrapped 95% confidence intervals.

Figure 2: Sequential estimates for the Hurst exponent
Note: Shaded area denotes 95% confidence interval for H.
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