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PFAFFIAN OF LAURICELLA’S HYPERGEOMETRIC SYSTEM F},
KEIJI MATSUMOTO

ABSTRACT. We give a Pfaffian system of differential equations associated with Lauricella’s
hypergeometric series F4(a,b,c;x) of m-variables. This system is integrable of rank 2. To
express the connection form of this system, we make use of the intersection form of twisted
cohomology groups with respect to integrals representing solutions of this system.

1. INTRODUCTION

Lauricella’s hypergeometric series F4(a, b, ¢; x) of m-variables x = (x4, ..., x,,) with param-
eters a, b = (by,...,by,) and ¢ = (¢1,. .., ¢y) is defined as

mong (b "
Fy(a,b,c;x) = Z (a’mz:ml ni) 11 = 1 i 1) HI i
neN™ Hi:l(ci?nl) 1= 1 1 nl i=1

where N = {0,1,2,...}, n = (n1,...,nm), ¢1,...,cm € =N ={0,—-1,—-2,...,}, and (¢;,n;) =
ci(ei+1) -+ (¢i+n;—1) = I'(¢;+n;) /' (¢;). Tt is known that Lauricella’s hypergeometric system
Fa(a,b,c) of differential equations satisfied by F4(a, b, ¢; x) is of rank 2™ with the singular locus

{xe(cm|1_[:vZ H 1—1)%):0},

= veEZY

where v = (vy,...,v,) and v; € Zs = {0,1} C N. In this paper, we give a Pfaffian system
of Fa(a,b,c) under the non-integral conditions (2.2) for linear combinations of parameters a, b
and c. The connection form of the Pfaffian system is expressed in terms of logarithmic 1-forms
of defining equations of the singular locus, see Corollary 4.3. When the number of variables is
two, this system is called Appell’s Fy, of which Pfaffian system is studied by several authors;
refer to [K| and the references therein.

To express the connection form of this system, we study linear transformations R and R,
representing local behaviors of the connection form around the components Sj = {z € C™ |
z; =0} and S, = {x € C™ | 1 — v 'z = 0} of the singular locus. They can be regarded as
linear transformations of the twisted cohomology groups with respect to integrals representing
solutions of this system. We show that they have two eigenvalues for generic parameters. It is
a key property for characterizing R and R, that eigenspaces of each of them are orthogonal to
each other with respect to the intersection form of the twisted cohomology groups. By using the
intersection form, we express Rj and R, without choosing a basis of the twisted cohomology
group, see Lemma 4.4 and Theorem 4.1. Their representation matrices in Corollary 4.2 imply
the Pfaffian system of Lauricella’s Fy.
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24 KEIJI MATSUMOTO

The monodromy representation of this system is studied in [MY]. Its circuit transformations
are expressed in terms of the intersection form of twisted homology groups, which are dual to
the twisted cohomology groups.

Refer to [M2] for the study of a Pfaffian and the monodromy representation of Lauricella’s
system Fp in terms of the intersection form of twisted (co)homology groups.

2. LAURICELLA’S HYPERGEOMETRIC SYSTEM Fy

In this section, we collect some facts about Lauricella’s hypergeometric system F4 of differ-
ential equations, for which we refer to [AK], [L], [MY] and [Y]. Lauricella’s hypergeometric
series Fl4(a, b, c; x) converges in the domain

D:{xecm‘i\xi|<1}

i=1

and admits the integral representation

2y [Hl F(bff((céz—bi)}/w,l)m“(“’b’“t’x)t o

Lot

where dT' = dt; A\ --- N\ dt,,,

m

ut,x) = ula,b,e;t,2) = | [T (1t (1—§:tixi>—a,
=1

=1

and parameters b and c¢ satisfy Re(¢;) > Re(b;)) >0 (i =1,...,m).
Differential operators

J#i J#i
1<j<m 1<j<m
for i« = 1,...,m annihilate the series Fa(a,b,c;z), where 0; = We define Lauricella’s

hypergeometric system Fy4(a, b, c) by differential equations corresponding to these operators.
We define the local solution space Sol(U) of the system Fs(a,b,c) on a domain U in C™ by
the C-vector space

{F(z) € O(U) | P(z,0) - F(xz) =0 for any P(x,0) € Fa(a,b,c)},

where O(U) is the C-algebra of single valued holomorphic functions on U. The rank of F4(a, b, ¢)
is defined by sup dim(Sol(U)). It is known that the rank of F4(a,b,c) is 2™ and 2™ functions
U

Fa(a,b,c;z) and 0;Fa(a,b,c; x) are linearly independent, where I = {iy,...,4,} runs over the
non-empty subsets of {1,...,m} and 9y = 0;, - - - 0;,..

If the rank of Fy(a,b,c) is greater than dim(Sol(U,)) for any neighborhood U, of z € C™
then z is called a singular point of Fa(a,b, c). The singular locus of Fy4(a, b, c) is defined as the
set of such points. It is also shown in [MY] that the singular locus is

(U sv>u<[Jlsa'>,

veEZY
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where
Sy={zeC™|vte=>" vx, =1}, velZy,
Sy ={x e C™|x; =0}, i=1,...,m,

and we regard S, o) as the empty set. We set

x - en=[(U soUUsn]

vELL

s = @r-x= (U sHUUHUUs)

veEZY

where S!, = {z € (P")™ | z; = oo}
We define a partial order and a total order on Z3'.
Definition 2.1. For v = (vy,...,vp),w = (w1,...,wy,) € Z,

(1) v = w if and only if w;, =1 = v; = 1;
(17) v = w if and only if v = w and v # w;
(7i1) v > w if and only if v # w and they satisfy one of
(1) o] > |wl,
(2) |v| = |w| and v; < w;, where i is the minimum index satisfying v; # w;.

Here
m
lv| = Z (7
i=1

It is easy to see that

VW= v > w,
(0,...,0) <e; <e;+e <e+e+e<---<(1,...,1),
(0,....,0)<e;<ey<--<ep<ete<e t+e<---<(l,...,1),

where e; is the ¢-th unit row vector, and 7, j, k are mutually different. Note that the cardinality
of the set {w € ZJ' | v = w} for a fixed v € ZJ is 2’l. By the bijection

Z?BUHIUI{ZE{l,7m}|1j2:1}€2{1»7m}

between Z%' and the power set 28™} of {1,... m}, the partial order > on Z3J' corresponds
to the partial order D on 2{L--m},
We set

(60,17"'7B0,m) - (bla"'7bm>7
(61,1;"'7/61,777,) - (Cl_l_bla"‘7cm_1_bm)7
Yo = a—vic+|v| (vezy.

We regard theses parameters as indeterminates. Throughout this paper, we assume that
(22) BO,ia ﬁl,i? Yo ¢ Z

for any i € {1,...,m} and v € Z', when we assign complex values to them.
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3. TWISTED COHOMOLOGY GROUPS

In this section, we regard vector spaces as defined over the rational function field C(a) =
C(a, by, ..., by, c1, ..., cp) when we do not specify a field. We denote the vector space of rational
k-forms on C™ with poles only along S by 2% (S). Note that 2% (xS) admits the structure of
an algebra over C(a). We set

i=1 i=1

S = (P)y"-X.
We define projections

prp: X 3 (tx)—»teC™ pry: X3 (ta)—zeX.
Note that

prr(pry' (v) = {t € C" | (1= tim) [[t:(0 = t:) # 0} = CF
i=1 i=1
for any fixed z € X. N N N
Let Q;%(*S) be the vector space of rational k-forms on X with poles only along S and 22(xS)
be the subspace of Q;i;rq(*g ) consisting elements which are p-forms with respect to the variables
tyeo b

We set
. g BOZ’ Bli azx;
wr = wrdt; € DX0(xS), wp =22 4 FL 7
r Z; T x (+9), wr, th -1 11—t
wx = iw dx; € (2(1’1(*5) Wy, = _ati
X Xi K3 X 3 Xi 1_ttx7

i=1
w = wp+uwy € NL(xS).
We define a twisted exterior derivation on X by
Vr =dr + wr/,
where dr is the exterior derivation with respect to the variable t, i.e.,

drf(t,x) = g(t, w)dt;.
i=1 !

We define an 2% (*S)-module by
H™(Vr) = 220(8) V(22 0(xS5)).

It admits the structure of a vector bundle over X. We define two sets {¢, }vezy and {1, foezy

of 2™ elements of Q}?O(*g) as

B dT _ (1 —v'tz)dT
(3.1) Po = It —v) Ve (1—ttx) 1<11 (ti —vs)

where v = (vq,...,v,) € Z5'. To express 1, as a linear combination of ¢,’s, we give some
Lemmas.
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Lemma 3.1. We have

1—vlx z:dT
% Py = Py T J .
L—tte Z (1=t ') [[ 2t — v0)

Proof. A straightforward calculation implies this lemma. O

Lemma 3.2. We have

ax;dT B { —BojPv = BriPo;0 i v =0,
(1 —t tl’) zéjigm(tz Uz) —ﬁo,ﬂpoj-v - 51,j% if Vj = L,
as elements of H™(Vr), where
0j: Ly Sv—=0oj-vELYy, 0j-v=v+e;mod2.

Proof. Put
5 (—Ujfldtl Ao ANdtiy Adtjq A Ndty,
llijz<m<t Ul)

€ 277M0(x9)
for 1 <j7 <m and v € ZJ'. Since

dt; A (ﬁﬁ;) =0 (1<i<m),
ot;

dt; A (wr,2l) =0 (1 <i<mi# ),
we have

Vr(@l) = wr,dt; A )

BO,de ﬂl,de CLI‘de
o i#j + i#j + i#j :
tp 11 ti—v) (=1 I (ti—v) (I=ttx) [T (ti—vs)
1<i<m 1<i<m 1<i<m

If v; = 0 then the first and second terms of the last line are fy jp, and B jp,, ., respectively; if
v; = 1 then they are 5y ;¢q,., and By ;@,. Note that V(@) = 0 as an element of H™ (V7). O

Proposition 3.1. For any v € Z', the form
1—v'z
1—ttx

[a—Zﬁvj ]] 251 v, Poj

a, = a Oy € Q;fo(*g)

15 equal to

as an element of H™(Vr).

Proof. Rewrite the right hand side of the identity in Lemma 3.1 by Lemma 3.2. Then we have

’Uj:O ’Uj=1
(M/}U = APy — Z (ﬂO,jSOU + 61,j§00j-fu) - Z (/60,]‘@0']"’1} + 61,j@v)~
1<j<m 1<5<m
Note that
v;=0 v;=1

Z Bo.jpv + Z Bripe = (iﬁvj,j>90m
j=1

1<j<m 1<5<m



28 KEIJI MATSUMOTO

and that
Bl,j(pgj.v if Uj == 0,
ﬁlfvj,jgoaj-v = .
Bo,jPo,v if vy =1,
for 1 <j<m. O

We consider the structure of the fiber of H™(Vr) at . Let ¢, (+x) be the pull-back of

Qﬁ%’o(*g) under the map 1, : C* — X for a fixed z € X. Each fiber of H™(Vy) at z is
isomorphic to the rational twisted cohomology group

H™(Q¢m (xx), V1) = Q&(*x)/vT(Q&,Tl(*m))

on C7" with respect to Vr induced from the map 2,. We denote the pull-back of ¢, under the
map %, by ¢z ..
Fact 3.1 ([AK]). (i) The space H™($2¢m (xx), V) is 2™-dimensional and it is spanned by

the classes of pg, for any v € Z3'.
(ii) There is a canomnical isomorphism j, from H™ ({28 (xx), V) to

H™(&2(x), V) = ker(Vy : £ (x) — £ (2)) V(£ (@),
where EX(x) is the vector space of smooth k-forms with compact support in C™.
By Fact 3.1, we have the following.

Proposition 3.2. The 0% (xS)-module H™ (V1) is of rank 2™. The classes of @, (v € ZF) in
Q}?’O(*S) form a frame of the vector bundle H™ (V1) over X.

Set
H™ (V) = 23 (x8) /Vi(02g ™ (+5),

where VY, = dr — wpA. This 2% (xS)-module can be regarded as vector bundles over X. The
classes of ¢, (v € Z3") also form a frame of this vector bundle. Each fiber of (V) at x is the
rational twisted cohomology group H™ (£2¢, (), V) on Cy* defined by the coboundary V7 in-
stead of V. We define the intersection form between H™ (28, (xz), V) and H™ (8. (xx), V)
by ’ ’
Z(px ) = /«:m Ja(2) N @), € Cla),

where @, ¢/, € Q&n(*x), and 7, is given in Fact 3.1. This integral converges since j,(y,) is a
smooth m-form on CI" with compact support. It is bilinear over C(«).

For w = (w1, ..., wy) € Z5 with |w| = r, we have a sequence of w™, w=V . . wl® ¢ 7y
such that |w")| = j and

w=w" = wr = WD ™ = (0,...,0).

Let &, be the set of such sequences (w,w™ Y ... w®) for given w € ZJ. Note that its

cardinality is r!. We put
1
Adv= )

I (A
(w,w(rfl) 77777 w)eG,, Hj:l Twl)
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For example,

1 1 1 1 1 1
Aay = x ( + ) = x ( + ),
Y1) Y(1,0) Y(0,1) a—Ccy — Cy+ 2 a—c1+ 1 a— Ccy + 1

1 1 1 1 1 1
Y(,1,1)7(1,1,0) NY(1,0,00  7(0,1,0) Y(,1,1)7(1,0,1) NY(1,000  7(0,0,1)

0
1 1 1
+ Gomto)
Y(1,1,1)7(0,1,1) \7Y(0,1,0) 7Y(0,0,1)

B 1 1 1 1

 a—c—co—c3+3 [a—c1—62—|—2 a—cl+1+a—02—|—1)
| 1 1 1 1 1 1
‘a—c;—c3+2 a—cl+1+a—03+1) +a—c2—03+2 a—02+1+a—03+1 ]

Proposition 3.3. We have

| sy 5(v;, v})
L powsprar) = ov=1)" | 3 A, ] B — |
| wezy 1<i<m Vit
(1
Ta va = Ula
(oo Ynw) = (2my/=T)m{ 1B
(0, otherwise,
( -3
aanﬁﬁv’ fo="2,
N = (20 T)m -1 |
LW Yar) (2rv-1) ———— if#nv)=m-1,
a ngiglm Buii
L 0, otherwise,
where v = (V1,...,0m), v = (V{,...,v),) € ZY, § denotes Kronecker’s symbol,

560 = Bui 1By =] B
=1 i=1

and we regard

T 2
11 =1
1<i<m /Bvi,i
forw=(1,...,1). The matrix

1
C=——"——71 z,vy P, )vw €2
(27T\/—_1)m (90, (107 )7 €Z2

satisfies

m
CL2

(Twezp vo) (I (BoiBri)*™ ™)

where we array v,v" € Z5' by the total order in Definition 2.1. When we assign the parameters
to complex values under the assumption (2.2), each intersection number is well-defined and
det(C) # 0; the matriz C' is invertible.

det(C) =
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Proof. Since the pole divisor of 9, , is normal crossing in C™, we can evaluate the intersection
numbers Z(py p, Va0 ) and (g, ¥y ) by using results in [M1]. To compute Z(¢y.p, Pz ), We
blow up the space (P!)™ to P™ so that the pole divisor of wer = U5 (wr) in P™ becomes normal
crossing. Then the pole divisor of w, 1 in P™ consists of lois 01, (1 <i<m)and ¥, (weZy)
with correspondence

gO,i g {tECmHZ:O}, 6177; — {tGCm]tlzl},
lo,.op < {teC™|tlx=1}, £, < oo(Py) xPr" (Jw|=r>0),
via natural bi-rational maps, where P! is the projective space of C" coordinated by ¢; with
w; = 1, co(PP!) is the hyperplane at infinity in P! and o - w = (1,...,1) — w. The residues of

geeey

wy,r in P™ along these components are
Bois  Bris  —Y0,..0 Y ((0,...,0) #w € Zy"),

respectively. We consider conditions that m components of the pole divisor of ¢,, in pm
intersect only at a point. Here note that £(o . o) is not its component. For fixed r (0 < r < m),
let w®, ... w be elements of ZJ' satisfying

0,...,0) <w® <w?® <. <w =w=(wy,...,w), |w=r
and let I,., be a subset of {1,...,m} given by I,., = {i € {1,...,m} | w; = 0}. Then m
components £,ay,..., lym, ly,i (i € I,,) intersect only at a point. We can show that the

converse holds true. Figure 1 indicates the pole divisor of ¢, (1,1) in P2. In this case, there
are five intersection points of two components; one can easily check the above fact. This fact

e
@ iy, Yaa
. 5(0,1),7(0,1) ( .) (LY

f ®.
o1, Boa ;51,1,51,1 .
: ',-'5(1,0),7(1,0)

61,27 5172

42, Bo2

FIGURE 1. Pole divisor of ¢, , in P2

together with results in [M1] enables us to compute Z(¢, 4, @s). Note that
A(lv“'vl) lf w = (17"'71)7

=y d(v;, v})
Ay AR ZAE mo (v, vh)
1};Im By i [ ——= if w=/(0,...,0),

i=1 V3,1t
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L) Ui,?J/- . .
Aq,..1) is the contribution for intersection points in £(; ;) and I —( 3 ) is that in C™.
=1 Vit
It is easy to see that
det ( L Z( Yywr) ) !
€L | —————F—L (P Vo' Jvrezm | = m m—1°
(27T\/ —1)’" 2 Hi:l (BO,zﬂLi)Q '

By following the method in Appendix of [MY], we have

1 Loezp o
det ( ———71 z,0 Yo' Jou'€Zy | = m T Tm 2 m—1 -
ot (Gl e Ve vesz ) = o5
These imply the value of det(C'). O

By this fact, we can regard the intersection form Z as that between H™ (V) and H™ (V).
It is bilinear over 2% (xS) and the intersection matrix C'is defined by the frame {¢, }yezn. Let
H(o) (V) (resp. HE, (V7)) be the linear span of ¢, (v € Z3') over the field C(a) contained
in H™(Vr) (resp. H™(VY)). We have

Yo € He()(Vr)

for any v € Z3' by Proposition 3.1.

4. CONNECTIONS

We introduce operators

atk
= T k=1,...
Vk: ak+ 1—ttl’7 ( ) 7m)7

then we have

(4.1) 8k/ U(t,x)wz/ u(t, )(Viyp),
reg(0,1)™ reg(0,1)™

where reg(0,1)™ is the regularization of the domain (0,1)™ of integration defined in [AK].
Thanks to the regularization, the integral converges whenever we assign complex values to
parameters under the condition (2.2), and the order of the integration and the operator 9y can
be changed. We set

m
VX = Zdl‘z /\Vi = dX ‘f‘tdx/\,
i=1
where dx is the exterior derivation with respect to x:

It is easy to see that
(4.2) VroVx+VxoVy=0.
We set
H™ (Vr) = Q20 (xS)/Vr(28 M (+5)),
HMU(VY) = Q2(«S) V(027 (+9)).

Proposition 4.1. There is a natural map Vy : H™(Vr) — H™ (V1) induced from the deriva-
tion Vx.
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Proof. We have only to show that if ¢ € VT(Qg_l’O(*g)) then
Vx(¥) € V(77 (x9)).

For any ¢ € VT(Qg_l’O(*g)), there exists f € Q;;—Lo(*g) such that V¢ (f) = ¢. By (4.2), we
have
Vx(¥) = VxoVr(f) = =VroVx(f) = Vr(=Vx(f)),

which belongs to VT(Q;z"_l’l(*g)). O

By this proposition, we can regard the map Vx as a connection of the vector bundle H™(Vr)
over X. It is characterized as follows.

Proposition 4.2. Let v = (vy,...,v,) be an element of Z3'. If v = 0 then

1
vkz((pv) = _(_ﬁo,k(pv - 61,k<pak~v);
Tk
if v, = 1 then
1 1 m m
Vk(gpv) = _(_ﬂo,k@ak-v - ﬁl,k%ov) + 1—t |:(a - Z ij,j)gpv + 51714,]'%00]'-1;} .
T —vtx pu pus
Proof. Since 0 - ¢, = 0, we have
CLtk dT

Vk(@v) =Wg Py =

ity m '
i=1
If v; = 0 then
1 a-ra:dT _ﬁ kPu — ﬁ kPoyv
Vk(@v) = x_k ’ ik = : T - .
(L—=tte) JI (t—w)
1<i<m
by Lemma 3.2. If v; = 1 then
a(ty —1)+a dr adTl adTl
[Iti—v) (Q—tta) ] (t;i—v) @—tix) [t —w)
i=1 1<i<m i=1
o _BO,kSOUkM - Bl,ksov CL?/)U
= -
Tk 1—vix
by Lemma 3.2. Rewrite the last term by Proposition 3.1. O

Corollary 4.1. For any v = (vy,...,0y,) € Z3', we have

v;=1 v;=1

( H xivi> " 0(0,..,0) = Z [ H <_/8wi,i>i|g0w.

1<i<m w=xv  1<i<m

Proof. Use the induction on |v| and Proposition 4.2. O
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We give some examples:

($1V1) T 0,000 = —50,190(0,0,0) - 5171%0(1,0,0),
(1122V1Va) - ©00,0,0) B0,180,20(0,0,0) + B1,180,20(1,0,0) + Bo,181,2000,1,0) + B1,181,20(1,1,0)
($1$2$3V1V2V3) " $(0,0,0) —50,1ﬁ0,250,390(0 0,0 51 1ﬁ0 250 ,3(1,0,0
—50,151,250,390(0 50 150 231 ,3%(0,0,
—51 151 250 3$(1,1,0) — 51 150 251 ,3$(1,0,1)
( (

—50151251390011 511512513%0111 .

To express Vx restricted to H(’g(a)(VT) by the intersection form Z, we give some lemmas and
a proposition.

Lemma 4.1. Let ¢ be an element of H\,, (V) and ¢ be that of HE\,, (V). Then we have
Z(Vie,¢') + (e, Vi'¢') =0,

t;
where 1 < i <m and V) = 0; — a .
1—ttx
Proof. 1t is clear by Proposition 3.3 that

for 1 <4 < m. For any compact set K in C}', we have

8i/g0/\<p':/8i<p/\g0’+/g0/\8¢go’
K K K

= [t onE [uea)ono(Es) = [ Tond+ [ on e

We can show that the commutativity of 7, and V' by following results in [M2]. These imply
this lemma. O

We define maps
Ri :H"(Vr)3¢—  Res(Vx(y)) €H"(Vr),
R/ﬁﬂ) : Hm(VT) S Qi Res (Vx(QD)) S ”Hm(VT),

TE=SyNLj

where Re% (n) and PgesL (n) are the residues of 1 € le(*g) with respect to the variable
Tp= T=0Ov k

xi, at 0 and at the intersection point S, N L of S, and the line L; in X fixing the variables
L1yeoo sy L1y Lht1y--- 5Ly
Proposition 4.3 (Orthogonal Principle). (i) Fory € Hi, (V) and ' € HE,, (Vi) we
have
I(Ri(9). ¢) + Z(0, Ry (¢) = 0, Z(Riwlp). ') + (0, Ry, (¢) = 0,

where Ry and Ry, are naturally defined by Vi = 1", dv;Vy and the residue.
(ii) Let ¢ and ¢ be eigenvectors of Ry, and Ry (resp. Ry, and R),) with eigenvalues p
and 1, respectively. If u+ p' # 0 then Z(p,¢’) = 0.
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Proof. (i)  We have only to see coefficients of 1/, and 1/(1 — v 'z) of the identity in Lemma
4.1.

(i) Note that

I(Ri(p),¢') + L, Ry (') = L(psp, ') + Lo, ' ¢") = (n+ 1) I, ¢').
By (i), we have (u+ p')Z(¢, ¢") = 0. O
Lemma 4.2. (i) Suppose that ¢, # 1 when we assign a complez value to it. The eigenvalues

of the map Ry, are 0 and —Bo — f1x = 1 — cx. The eigenspace Wy, of the map Ry, with
eigenvalue 0 is 2™~ '-dimensional and expressed as

Wi = (po = Yoy | v € 25 (08)),
which is the linear span of Y, — Yg,. for elements v in
75 (0) ={v = (v1,...,0m) € Z5 | v, = 0}.
The eigenspace of the map Ry with eigenvalue 1 — ¢y, is 2™ 1 -dimensional and
Wi = (Boxpo + Braoro | v € Z5'(0k)).

(ii) Suppose that X5, — a # 0 for a given v € Z5' when we assign complezr values to them.
The eigenvalues of the map Ry, are X3, —a and 0. The eigenspace W, of the map Ry,
with eigenvalue X5, — a is spanned by v, and that with eigenvalue 0 is its orthogonal
complement

VVvL = {(,0 S %g(a)(vT) | I<907 ¢v) = 0}7
which is spanned by ¢, for w # v.

Proof. (i) Let v be an element of Z3'(0x). Proposition 4.2 implies that
Rk(SDU - Qoakm) - (_60,169011 - ﬁl,k@akm) - (_Bo,kgpak-(akm) - Bl,kspokm) - Oa

Rk(ﬁo,kspv + Bl,kgpakm) = /80,16(_60,13901) - ﬁl,k‘pakﬂ)) + Bl,k(_ﬁﬂ,kgpak-(ak-v) - BLkSOJ;Cm)
= (=Box — Brk)(Boxo + BrLiPoyv)-

Thus ¢, — ¢, .+ is an eigenvector of Ry, with eigenvalue 0, and Sy xp, + 51,£90, v 1S an eigenvector
of Ry, with eigenvalue 1—¢y, for each v € Z5'(0;). Hence these eigenspaces are 2™~ !-dimensional.

(i) Propositions 3.1 and 4.2 imply that

Rk,v(awv) = Rk,v |:((I - Z ij,j)sov - Zﬁlvj,j(pajm]

= —(a—iﬁw [ a—Zﬁvjj 251 v;,§Po; } = (38, — a)(athy).

Note that the image of Ry, is spanned by . Proposmon 4.2 also implies that Ry ¢, = 0
for w # v. By Proposition 3.3, they are orthogonal to v, with respect to the intersection form
7. OJ

Lemma 4.3. Suppose that ¢, # 1 when we assign a complex value to it. Then the projection
pry, + Helo) (V1) = Wi is eapressed as

_ 51 kﬂﬁv . _
prk(go) _UEZ%%(M (271_\/—> (60]4""61 k) ((707 (wv ¢Jk-v))(¢v Spok.v).
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Proof. By Proposition 3.3, we have

ﬁl knﬁv
(2mv/=1)™(Bok + Bix)

for w € Z3(0x). Since

Z((w — Popw)s (o — Vo)) = 6(v, w)

I((ﬂo,k% + BLiPoyv)s (Yo — l/)o—k-fu)) =0,
we have
1(907 (% - wak-v)) =0
for any element ¢ € W;-. The restriction of the expression of pr), to W), is the identity, and
that to W, is the zero map. OJ
Lemma 4.4. (i) The map Ry : He{ o) (V1) = H(oy (V) is expressed as

61 knﬁv (

Y= (1_Ck)(;0+ Z 1 ¥, (djv_wak'i}))(@v_@m«v)'

vegiog 2TV D"

(i) The map R : Moy (V1) = HEo) (V1) is expressed as
—allp,

~ env/m

Proof. (i) At first, we assume that ¢; # 1 when we assign a complex value to it. The
projection from ”Hgb(a)(VT) to the eigenspace Wit of Ry, with eigenvalue 1 — ¢, is expressed as
@ — ¢ — pry(p). Thus we have

Ri(#) = (1 = )@ = pri(9)) = (1 = ) + (Bok + Brr)pr(e).

Lemma 4.3 implies the expression. Note that this expression is valid even in the case ¢, = 1.

Z(p, Yy) 0.

(i) At first, we assume X3, —a # 0 for a given v € ZJ* when we assign complex values to
them. By Lemma 4.2 (ii), Ry, is characterized as

Y= (Eﬁv - CL)I(QO, 1/}1)):[(1/}1” ¢v>_1¢v-
By Proposition 3.3, we have

Iy, th,) = (27\/—_1)7”_(%06_@7

which gives the expression. This expression is valid even in the case X5, — a = 0. 0

Theorem 4.1. Suppose that (2.2) when we assign complex values to the parameters. The
restriction of Vx to the space He, (V) is expressed as

BixllBy day,
v = Z(l_ck _ASOJFZ Z 271'\/_ ( 7(¢v_¢0k~v))m_k/\<90v_90ak'v>
k=1 veZ3*(0y)
aHﬁv d(1—wv'x)
+ Z (@71/}11) ]_—/Ut.f /\77Z)’U7
ezm
where @, and 1, are given in (3.1), 1B, = [1i~; Bui for v = (vi,...,vm) € Z5, and we regard

d(1—v'z) as 0 forv=(0,...,0).
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Proof. By Proposition 4.2, we see that the connection Vx admits simple poles only along
S C (PY)™. Thus it is expressed as

zm: (f_: -2 1 ?thg)dx’“‘

vELY

Use the expressions of Ry, and Ry, in Lemma 4.4. O

By using our frame {p, }yezy of H™(Vr), we represent the connection Vx by matrices. We
set a column vector @ by arraying ¢,’s by the total order in Definition 2.1:

D= t(SD(O,.‘.,O)a ©(1,0,...,0) ¥(0,1,0,...,0)5 - - - 790(1,...,1))-

Let e, (v € Z5") be the unit row vectors of size 2™ satisfying ¢, = e,P. Put

a— %8, - ﬁl—vjyj
fv = Tev - Z eoj-fua

, a
Jj=1

then we have
¢v = fvgp
by Proposition 3.1.

Corollary 4.2. Suppose that (2.2) when we assign complex values to the parameters. The map
Vx is represented by the frame {p,}vezy of H™(Vr) as

Vx®=Z4 NP,
—_ . & . = dl’k
—p — Z(l - Ck 1d2m + Z Z ﬂl kﬂﬁv (fv - fak-v><€v - eak-v>x_k
k=1 k=1 veZ3*(0y)
v
+ (—allB,)C tfva(_—x),
veEZY

where idom s the unit matriz of size 2™ and the intersection matriz C is given in Proposition
3.5.

Proof. We identify a row vector z = (...,2,,...) € C(a)*" with an element p = 2z & €
Hi{o)(Vr). Then the intersection form is expressed as

I(p,40) = (2nV/=1)" 2 C''f..

Thus we have our representation =Z¢ of Vx by Theorem 4.1. O

We define a vector valued function F(z) = (..., F,(x),...) in D by

Fo,..0(z) = (f[ F(bi)]j];(cjz_bi>>FA(a, bc;x), Fy(r)= < ﬁ Iz@') - Flo,...0)(x),
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Corollary 4.3 (Pfaffian system of Fa(a,b,c)). Suppose that (2.2) when we assign complex
values to the parameters. The vector valued function F(x) satisfies a Pfaffian system

dxF(z) = (P Z¢ P"Y)F(z),
where Z¢ is given in Corollary 4.2 and P = (Pyw)v,wezy is defined by

v;=1

H (_/Bwi,i) va i w,

Pow =\ 1<i<m
0 otherwise.

Proof. By the integral representation (2.1) of F4(a,b, c;z) and the equation (4.1), we have

’Uizl

F, = ’ Vi) - 0)-

1<i<m

Corollary 4.1 implies
F(z) = P/ u(t, z)P.
reg(0,1)™

Since P is a lower triangular matrix with non-zero diagonal entries, it is invertible. Hence F'(x)

satisfies the Pfaffian system. O
Remark 4.1. The (v,w)-entry of P~' is
v;=1,w;=0 v;=1 )
IT Boi/ II (=Pui) ifvzw,
1<i<m 1<i<m
0 otherwise.
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