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Abstract: Proper credit risk management is essential for lending institutions as substantial 

losses can be incurred when borrowers default. Consequently, statistical methods that can 

measure and analyze credit risk objectively are becoming increasing important. This study 

analyzed default payment data from Taiwan and compared the prediction accuracy and 

classification ability of three ensemble learning methods—specifically, Bagging, Random 

Forest, and Boosting—with those of various neural network methods, each of which has a 

different activation function. The results indicate that Boosting has a high prediction accuracy, 

whereas that of Bagging and Random Forest is relatively low. They also indicate that the 

prediction accuracy and classification performance of Boosting is better than that of deep 

neural networks, Bagging, and Random Forest. 
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1. Introduction 

Credit risk management is essential for financial institutions whose core business is 

lending. Thus, accurate consumer or corporation credit assessment is of utmost importance 

because significant losses can be incurred by financial institutions when borrowers default. To 

control their losses from uncollectable accounts, financial institutions therefore need to 

properly assess borrowers’ credit risks. Consequently, they endeavor to collate borrower data 

and various statistical methods have been developed to measure and analyze credit risk 

objectively.  

Because of its academic and practical importance, much research has been conducted on 

this issue. For example, Boguslauskas and Mileris (2009) analyzed credit risk using Lithuanian 

data for 50 cases of successful enterprises and 50 cases of bankrupted enterprises. Their results 

indicated that artificial neural networks are an efficient method to estimate the credit risk in 

banks. Yeh and Lien (2009) compared the predictive accuracy of probability of default among 

six data mining methods (specifically, K-nearest neighbor classifier, logistic regression, 

discriminant analysis, naive Bayesian classifier, artificial neural networks, and classification 

trees) using customers’ default payments data in Taiwan. Their experimental results indicated 

that only artificial neural network can accurately estimate default probability. Khashman 

(2010) employed neural network models for credit risk evaluation with German credit data 

comprising 1000 cases: 700 instances of creditworthy applicants, and 300 instances where 

credit is not creditworthy1. The results obtained indicated that the accuracy rate for the training 

data and test data was 99.25% and 73.17%, respectively. In this data, however, if one always 

predicts that the case is creditworthy, then the accuracy rate naturally becomes 70%. Thus, the 

results imply that there is only a 3.17% gain for the prediction accuracy of test data using neural 

network models.  Gante et al. (2015) also used the German credit data and compared twelve 

neural network models to assess credit risk. Their results indicated that a neural network with 

20 input neurons, 10 hidden neurons, and one output neuron is a good neural network model 

for use in a credit risk evaluation system 

In this study, we first employed models to predict the default risk based on clients’ 

attributes using machine learning methods and then compared their prediction accuracy. 

Specifically, we employed three ensemble learning methods—Bagging, Random Forest, and 

Boosting—and multiple deep learning methods, with different activation functions. The 

performance of the methods were then compared in terms of their ability to predict the default 

risk using multiple indicators (accuracy rate of prediction results, receiver operating 

characteristic (ROC) curve, and area under the curve (AUC)).  

For the customers’ default payments data in Taiwan, we first conducted data mining 

analysis using original series and standardized data. The use of Taiwan data is beneficial for us 

because the sample size of the default payment data in Taiwan is 30,000 and is much larger 

                                                 
1 The German credit dataset is publicly available at UCI Machine Learning data repository, 

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data). 
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than that of German data. Next, we compared the prediction accuracy of each method using 

the three ensemble learning methods Bagging, Random Forest, and Boosting, and multiple 

deep learning methods with different activation functions.  

The results obtained indicated that prediction accuracy rate is relatively higher when 

Boosting is used, and relatively lower when Bagging and Random Forest are used. Further, the 

performance of Boosting was even better than that of deep neural network (DNN). The ROC 

curve and the AUC value also supported these results. 

The remainder of this paper is organized as follows. Section 2 summarizes the basic 

properties of ensemble learning and deep learning. Section 3 explores the data employed. 

Section 4 discusses the empirical results obtained. Section 5 presents concluding remarks. 

2. Ensemble Learning and Deep Learning  

2.1. Ensemble learning 

There is an English adage that states the following: "Two heads are better than one." 

This means that, even for ordinary persons, two or more people focusing on a specific task 

result in a more positive outcome than only one person. This is the basis for ensemble 

learning, in which data-analysis algorithms are provided that resemble such ordinary daily 

knowledge of multiple persons. More formally, ensemble learning is a machine learning 

method whereby multiple models are created from different samples, after which these 

models are combined and integrated to improve accuracy. The methods used for this 

combination and integration are, in the case of regression problems, averages, and in the case 

of classification problems, majority-rule decision. Three ensemble learning algorithms were 

employed in this study: Bagging, Random Forest, and Boosting.2 

Bagging, developed by Breiman (1996), is a machine learning method that uses 

bootstrapping to create multiple training datasets from given datasets. The classification 

results generated using the data are arranged and combined to improve the prediction 

accuracy. Because the bootstrap samples are mutually independent, learning can be carried 

out in parallel. Figure 1 summarizes the basic idea underlying Bagging.  

Random Forest, also proposed by Breiman (2001), is similar to Bagging. It is a machine 

learning method in which the classification results generated from multiple training datasets 

are arranged and combined to improve the prediction accuracy. However, whereas Bagging 

uses all input variables to create each decision tree, Random Forest uses subsets that are 

random samplings of input variables to create each decision tree. This means that Random 

Forest is better suited than Bagging for the analysis of high-dimensional data. Figure 2 

summarizes the basic idea underlying Random Forest. 

 

 

                                                 
2 For the details of ensemble learning, see Jin (2017). 
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Figure 1. Basic idea underlying Bagging. 

 

 

 

 

 

 

Figure 2. Basic idea underlying Random Forest. 
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Figure 3. Basic idea underlying Boosting. 

 

Boosting is also a machine learning method. Whereas Bagging and Random Forest 

employ independent learning, Boosting employs sequential learning. In Boosting, on the 

basis of supervised learning of data, weights are successively adjusted, and multiple learning 

results are sought. These results are then combined and integrated to improve accuracy. The 

most widely used Boosting algorithm is AdaBoost, proposed by Freund and Shapire (1996). 

Figure 3 summarizes the basic idea underlying Boosting. 

 

2.2. Deep learning 

A neural network is network structure comprising multiple connected units. The neural 

network configuration is determined by the manner in which the units are connected; 

different configurations enable a network to have different functions and characteristics. The 

feed-forward neural network is the most frequently used neural network model. Figure 4 

illustrates a feed-forward neural network configured by the hierarchical connection of 

multiple units. (Note that the middle layer is not limited to a single layer.) When the number 

of middle layers is greater than or equal to two, the network is called a DNN. In Figure 4, 

units are arranged into three parts, i.e., input layer, middle layer, and output layer. The outputs 

of each unit in the input layer and the middle layer are linked to all of the units in the next 

layer. This kind of model is called a "fully connected" neural network. 
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Figure 4. Structure of a Neural Network. 

 

 

 

The activation function in a neural network is very important as it expresses the 

functional relationship between the input and output in each unit. In this study, we employed 

two kinds of activation functions: tanh and rectified linear unit (ReLU). These functions are 

defined as follows: 

 

tanh: 
xx

xx

ee

ee
xf








)(  

 

ReLU: ),0max()( xxf   

 

Figures 5(a) and 5(b) illustrate the tanh function and the ReLU function, respectively. 
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(a) 

 

 

 
(b) 

 

Figure 5. (a) tanh function, (b) ReLU function 

 

The tanh function squashes a real-valued number to the range [-1, 1]. Its activations 

saturate, and its output is zero-centered. The ReLU function is an alternative activation 

function in neural networks.3 One of its major benefits is the reduced likelihood of the 

gradient to vanish. 

Although DNNs are a powerful machine learning tool, they are susceptible to overfitting. 

This is addressed using a technique called dropout, in which units are randomly dropped 

(along with their incoming and outgoing connections) in the network (Figure 6). This 

prevents units from overly co-adapting (Srivastava et al. 2014). 

 

                                                 

3 See LeCun et al. (2015) 
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Figure 6. Illustration of the dropout technique. (Source: Srivastava et al (2014)). 

 

3. Data 

The same Taiwan payment data used by Yeh and Lien (2009) were employed in this 

study. The data are available as the default credit card clients’ dataset in the UCI Machine 

Learning Repository. In the dataset used by Yeh and Lien (2009), the number of observations 

is 25000, in which 5529 observations are the case with default payment. However, the dataset 

in the UCI Machine Learning Repository has a total number of observations of 30000, in 

which 6636 observations are cases with default payment. Following Yeh and Lien (2009), 

we used default payment (No = 0, Yes = 1) as the explained variable and following 23 

variables as explanatory variables: 

X1: Amount of given credit (NT dollar). 

X2: Gender (1 = male; 2 = female). 

X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others). 

X4: Marital status (1 = married; 2 = single; 3 = others). 

X5: Age (year). 

X6–X11: History of past payment tracked via past monthly payment records (-1 = 

payment on time; 1 = payment delay for one month; 2 = payment delay for two months; 

…; 8 = payment delay for eight months; 9 = payment delay for nine months and above).  

X6: Repayment status in September 2005. 

X7: Repayment status in August 2005. 

X8: Repayment status in July 2005. 

X9: Repayment status in June 2005. 

X10: Repayment status in May 2005. 

X11: Repayment status in April 2005. 

X12: Amount on bill statement in September 2005 (NT dollar). 
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X13: Amount on bill statement in August 2005 (NT dollar). 

X14: Amount on bill statement in July 2005 (NT dollar). 

X15: Amount on bill statement in June 2005 (NT dollar). 

X16: Amount on bill statement in May 2005 (NT dollar). 

X17: Amount on bill statement in April 2005 (NT dollar). 

X18: Amount of previous payment in September 2005 (NT dollar). 

X19: Amount of previous payment in August 2005 (NT dollar). 

X20: Amount of previous payment in July 2005 (NT dollar). 

X21: Amount of previous payment in June 2005 (NT dollar). 

X22: Amount of previous payment in May 2005 (NT dollar). 

X23: Amount of previous payment in April 2005 (NT dollar). 

 

Because of the high proportions of no-default observations (77.88%), the accuracy rate 

inevitably remains at virtually 78% when all observations are used for analysis. As a result, 

in this study we extracted 6,636 observations randomly from all no-default observations to 

ensure that no-default and default observations re equal, thereby preventing distortion. As 

regards the ratio of training to test datasets, our study used two cases, i.e., 90% to 10% and 

75% to 25%.  

In accordance with the statement by Khashman (2009) that explanatory variables should 

be normalized, we normalized the data based on the following formula: 

 

minmax

min

xx

xx
z i

i



  

 

where 𝑧𝑖 is normalized data, xi is each dataset, xmin is the minimum value of xi, and xmax is 

the maximum value of xi. Further, we analyzed both normalized and original data to compare 

their accuracy. 

To compare the accuracy of the models, we utilized accuracy rate and ROC curve. 

Furthermore, we repeated the experiments 100 times and calculated the average and standard 

deviation of the accuracy rate for each dataset.4 

 

4. Results 

We implemented the methods in R—specifically, "ipred" package for Bagging, 

"randomForest" for Random Forest, "ada" package for Boosting, and "h2o" package for DNN. 

Further, we analyzed the prediction accuracy rate of each method for the two cases; i.e., 

                                                 

4We used set.seed(50) to remove the difference caused by random numbers in drawing the ROC curve and 

calculating AUC. 
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original and normalized data. Then, we examined the classification ability of each method 

based on the ROC curve and the AUC value. 

Tables 1(a) and 1(b) summarize the results obtained using the original data. The tables 

show that Boosting has the best performance and gives more than a 70 percent prediction 

accuracy rate on average, with a small standard deviation for both training and test data. None 

of the neural network models exceed a 70 percent average accuracy rate. Further, they have 

a relatively large standard deviation for test data. Thus, it is clear that Boosting achieves a 

higher accuracy prediction than neural network. Bagging and Random Forest have a 50% to 

60% prediction accuracy rate for test data and a nearly 70% prediction accuracy rate for 

training data. In addition, the difference of the ratio between training and test data (90%:10% 

or 75%:25%) does not have an obvious influence on the result of our analysis.5 

Tables 2(a) and 2(b) summarize the results obtained using normalized data. The tables 

show that Boosting has the highest accuracy rate on test data, which is similar to the results 

obtained for the original data case. The average accuracy rate for Boosting is more than 70 

percent and it has the smallest standard deviation for both training and test data. None of the 

deep learning methods has an average prediction accuracy rate exceeding 70 percent. Further, 

they have a large standard deviation for test data. The prediction accuracy rate of Bagging 

and Random Forest does not reach 60% on average for test date, which similar to the case 

for the original data. In addition, the the difference of ratio between training and test data 

(90%:10% or 75%:25%) does not have a major influence on the result, which is similar to 

the case with the original data. Our comparison of the results of the original data with the 

results of the normalized data revealed no significant difference in prediction accuracy rate 

based on type of data. 

Next, we analyzed the classification ability of each method by examining the ROC curve 

and the AUC value. When considering whether a model is appropriate, it is not sufficient to 

rely solely on accuracy rate. The ratio of correctly identified instances in the given class is 

called the true positive rate. The ratio of incorrectly identified instances in the given class is 

called the false positive rate. When the false positive rate is plotted on the horizontal axis and 

the true positive rate on the vertical axis, the combination of these produces an ROC curve. 

A good model is one that shows a high true positive rate value when the false positive value 

is low. The AUC refers to the area under the ROC curve. A perfectly random prediction 

yields an AUC of 0.5. In other words, the ROC curve is a straight line connecting the origin 

(0,0) and the point (1,1).  

  

                                                 

5 The number of units in the middle layers of NN and DNN is determined based on the Bayesian 

optimization method. (See Appendix for details.) 
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Table 1(a). Prediction accuracy of each method. 

(Original data: The ratio of training and test data is 75% to 25%). 
 

 
 

 

 

 

 

Table 1(b). Prediction accuracy of each method. 

(Original data: The ratio of training and test data is 90% to 10%). 
 

 
 

 

 

 

 

 

 

average(%) standard deviation average(%) standard deviation

Original 75:25 80.13 0.003 55.98 0.008 0.575

Original 75:25 71.66 0.003 71.06 0.008 0.781

Original 75:25 69.59 0.544 58.50 0.844 0.604

Model Activation function Middle layer average(%) standard deviation average(%) standard deviation

DNN Tanh 2 Original 75:25 70.66 0.721 68.93 0.972 0.758

NN Tanh 1 Original 75:25 71.01 0.569 69.59 0.778 0.765

DNN Tanh with Dropout 2 Original 75:25 58.47 3.566 58.46 3.404 0.607

NN Tanh with Dropout 1 Original 75:25 67.27 1.237 67.14 1.341 0.708

DNN ReLu 2 Original 75:25 69.57 0.707 68.61 0.863 0.756

NN ReLu 1 Original 75:25 68.81 0.708 68.30 1.008 0.754

DNN ReLu with Dropout 2 Original 75:25 69.97 0.903 69.01 0.956 0.756

NN ReLu with Dropout 1 Original 75:25 70.12 0.637 69.48 0.881 0.765

Method Data
Ratio of Training

and Test Data (%)

Accuracy ratio of training data Accuracy ratio of test data
AUC

Bagging

Boosting

Random Forest

Method
Data

Accuracy ratio of training data Accuracy ratio of test data
AUC

Ratio of Training

and Test Data (%)

average(%) standard deviation average(%) standard deviation

Original 90:10 79.58 0.003 56.23 0.015 0.575

Original 90:10 71.57 0.003 70.88 0.011 0.761

Original 90:10 68.55 0.453 58.77 1.331 0.599

Model Activation function Middle layer average(%) standard deviation average(%) standard deviation

DNN Tanh 2 Original 90:10 69.64 0.683 69.31 1.325 0.760

NN Tanh 1 Original 90:10 70.49 0.550 69.61 1.312 0.761

DNN Tanh with Dropout 2 Original 90:10 57.29 3.681 57.27 4.117 0.642

NN Tanh with Dropout 1 Original 90:10 66.37 1.619 66.25 1.951 0.714

DNN ReLu 2 Original 90:10 69.49 0.695 68.76 1.408 0.771

NN ReLu 1 Original 90:10 69.16 0.728 68.54 1.261 0.751

DNN ReLu with Dropout 2 Original 90:10 69.74 0.796 68.84 1.438 0.752

NN ReLu with Dropout 1 Original 90:10 70.26 0.573 69.55 1.210 0.771

AUCMethod Data
Ratio of Training

and Test Data (%)

Accuracy ratio of training data Accuracy ratio of test data

Bagging

Boosting

Random Forest

Method
Data

Accuracy ratio of training data Accuracy ratio of test data
AUC

Ratio of Training

and Test Data (%)
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Table 2(a). Prediction accuracy of each method. 

(Normalized data: The ratio of training and test data is 75% to 25%). 
 

 
 

 

 

 

 

Table 2(b). Prediction accuracy of each method. 

(Normalized data: The ratio of training and test data is 90% to 10%). 
 

 
 

 

 

  

average(%) standard deviation average(%) standard deviation

Normalized 75:25 80.12 0.003 56.15 0.008 0.575

Normalized 75:25 71.66 0.004 70.95 0.007 0.769

Normalized 75:25 69.67 0.565 58.39 0.880 0.605

Model Activation function Middle layer average(%) standard deviation average(%) standard deviation

DNN Tanh 2 Normalized 75:25 71.14 0.732 68.75 0.912 0.753

NN Tanh 1 Normalized 75:25 70.64 0.652 69.42 0.763 0.768

DNN Tanh with Dropout 2 Normalized 75:25 57.00 4.324 56.69 4.485 0.600

NN Tanh with Dropout 1 Normalized 75:25 68.09 0.641 68.01 0.904 0.704

DNN ReLu 2 Normalized 75:25 70.37 0.627 69.35 0.856 0.751

NN ReLu 1 Normalized 75:25 70.92 0.615 69.37 0.943 0.757

DNN ReLu with Dropout 2 Normalized 75:25 70.00 0.811 68.96 0.946 0.765

NN ReLu with Dropout 1 Normalized 75:25 70.25 0.692 69.56 0.813 0.767

Method Data
Ratio of Training

and Test Data (%)

Accuracy ratio of training data Accuracy ratio of test data
AUC

Accuracy ratio of training data Accuracy ratio of test data
AUC

Bagging

Boosting

Random Forest

Method
Data

Ratio of Training

and Test Data (%)

average(%) standard deviation average(%) standard deviation

Normalized 90:10 79.54 0.003 56.28 0.013 0.575

Normalized 90:10 71.50 0.003 70.80 0.012 0.785

Normalized 90:10 68.66 0.475 58.83 1.368 0.600

Model Activation function Middle layer average(%) standard deviation average(%) standard deviation

DNN Tanh 2 Normalized 90:10 70.18 0.698 69.35 1.382 0.761

NN Tanh 1 Normalized 90:10 70.52 0.594 69.51 1.309 0.763

DNN Tanh with Dropout 2 Normalized 90:10 58.04 5.134 58.14 5.016 0.650

NN Tanh with Dropout 1 Normalized 90:10 67.33 1.285 67.13 1.787 0.697

DNN ReLu 2 Normalized 90:10 71.41 0.710 69.17 1.334 0.758

NN ReLu 1 Normalized 90:10 69.55 0.772 68.97 1.426 0.759

DNN ReLu with Dropout 2 Normalized 90:10 69.76 0.785 69.13 1.426 0.771

NN ReLu with Dropout 1 Normalized 90:10 69.88 0.701 69.25 1.279 0.781

Method Data
Ratio of Training

and Test Data (%)

Accuracy ratio of training data Accuracy ratio of test data
AUC

Bagging

Boosting

Random Forest

Method
Data

Accuracy ratio of training data Accuracy ratio of test data
AUC

Ratio of Training

and Test Data (%)
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The various graphs in Figure 7 show ROC curves for the cases using the normalized data 

and the ratio between the training and test data at 75% to 25%. In each figure, sensitivity 

(vertical axis) corresponds to the true positive ratio, whereas 1 - specificity (horizontal axis) 

corresponds to the false positive ratio. The graphs indicate that the ROC curve for Boosting 

and some DNNs have desirable properties. The ROC curves for DNN also show good 

performance except for the case for tanh activation function with dropout.  

The AUC values for all cases were also presented in Tables 1(a), 1(b), 2(a), and 2(b) 

above. The tables show that the highest AUC value was obtained for Boosting on both 

original and normalized data. Thus, the classification ability of Boosting is superior to that 

of neural networks. The second highest AUC value was obtained for neural networks for both 

data types. The AUC value of Bagging and Random Forest is approximately 0.60 for both 

data types, and their classification abilities are relatively weak.6 

 

 

 

 

 

 

Figure 7(a). ROC curve for Bagging (normalized data at 75% to 25%). 

 

 

 

                                                 
6 Boosting has the same AUC value in Tables 1(a), 1(b), 2(a), and 2(c). However, its precise value is 0.5748 for Table 1(a), 

0.5751 for Table 1(b), 0.5750 for Table 2(a), and 0.5746 for Table 2(b). 
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Figure 7(b). ROC curve for Boosting (normalized data at 75% to 25%). 

 

 

 

 

Figure 7(c). ROC curve for Random Forest (normalized data at 75% to 25%). 
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Figure 7(d). ROC curve for DNN Tanh and one middle layer (normalized data at 75% 

to 25%). 

 

 

 

Figure 7(e). ROC curve for DNN Tanh and two middle layers (normalized data at 75% 

to 25%). 
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Figure 7(f). ROC curve for DNN Tanh with Dropout and one middle layer 

(normalized data at 75% to 25%). 

 

 

 

Figure 7(g). ROC curve for DNN Tanh with Dropout and two middle layers 

(normalized data at 75% to 25%). 
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Figure 7(h). ROC curve for DNN ReLU and one middle layer (normalized data at 75% 

to 25%). 

 

 

 

Figure 7(i). ROC curve for DNN with ReLU and two middle layers (normalized data 

at 75% to 25%). 



  

18 
 

 

 

 

Figure 7(j). ROC curve for DNN ReLU with Dropout and one middle layer 

(normalized data at 75% to 25%). 

 

 

 
Figure 7(k). ROC curve for DNN ReLU with Dropout and two middle layers (normalized 

data at 75% to 25%). 
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5. Conclusions 

In this study, we analyzed the default payment data in Taiwan and compared the 

prediction accuracy and classification ability of the three ensemble learning methods Bagging, 

Random Forest, and Boosting with those of various neural network methods, each of which 

has a different activation function. The results obtained indicate that Boosting has a higher 

accuracy rate than Bagging and Random Forest. Furthermore, they indicate that Boosting has 

better prediction accuracy and classification ability than DNNs, Bagging, and Random Forest. 

The usability of deep learning has recently been the focus of much attention, but our results 

indicate that DNNs are not panacea especially for relatively small sample. Therefore, it is 

necessary to make effective use of other methods such as Boosting. 
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Appendix  

Table A1. Results based on number of middle layers in the DNN: Bayesian optimization 

method. 

(a) 

 
 

 

 

(b) 

 
 

 

Method Data

Ratio of

Training and

Test Data (%)

Input layer Middle layer 1 Output layer

Tanh Original 75:25 23 7 2

Tanh Original 90:10 23 5 2

Tanh with Dropout Original 75:25 23 14 2

Tanh with Dropout Original 90:10 23 12 2

ReLu Original 75:25 23 3 2

ReLu Original 90:10 23 7 2

ReLu with Dropout Original 75:25 23 14 2

ReLu with Dropout Original 90:10 23 19 2

Tanh Normalized 75:25 23 5 2

Tanh Normalized 90:10 23 5 2

Tanh with Dropout Normalized 75:25 23 5 2

Tanh with Dropout Normalized 90:10 23 10 2

ReLu Normalized 75:25 23 11 2

ReLu Normalized 90:10 23 4 2

ReLu with Dropout Normalized 75:25 23 16 2

ReLu with Dropout Normalized 90:10 23 12 2

Method Data

Ratio of

Training and

Test Data (%)

Input layer Middle layer 1 Middle layer 2 Output layer

Tanh Original 75:25 23 5 17 2

Tanh Original 90:10 23 2 9 2

Tanh with Dropout Original 75:25 23 9 7 2

Tanh with Dropout Original 90:10 23 3 11 2

ReLu Original 75:25 23 4 6 2

ReLu Original 90:10 23 4 9 2

ReLu with Dropout Original 75:25 23 13 9 2

ReLu with Dropout Original 90:10 23 5 20 2

Tanh Normalized 75:25 23 6 17 2

Tanh Normalized 90:10 23 4 3 2

Tanh with Dropout Normalized 75:25 23 9 4 2

Tanh with Dropout Normalized 90:10 23 3 18 2

ReLu Normalized 75:25 23 4 6 2

ReLu Normalized 90:10 23 10 7 2

ReLu with Dropout Normalized 75:25 23 16 9 2

ReLu with Dropout Normalized 90:10 23 5 21 2
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