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Abstract

It is well known that when a rival introduces a new product, a firm’s response is affected

by conflicting factors. For example, a certain factor stimulates firms to introduce their new

products in a quick and retaliatory manner if their rivals introduce new products. Based on

this fact, we build a simple vertical relation model: two downstream firms decide whether to

introduce a horizontally differentiated new product, whereas a single upstream supplier invests in

cost-reducing research and development (R&D). We show that the equilibrium of downstream

innovation depends on upstream efficiency. If upstream R&D efficiency is high, downstream

innovation is a strategic complement; this corresponds to the scenario in which downstream

firms act in a retaliatory manner against their rivals introducing new products. Conversely, if

upstream efficiency is low, downstream innovation is a strategic substitute: this implies that

downstream firms behave passively when their rivals introduce new products. We also find that

upstream R&D efficiency works similarly to the R&D spillover parameter in the d’Aspremont and

Jacquemin’s (1988) model. When R&D spillover is high (low), the firm’s innovation behavior is

a strategic complement (substitute). Hence, we offer a new insight into the innovation literature.

Keywords: Upstream cost-reducing R&D; New product introduction; Strategic complement

JEL classification: D43; L13; O31

∗Faculty of Economics, Oita University, 200, Dannoharu, Oita, Japan. E-mail: a-kawasaki@oita-u.ac.jp
†Graduate School of Economics, Kobe University, 2-1 Rokkodai-cho, Nada-ku, Kobe-City, Hyogo 657-8501,

Japan. E-mail: mizuno@econ.kobe-u.ac.jp.
‡Corresponding author: Kazuhiro Takauchi, Faculty of Business and Commerce, Kansai University, 3-3-35

Yamate-cho, Suita, Osaka 564-8680, Japan. E-mail: kazh.takauch@gmail.com; Tel.: +81-6-6368-1817.
§Research Fellow, Graduate School of Economics, Kobe University.



1 Introduction

When rivals introduce or develop new products, how do firms react?1 Reaction time is an im-

portant indicator that is knowing their responses. In their investigation, Bowman and Gatignon

reported that in response to rival firms introducing new products, 31.4% of firms introduced

their new products in less than one year, whereas 28.7% of firms took a year or more to introduce

their new products (Bowman and Gatignon, 1995, Table 1 on p.46.)

It is well known that a firm’s decision regarding whether to introduce its new product within

a shorter time and aggressively depends on multiple factors. For example, according to empir-

ical analysis by Bowman and Gatignon (1995) and Kuester et al. (1999), the factor “market

growth” increases a firm’s market size and profitability, and hence makes its market more attrac-

tive; that is, these studies empirically showed that the factor “market growth” motivates firms

to aggressively and quickly introduce their new products in response to their rivals introducing

new products.2 It has also been empirically shown that the factor “firm market share (market

share of the introducing firm)” makes firms adopt a wait-and-see attitude regarding their rivals

introducing new products. This is because, if firms aggressively and quickly introduce new prod-

ucts, the market share of their existing products may be partly diminished by such retaliatory

action. Hence, in this case, firms do not aggressively countervail the introduction of their rivals’

new products.

If firms aggressively and quickly introduce their new products in response to their rivals

introducing new products, the behavior of firms implies strategic complements.3 Conversely, if

1Studies that investigated a firm’s response to a rival introducing a new product were conducted in the 1980s.

For example, MacMillan et al. (1985) conducted a representative study.

2Debruyne et al. (2002) also empirically showed that the larger the degree of market growth, the higher the

possibility of a firm’s retaliatory act against its rivals introducing new products.

3Several researchers have used strategic complements and substitutes to assess the reaction time of decision-

making by firms. For example, in the analysis of “merger waves,” the strategic complement is often used to

capture the quickness of mergers among firms; see Fauli-Oller (2000), Qiu and Zhou (2007), and Yao and Zhou
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firms have wait-and-see attitude and take much longer to introduce new products in response to

their rivals introducing new products by, the behavior of firms is passive and it equals to strategic

substitutes. Whether the outcome of firm behavior that results from strategic interaction among

firms becomes a strategic complement is important from the viewpoint of industrial development

(or to create innovation waves); that is, if strategic complementarity works well, a firm’s new

product introduction causes another firm’s new product introduction, and, as a result, innovation

in the whole society rapidly improves.4 Furthermore, it is also important from the viewpoint

of consumer welfare because product varieties increase and consumer benefit can be enhanced

because of strategic complementarity. However, whether the outcome of strategic interaction

among firms is a strategic complement or strategic substitute tended to be overlooked in previous

studies.

In this paper, we show that a firm’s strategic behavior against its rival introducing a new

product depends on upstream production efficiency. We offer a vertical oligopoly model in

which a firm’s new product introduction behavior can become both a strategic complement and

substitute because of the degree of upstream efficiency. Whereas an upstream monopoly supplier

invests in cost-reducing research and development (R&D),5 downstream duopoly firms introduce

or develop new horizontally differentiated products. The production efficiency of the upstream

monopolist that makes an effort to reduce costs is equivalent to the efficiency of its R&D.

In the above scenario, suppose a downstream firm introduces a new product. This behavior

(2015).

4 Strategic complementarity represents player’s self-fulfilling expectations (e.g., the reason why I invest is that

I expected others to invest). Similarly, in studies on industrialization and agglomeration, great importance is

attached to the role of self-fulfilling expectations; see, for example, Krugman (1991) and Matsuyama (1991).

5Fontana and Guerzoni (2008) empirically found that firms tend to attach the most importance to cost-reducing

R&D when their market size is large. In our setting, as downstream new product introduction increases product

varieties and its market size, the demand for inputs increases and the market size of inputs also increases. Hence,

we can consider that assuming cost-reducing R&D upstream is consistent with the empirical findings.
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increases demand for the inputs, so the upstream supplier actively invests to reduce its produc-

tion cost, and hence, the input price decreases. Because the price-cost margin of downstream

firms widens as the input price lowers and results in a scenario similar to market expansion,

the incentive of the rival firm to introduce a new product becomes strong. Introducing a new

product steals a part of the rival’s market share, so the rival’s incentive to introduce a new

product weakens. At this time, if upstream R&D efficiency is high, the input price drops rapidly

because of the introduction of a new product. The fall of the input price facilitates the rival

to introduce a new product, so the race to introduce a new product starts to have the nature

of a strategic complement. Conversely, if upstream R&D efficiency is low, because the effect

of stealing the rival’s market share is dominant, the race to introduce a new product starts to

have the nature of a strategic substitute. Bowman and Gatignon (1995) and Kuester et al.

(1999) empirically found that when the (i) market size is large, or (ii) the firm has less of a

possibility to lose its market share because of the introduction of a new product, retaliatory

action (new product introduction) often occurs. Hence, our model is consistent with the results

of the empirical study.

Our study also contributes to innovation literature. In most cases, d’Aspremont and Jacquemin

(1988)-type process R&Dmodels have an exogenous knowledge spillover among firms. If spillover

from the rival’s R&D is small, the investment behavior is a strategic substitute. If R&D spillover

is large, the investment behavior is a strategic complement. Conversely, there is no R&D spillover

in our model. We show that through the input price, upstream efficiency works similarly to the

spillover parameter in a representative process R&D model; that is, if upstream efficiency is low

(high), downstream investment behavior is a strategic substitute (complement). In our model,

downstream R&D is the introduction of a new product and it differs from cost-reducing R&D.

However, we newly demonstrate the theoretical fact that an efficiency parameter upstream of

a vertical structure model works similarly to the spillover rate in a horizontal process R&D
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framework.

This paper is related to two strands in the literature. One is studies on new product intro-

duction in an oligopoly (Basak and Mukherjee, 2018)6 and the other is studies that focus on

upstream innovation in vertically related markets (e.g., Chen and Sapppington, 2010; Hu et al.,

2020; Pinopoulos, 2020; Stefanadis, 1997). Basak and Mukherjee (2018) considered new prod-

uct introduction in a unionized duopoly. They showed that in their many different settings, the

strategic substitute equilibrium such that “one firm only introduces a new product” appears,7

whereas the strategic complimentary equilibrium appears if and only if labor unions are firm

specific (i.e., decentralized labor unions) and product differentiation is asymmetric. Our model

shows that, when an upstream supplier engages in cost-reducing investment, both the strate-

gic complementary equilibrium and strategic substitute equilibrium appear. This is in sharp

contrast to the results of Basak and Mukherjee (2018).

Although some researchers have also focused on upstream process innovation, their models

and purposes differ substantially from ours. Chen and Sappington (2010) considered the effects

of vertical integration and separation on upstream innovation. Hu et al. (2020) considered

upstream R&D, but their purpose was to examine the relationship between upstream cost-

reducing investment and cross-holdings among downstream firms. Pinopoulos (2020) considered

some types of input pricing behaviors, for example, two-part tariffs, by an upstream firm that

engages in cost-reducing R&D. Stefanadis (1997) considered R&D competition between two

6Additionally, Dawid et al. (2010) considered new product development in a duopoly setting. However, their

model has no upstream sector, and the R&D types differ between the two firms: one firm engages in a project

of new product development and the other firm engages in cost-reducing R&D. Although Dobson and Waterson

(1996) and Grossman (2007) also considered a similar scenario in which firms choose their number of differentiated

goods, there is no upstream market in these models.

7This case is the same as the scenario in which “one is a multi-product firm and the other is a single product

firm.” Hence, the strategic substitute type of equilibrium in our new product introduction model includes that

scenario. Inomata (2018) and Kawasaki et al. (2014) also considered the coexistence of multi-product and

single-product firms.
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upstream suppliers, and also examined the possibility that the conclusion of exclusive supply

contracts with a downstream firm discourages upstream innovation.

This paper is structured as follows: In Section 2, we provide the basic model, and in Section

3, we present the analysis of the model. In Section 4, we perform welfare analysis, and in Section

5, we present downstream price competition. Finally, in Section 6, we draw conclusions.

2 Model

We consider a vertically related market with an upstream firm (U) and two symmetric down-

stream firms (Di, i = 1, 2). Di uses one unit of input to produce one unit of the final product,

and it competes in Cournot fashion.8 For simplicity, we omit other production costs for Di.

U decides the input price w and makes a take-it-or-leave-it offer. For example, in the United

States, the Robinson–Patman Act is enforced, so U charges a uniform input price for Di.9

U engages in R&D to reduce the constant marginal cost c ∈ (0, 1). To create demand by

introducing a new product, Di chooses whether to conduct R&D paying a fixed cost f (> 0).

Let Di’s existing product be qe,i and its new product be qn,i. When D1 and D2 introduce new

products, inverse demand is10

pe,i = 1− qe,i − γ(qn,i + qe,j + qn,j),

pn,i = 1− qn,i − γ(qe,i + qe,j + qn,j),
(1)

where pe,i (pe,j) is the price of the existing product of Di (Dj) and pn,i (pn,j) is the price of

the new product of Di (Dj), i ̸= j and i, j = 1, 2. The parameter γ (0 ≤ γ < 1) measures

the degree of product substitutability among final products. Final products are independent if

8Our main results do not alter in Bertrand competition. For more details, see Section 4.

9Even if U conducts price discrimination, our results do not alter.

10The other possible setting is that the existing and new products are differentiated. The formula in such a

case is pe,i = 1− (qe,i + qe,j)− γ(qn,i + qn,j), i, j = 1, 2; i ̸= j. However, our main results do not alter, so we use

a simpler form (1).
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γ = 0, whereas they are homogeneous if γ = 1.

The gross profit of Di is

πDi(qe,i, qn,i) ≡ (pe,i − w)qe,i + (pn,i − w)qn,i. (2)

If Di innovates, its profit is πDi(qe,i, qn,i)− f ; otherwise, its profit is πDi(qe,i, 0).

The profit of U is

πU ≡ (w − (c− x))Q− kx2, (3)

where x is the investment level and kx2 is the R&D cost. k (> 0) denotes R&D efficiency. Q is

the demand for input. Q =
∑

i qe,i if no one innovates. Q =
∑

i qe,i + qn,j if only Dj innovates.

Q =
∑

i qe,i +
∑

i qn,i if everyone innovates.

We consider the following four-stage game. In the first stage, D1 and D2 independently and

simultaneously choose whether to conduct R&D by paying the fixed cost (I) or not (N). In

the second stage, U decides the investment level. At the third stage, U charges the input price.

Finally, downstream competes à la Cournot.

This timing structure corresponds to the difficulty in R&D. Generally, product development

requires a sunk cost, such as a long-term contract with researchers, and it takes a much longer

time. Hence, downstream R&D is at the first stage. Effort that produces a prototype and

repeatedly tests its safety is not required, so upstream R&D is at the second stage. Downstream

can flexibly adjust its production, so the quantity of final products is decided in the final stage.

The solution concept is the subgame perfect Nash equilibrium.

3 Results

Depending on the downstream investment decisions, four regimes can arise: II, IN , NI, and

NN . Because downstream firms are symmetric, IN and NI are the same. We call II the all

product-developers regime, IN and NI the mixed regime, and NN the no one invests regime.
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Using (1)–(3), we obtain the equilibrium solutions for each regime.

No one invests regime: NN . Each Di only produces the existing product; hence, qn,i = 0.

Thus, we obtain the following equilibrium outcomes:

wNN =
(1 + c)(γ + 2)k − 1

2(γ + 2)k − 1
; xNN =

1− c

2(γ + 2)k − 1
; πNN

U =
(1− c)2k

2(γ + 2)k − 1
,

qNN
e,i =

(1− c)k

2(γ + 2)k − 1
; πNN

Di =
(
qNN
e,i

)2
for i = 1, 2.

(4)

Mixed regime: IN or NI. When Di invests and Dj does not, because Di produces both

existing and new products but Dj only produces its existing product, qe,i > 0, qn,i > 0, qe,j > 0,

and qn,j = 0 (i, j = 1, 2 and i ̸= j). From this we obtain the following:

xIN = xNI =
(1− c)(3− γ)

4(2 + 2γ − γ2)k − (3− γ)
,

wIN = wNI =
2(1 + c)(2 + 2γ − γ2)k − (3− γ)

4(2 + 2γ − γ2)k − (3− γ)
; πINU =

(1− c)2(3− γ)k

4(2 + 2γ − γ2)k − (3− γ)
,

qINe,1 = qINn,1 =
(1− c)(2− γ)k

4(2 + 2γ − γ2)k − (3− γ)
; qINe,2 =

2(1− c)k

4(2 + 2γ − γ2)k − (3− γ)
,

πIND1 =
2(1− c)2(2− γ)2(1 + γ)k2

[4(2 + 2γ − γ2)k − (3− γ)]2
; πIND2 =

(
qINe,2

)2
.

(5)

Note that qNI
e,2 = qNI

n,2 = qINe,1 = qINn,1 , q
IN
e,2 = qNI

e,1 , π
NI
D2 = πIND1 , and π

NI
D1 = πIND2 .

All product-developers regime: II. Four differentiated products are produced in this

regime, so we obtain the following equilibrium outcomes:

wII =
(1 + c)(2γ + 1)k − 1

(4γ + 2)k − 1
; xII =

1− c

(4γ + 2)k − 1
; πIIU =

(1− c)2k

(4γ + 2)k − 1
,

qIIe,i = qIIn,i =
(1− c)k

2 [(4γ + 2)k − 1]
; πIIDi =

(1− c)2(γ + 1)k2

2 [(4γ + 2)k − 1]2
for i = 1, 2.

(6)

To ensure the positive marginal cost of U after investment, we need Assumption 1.

Assumption 1. k > k0 ≡
1

2c(1 + 2γ)
.

We establish Proposition 1 from Equations (4)–(6).
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Proposition 1. (i) The equilibrium level of the R&D investment of U is largest in the all

product-developers regime, intermediate size in the mixed regime, and smallest in the no one

invests regime. More precisely, xII > xIN = xNI > xNN . (ii) In all regimes, higher R&D

efficiency of U increases its investment level. Higher product substitutability decreases the level of

R&D investment of U . More precisely, ∂xr/∂k < 0 and ∂xr/∂γ < 0, where r = II, IN,NI,NN .

Proof. (i) xII − xIN = 2k(1−c)(1−γ)
LN

> 0 and xIN − xNN = 2k(1−c)(1−γ)(2−γ)
LI

> 0, where LN ≡

[(4γ+2)k− 1][4(2+2γ− γ2)k− (3− γ)] and LI ≡ [2(γ+2)k− 1][4(2+2γ− γ2)k− (3− γ)]. (ii)

The partial derivative of xr with respect to k yields ∂xII/∂k = −2(1−c)(2γ+1)
[(4γ+2)k−1]2

< 0, ∂xIN/∂k =

−4(1−c)(3−γ)(2+2γ−γ2)
[4(2+2γ−γ2)k−(3−γ)]2

< 0, and ∂xNN/∂k = − 2(1−c)(γ+2)
[2(γ+2)k−1]2

< 0. The partial derivative of xr with

respect to γ yields ∂xII/∂γ = − 4(1−c)k
[(4γ+2)k−1]2

< 0, ∂xIN/∂γ = − 4(1−c)(γ2−6γ+8)k
[4(2+2γ−γ2)k−(3−γ)]2

< 0, and

∂xNN/∂γ = − 2(1−c)k
[2(γ+2)k−1]2

< 0.

Proposition 1 immediately yields Corollary 1.

Corollary 1. (i) wNN > wIN = wNI > wII . (ii) ∂wr/∂k > 0 and ∂wr/∂γ > 0, where

r = II, IN,NI,NN .

Proof. (i) wNN − wIN = k(1−c)(2−γ)(1−γ)
LI

> 0 and wIN − wII = k(1−c)(1−γ)
LN

> 0. (ii) The

partial derivative of wr with respect to k yields ∂wII/∂k = (1−c)(2γ+1)
[(4γ+2)k−1]2

> 0, ∂wIN/∂k =

2(1−c)(3−γ)(2+2γ−γ2)
[4(2+2γ−γ2)k−(3−γ)]2

> 0, and ∂wNN/∂k = (1−c)(γ+2)
[2(γ+2)k−1]2

> 0. The partial derivative of wr with

respect to γ yields ∂wII/∂γ = 2(1−c)k
[(4γ+2)k−1]2

> 0, ∂wIN/∂γ = 2(1−c)k(4−γ)(2−γ)
[4(2+2γ−γ2)k−(3−γ)]2

> 0, and

∂wNN/∂γ = (1−c)k
[2(γ+2)k−1]2

> 0.

The logic behind part (i) of Proposition 1 is as follows: As U engages in cost-reducing

investment, it invests a large amount if it can sell a large amount of input. Innovation by Di

increases the number of product varieties, so the demand for the input also expands. If D1

and D2 innovate, because the input demand is the largest among all regimes and the sales
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opportunity for inputs is similarly the largest, the investment level becomes the largest. Hence,

when no one innovates, the investment size becomes the least among all regimes. If only Di

innovates, the investment level becomes intermediate.

Part (ii) is intuitive. The first result is natural. Although larger γ makes competition

tougher, in our model, it reduces downstream market size. The latter effect is dominant, so the

input demand shrinks. This impedes upstream investment.

Proposition 1 immediately yields Corollary 1. Since a larger investment corresponds to a

lower input price, we obtain the ranking of the input price. Part (ii) is a natural one. The effects

of γ are similar to those in part (ii) of Proposition 1.

Our model has a similar timing structure to those of Banerjee and Lin (2003), Gilbert and

Cvsa (2003), and Haucap and Wey (2004); that is, in their models, the downstream firm (in our

model, Di) first executes cost-reducing R&D investment, and after observing it, the upstream

agent (in our model, U) charges its price. Banerjee and Lin (2003), Gilbert and Cvsa (2003), and

Haucap and Wey (2004) emphasized that the increasing upstream price extracts the benefits of

downstream innovation.11 Conversely, in our study, because market expansion that results from

downstream R&D promotes upstream investment, the input price falls. Corollary 1 implies that

upstream R&D is very influential in vertical structures.

To derive the equilibrium of the game, we introduce two threshold functions ΦI and ΦN :

ΦI ≡ πIND1 − πNN
D1 = πNI

D2 − πNN
D2 and ΦN ≡ πIID1 − πNI

D1 = πIID2 − πIND2 .
12 These thresholds are

related to the gain (or loss) that results from the deviation from equilibrium regimes NN and

II, respectively.

ΦI and ΦN are given by

11Banerjee and Lin (2003) showed that a fixed-price contract that uses the input price resolves this hold-up

problem. Conversely, Takauchi and Mizuno (2019) demonstrated that a fixed-price contract can harm upstream

and downstream.

12Chowdhury (2005) defined ΦI as a non-strategic benefit of R&D and ΦN as a strategic benefit of R&D.
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ΦN ≡
(1−c)2(1−γ)k2

[
1+4γ−γ2 + 16(2+6γ+6γ2+2γ3−γ4)k2

− 8(2+4γ+3γ2−γ3)k

]
2[(4γ + 2)k − 1]2[4(2 + 2γ − γ2)k − (3− γ)]2

> 0 and

ΦI ≡ (1−c)2(1−γ)k2[8(8+8γ−4γ4)k2 − 8(2+2γ+γ2−γ3)k − 2γ2+5γ−1]

[2(γ + 2)k − 1]2[4(2 + 2γ − γ2)k − (3− γ)]2
> 0.

Di innovates if f < ΦI and does not innovate if ΦN < f . Hence, the mixed regime, IN&NI,

can appear if ΦN < ΦI ; and the complementary equilibrium, NN&II, can appear if ΦI < ΦN .

These arguments yield Proposition 2.

Proposition 2.

1. Suppose that k ∈ (k0, 1/(4γ)). Then, ΦI < ΦN . (i) If f < ΦI , II appears; (ii) if f > ΦN ,

NN appears; and (iii) if ΦI ≤ f ≤ ΦN , NN&II can appear.

2. Suppose k > 1/(4γ) or 1/(4γ) ≤ k0. Then, ΦN < ΦI . (i) If f < ΦN , II appears; (ii) if

f > ΦI , NN appears; and (iii) if ΦN ≤ f ≤ ΦI , IN&NI can appear.

Proof. See Appendix A.

When the fixed cost f is small (large) because I (N) is the dominant strategy, II (NN)

appears. If f is an intermediate size, Di’s strategy depends on upstream R&D efficiency k: (i)

if k is small, NN&II can appear; and (ii) if k is large, IN&NI can appear (see Figure 1).

The intuition behind this is as follows: (i) When k is small, upstream R&D is efficient.

In this case, if Di deviates from II, its market halves. Furthermore, the input price jumps,

so Di does not deviate from II. If Di deviates from NN , the number of product markets

increases. As upstream R&D efficiency is high and the range of the drop in input price is

larger, downstream production costs largely fall. However, this promotes the rival’s production

and makes competition in the existing product market tougher, so the benefit of R&D can be

canceled. Di does not deviate.

10



k
1/(4γ)k0

0

f/(1− c)2

II

NN
NN&II

ΦN/(1− c)2

ΦI/(1− c)2

IN&NI

Figure 1: Equilibrium of the new product introduction game in (k, f
(1−c)2

)-space (k0 < 1/(4γ))

Basak and Mukherjee (2018) found that, in a unionized duopoly, the emergence of the

complementary equilibrium needs asymmetric product differentiation and decentralized unions.

Conversely, we show that the complementary equilibrium appears even if there is no asymme-

try in product differentiation. This implies that upstream R&D plays an important role in

downstream innovation, and therefore, gives a new insight into the literature.

(ii) When k is large (or 1/(4γ) ≤ k0), because upstream R&D is inefficient, the effects of

upstream investment on the input price weakens. If Di deviates from II, its product market

halves and input price rises. However, in this case, the input price is relatively high because of

the large k (see Corollary 1). Thus, the production cost is also high, and the profit from the

new product market becomes relatively small; that is, the R&D benefit is relatively small. As

a deviation from II raises the input price, it also increases the rival’s production cost. This

results in a lessening of competition in the existing product market. Because the R&D benefit is

small and competition in the existing product market loosens, Di has an incentive to choose N
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if the rival chooses I. The deviation from NN increases the sales market of products and lowers

the input price. Then, although the R&D benefit is small, the input price is high because k is

large. Hence, a fall in production cost through the decrease in input price becomes attractive.

Di chooses I when the rival chooses N .

We believe that our model makes two types of contributions to the literature. The first

is that it offers results that are partially consistent with the results of an empirical study in

the marketing area. As Bowman and Gatignon (1995) and Kuester et al. (1999) empirically

showed, the factor “market growth” strengthens a firm’s incentive to introduce a new product in

a retaliatory manner; hence, it produces the equilibrium of strategic complementarity. Simulta-

neously, the factor “firm market share” strengthens the firm’s incentive to wait and see; hence,

it generates the equilibrium of strategic substitutability. In our model, when the parameter k is

small, and, thus, upstream is efficient, the market expanding effect caused by introducing a new

product is strong. This corresponds to the scenario in which the effects of the factor “market

growth” are stronger. Conversely, when k is large, and, thus, the upstream is less efficient, the

snatching effect of the existing-product market caused by introducing a new product becomes

stronger. This is related to the scenario in which the effect of the factor “firm market share” is

strong. Hence, our model undoubtedly has empirical relevance to marketing studies.

The second contribution is that our model offers a new finding with respect to the works

of variables between the traditional R&D model and simple vertical structure model. To the

best of our knowledge, one of the most popular models for cost-reducing R&D investment is the

d’Aspremont and Jacquemin (1988) model, in which the R&D spillover rate β is an exogenous

variable. More specifically, in that model, if A (> 0) is defined as a constant marginal cost of

R&D firms, the cost function of firm i is defined as Ci(qi, xi, xj) = [A− xi − βxj ]qi, i, j = 1, 2,

i ̸= j with 0 < β < 1. Then, the best response function is a strategic substitute (complement)

if the spillover rate β is small (large).13

13Henriques (1990) showed that in the d’Aspremont and Jacquemin (1988) model, each firm’s best response to
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Conversely, in our model, there is no term related to R&D spillover “−βxj .” However, by

way of the work in upstream input price w, if k is small (or upstream is efficient), strategic

complementarity appears in downstream innovation. This corresponds to the case in which the

spillover rate β is large in the d’Aspremont and Jacquemin (1988) model. Conversely, if k is large

(or upstream is less efficient), strategic substitutability appears in downstream innovation. This

corresponds to the case in which the spillover rate β is small in the d’Aspremont and Jacquemin

model.

While d’Aspremont and Jacquemin (1988) considered process R&D, the downstream firm

in our model conducts product R&D (new product introduction), so these two models consider

different types of R&D. However, from the viewpoint of promotion or the restriction factor of

innovation, the variable k in our model works similarly to the spillover rate β in the d’Aspremont

and Jacquemin model. Because we newly found such an essential fact, our main result offers a

new insight into the study of innovation activities.

4 Welfare analysis

Even if a downstream firm innovates, it will not capture all the surplus it generates. Therefore,

if the innovation cost f is large, downstream firms give up on introducing new products, and

underinvestment (i.e., welfare loss) occurs. In this section, we provide the conditions that can

cause underinvestment.

To avoid unnecessary algebraic complexity and facilitate our welfare analysis, we must set a

lower limiting value for k. Therefore, we make Assumption 2.

Assumption 2. k ≥ 1

2
.

First, we discuss underinvestment in terms of consumer surplus. We define consumer surplus

the R&D level is a strategic complement (substitute) if β > 1/2 (β < 1/2).

13



and gross total surplus (excluding downstream R&D cost f) as follows:

CS =
q2e,1 + q2e,2 + q2n,1 + q2n,2

2
+ γ [qe,1(qe,2 + qn,1 + qn,2) + qe,2(qn,1 + qn,2) + qn,1qn,2]

and TS = CS + πU +
∑

i πDi.

We have the following equilibrium surpluses: in the all product-developers regime,

CSII =
(1− c)2(3γ + 1)k2

2[(4γ + 2)k − 1]2
; TSII =

(1− c)2k[(13γ + 7)k − 2]

2[(4γ + 2)k − 1]2
.

In the mixed regime,

CSIN =
(1− c)2(γ3 − 7γ2 + 8γ + 6)k2

[γ + (−4γ2 + 8γ + 8)k − 3]2
,

TSIN =
(1− c)2k[(7γ3 − 33γ2 + 24γ + 42)k − (γ − 3)2]

[γ + (−4γ2 + 8γ + 8)k − 3]2
.

Note that CSIN = CSNI and TSIN = TSNI .

In the no one invests regime,

CSNN =
(1− c)2(γ + 1)k2

[1− 2(γ + 2)k]2
; TSNN =

(1− c)2k[(3γ + 7)k − 1]

[1− 2(γ + 2)k]2
.

By comparing the consumer surpluses, we obtain Result 1.

Result 1. (i) Assume that “II” appears if the equilibrium regime is II and NN . Then, from

the viewpoint of consumer surplus, underinvestment in downstream occurs if f > ΦN . (ii)

Assume that “NN” appears if the equilibrium regime is II and NN . Then, from the viewpoint

of consumer surplus, underinvestment in downstream occurs if f > min{ΦN ,ΦI}.

Proof. See Appendix B.

Consumers always welcome an increase in the variety of goods they consume. Moreover, from

Proposition 2, equilibrium regime II is not realized when the R&D cost f is large. Therefore,

the consumer surplus is not maximized if f is large.

Next, we discuss underinvestment in terms of total surplus. We assume k > max{1/2, k0}.

To consider the best regime that maximizes the total surplus, we define the gross benefits of

14



an increase in the number of downstream firms conducting R&D: ΨTS
21 ≡ TSII − TSIN =

TSII − TSNI , ΨTS
10 ≡ TSIN − TSNN = TSNI − TSNN , and ΨTS

20 ≡ (TSII − TSNN )/2. More

precisely, a rise in the number of downstream firms conducting R&D increases the total surplus

if the following conditions are satisfied: ΨTS
21 > f , ΨTS

10 > f , or ΨTS
20 > f .

To provide the result for the total surplus, we need to compare the gross benefits of an

increase in the number of downstream innovating firms. We define gTS(γ, k), which has the

same sign as ΨTS
21 −ΨTS

10 . Additionally, we implicitly define kTS(> max{1/2, k0}), which is the

largest root of the following equation:

gTS(γ, k) ≡ 64γ(9γ4+γ3−88γ2−106γ−32)k4 + 32(−15γ4+20γ3+142γ2+112γ+20)k3

+4(29γ3−97γ2−298γ−126)k2 − 4(γ2−17γ−26)k − 3− γ = 0.

Note that all roots of gTS(γ, k) = 0 are depicted in Figure 2. The blue curves represent the set

of pair (γ, k), which satisfies gTS(γ, k) = 0. The dashed line represents k = 1/2. In the shadow

area, gTS(γ, k) > 0.

Ψ21
TS > Ψ10

TS Ψ21
TS < Ψ10

TS

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

k = kTS

k = 1/2

Figure 2: Region for gTS(k, γ) > 0

Then, by comparing the total surpluses, we can show the condition under which underin-

vestment occurs.
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Result 2. Suppose k > max {1/2, k0}. (i) Assume that “NN” is realized if the equilibrium

regimes are “II” and “NN .” Then, from the viewpoint of the total surplus, the condition under

which underinvestment for downstream development occurs is given as follows:

ΦI < f < ΨTS
20 if max{1/2, k0} < k ≤ 1/(4γ),

ΦN < f < ΨTS
20 if max{1/2, k0, 1/(4γ)} < k ≤ kTS ,

ΦN < f < ΨTS
10 if max{1/2, k0, kTS , 1/(4γ)} < k.

(ii) Assume that “II” is realized if the equilibrium regimes are “II” and “NN .” Then, from

the viewpoint of the total surplus, underinvestment for downstream development occurs if the

following condition is satisfied:

ΦN < f < ΨTS
20 if max{1/2, k0} < k ≤ max{1/(4γ), kTS},

ΦN < f < ΨTS
10 if max{1/(4γ), kTS} < k.

Proof. See Appendix C.

ΦI ΦN Ψ20
TS

TSII-2f

TSIN- f (=TSNI- f )

TSNN

Ψ10
TS

0.02 0.04 0.06 0.08 0.10 0.12
f

0.20

0.25

0.30

0.35

Figure 3: Total welfare comparison: k = 1

ΦIΦN Ψ10
TS

TSII-2f

TSIN- f (=TSNI- f )

TSNN

Ψ20
TS

0.01 0.02 0.03 0.04 0.05 0.06
f

0.14

0.16

0.18

0.20

0.22

Figure 4: Total welfare comparison: k = 5

Note: In both Figures 3 and 4, c = 2/5 and γ = 1/5.

We depict the results in Figures 3 and 4, in which the horizontal axis represents the fixed

cost f of introducing a new product. For Figure 3 (or Figure 4), we assume c = 2/5, k = 1, and

γ = 1/5 (or 2/5, k = 5, and γ = 1/5). Each figure has three lines. The bold gray, dashed black,
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and solid black lines represent TSII − 2f , TSIN − f(= TSNI − f), and TSNN , respectively.

Each figure has four vertical dotted lines: ΦI , ΦN , ΨTS
10 , and ΨTS

20 . From Proposition 2, ΦI and

ΦN determine the investment decision for downstream firms. Additionally, at f = ΨTS
10 and

f = ΨTS
20 , TSIN − f = TSNI − f = TSNN and TSII − 2f = TSNN , respectively.

We explain the intuition behind Result 2. First, we consider a case with small f . At f = 0,

downstream firms always invest. Additionally, the total surplus increases with the number of

investing downstream firms because downstream investment increases final demand. From the

continuity of the total surplus function, both D1 and D2 invest, and this investment decision is

socially optimal if f is small.

Second, we consider a case with large f . When no downstream firm invests, the total surplus

is independent of f ; when at least one downstream firm invests, the total surplus decreases with

f . Hence, we obtain two threshold values: ΨTS
10 and ΨTS

20 . Because from Proposition 2, no

downstream firm invests if f is large, the equilibrium number of investing downstream firms is

socially optimal.

Finally, we consider a case in which f takes an intermediate value. In our model, max{ΦI ,ΦN} <

max{ΨTS
10 ,Ψ

TS
20 }. Hence, for any max{ΦI ,ΦN} < f < max{ΨTS

10 ,Ψ
TS
20 }, no downstream firm

invests while it is socially desirable for both downstream firms to invest. In the case with

ΦI < f < ΦN in Figure 3, equilibrium investment decisions are II&NN . Hence, whether the

underinvestment of downstream firms occurs depends on the manner in which the equilibrium

is refined. If NN (or II) is realized under ΦI < f < ΦN , downstream investment is insufficient

(or socially optimal).

5 Downstream price competition

In this section, we discuss the case in which downstream firms compete on price to show the

robustness of the main result in the previous sections. In differentiated Bertrand competition,
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the demand function depends on whether downstream firms introduce a new product.

No one invests regime: NN . In this regime, the demand function is

qe,i =
(1− γ)− pe,i + γpe,j

1− γ2
; qe,j =

(1− γ)− pe,j + γpe,i
1− γ2

, i ̸= j. (7)

Mixed regime: IN or NI. As only Di introduces a new product, the demand function is

qe,i =
(1− γ)− (γ + 1)pe,i + γ(pn,i + pe,j)

(1− γ)(2γ + 1)
,

qe,j =
(1− γ)− (γ + 1)pe,j + γ(pe,i + pn,i)

(1− γ)(2γ + 1)
,

qn,i =
(1− γ)− (γ + 1)pn,i + γ(pe,i + pe,j)

(1− γ)(2γ + 1)
.

(8)

All product-developers regime: II. In this regime, the demand function is

qe,i =
(1− γ)− (2γ + 1)pe,i + γ(pn,i + pn,j + pe,j)

(1− γ)(3γ + 1)
,

qn,i =
(1− γ)− (2γ + 1)pn,i + γ(pn,j + pe,i + pe,j)

(1− γ)(3γ + 1)
.

(9)

The timing of the game is similar to that of the Cournot competition case. By applying the

same procedure as that in the previous setting, we obtain each regime’s equilibrium outcomes,

which are shown in Appendix D. Using their equilibrium outcomes, we can derive the best

response of downstream firms.

Suppose that Dj introduces a new product. If f < Φ̂I , Di introduces a new product;

otherwise, it does not, and

Φ̂I ≡ (1− c)2(γ − 1)k2
[

γ+1
(2(γ−2)(γ+1)k+1)2

− 2(2γ+1)(3γ+2)2

(γ(γ+5)+4(2γ+1)((γ−2)γ−2)k+3)2

]
.

Suppose that Dj does not introduce a new product. If f < Φ̂N , Di introduces a new product;

otherwise, it does not, and

Φ̂N ≡ 1

2
(1− c)2(γ − 1)(γ + 1)k2

[
8(γ+1)2(2γ+1)

(γ(γ+5)+4(2γ+1)((γ−2)γ−2)k+3)2
− 3γ+1

(γ−2(3γ+1)k+1)2

]
.
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These two thresholds, Φ̂I and Φ̂N , have similar properties to those in the Cournot competition

case; that is, even if downstream has a different competition form, we obtain similar results.14

The logic behind the results in the Bertrand case is very similar to that of Proposition 2.

Hence, we conclude that the complementary equilibrium appears without asymmetry in product

differentiation and verify that Proposition 2 has a certain robustness.

6 Conclusion

In a standard vertically related market comprising an upstream monopoly supplier and down-

stream differentiated duopoly firms, we showed that whether the behavior of a downstream firm

introducing a new product becomes a strategic complement or substitute depends on upstream

efficiency; that is, the efficiency level of cost-reducing R&D by the upstream supplier. When

upstream is efficient, the result of a new product introduction game is a strategic complement.

A strategic complement in the behavior of introducing a new product implies that each firm

quickly introduces or develops a new product if its rival introduces a new product, so the vari-

eties of products expand and product innovation rapidly progresses in such a case. Thus, if the

rival coincidentally introduces a new product in the equilibrium of strategic complementarities,

consumer welfare can increase and further industrial development can be realized, and therefore,

it may be desirable for the whole society.

Although we considered a simple vertical structure in this paper, its analysis is limited to a

domestic or single region’s market. When downstream firms have two options, that is, “produce

the product for domestic consumers” and “introduce a new product for foreign consumers,”

it would be interesting to consider what equilibrium patterns arise. Additionally, we did not

consider the effect of vertical integration/separation on upstream and downstream innovation.

14As the figure for equilibrium in the differentiated Bertrand competition is almost the same as that in the

Cournot case, we omit it.
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When upstream and a downstream firm are integrated, because their organizational forms alter,

we expect that innovation activities would be affected. However, this consideration is beyond

the scope of this study. Hence, we leave it to future research.

Acknowledgements

We specially thank Noriaki Matsushima for his highly constructive comments and suggestions.

We thank Keizo Mizuno and Keiichi Kishi, in addition to participants at the JEA Spring Meeting

(Kwansei Gakuin University), for their useful comments. This work was supported by JSPS

KAKENHI [grant numbers 18K01613, 20K01646]. We thank Maxine Garcia, PhD, from Edanz

(https://jp.edanz.com/ac) for editing a draft of this manuscript. All errors are our own.

Appendix A. Proof of Proposition 2.

By comparing ΦN with ΦI , we obtain

ΦN − ΦI =
(1− c)2(1− γ)2k2(1− 4γk) g(k, γ)

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [γ + (−4γ2 + 8γ + 8) k − 3]2

and g(k, γ) ≡ 16(3γ4+5γ3+16γ2+22γ+8)k3−12(5γ3+5γ2+8γ+6)k2+24γ2k−3γ+3.

We show that g(k, γ) > 0 and sign{ΦN − ΦI} depend only on 1− 4γk. To prove g(k, γ) > 0, it

is sufficient to show that g(k, γ) has its minimum value at k = k0 and c = 1, and that value is

positive.

First, we show that g(k, γ) is an increasing function of k; that is, g(k, γ) is smallest at k = k0.

The first derivative g(k, γ) with respect to k is ∂g(k, γ)
/
∂k = 24[2(3γ4 + 5γ3 + 16γ2 + 22γ +

8)k2 − (5γ3 + 5γ2 + 8γ + 6)k + γ2]. ∂g(k, γ)/∂k is a quadratic function of k and the coefficient

of k2 is positive. Hence, by solving ∂g(k, γ)/∂k > 0 for k, we obtain k < k1 and k > k2, where

k1 and k2 are roots of g(k, γ) = 0 for k and k1 < k2.

As k0 = 1/[2c(2γ + 1)] decreases with c, k0 has its minimum value at c = 1. We illustrate
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Figure 5: k0 at c = 1 and the two roots of g(k, γ) = 0

k1, k2, and k0 at c = 1 in Figure 5. Using numerical calculation, we find that for γ ∈ [0, 1], the

unique root of k2 − k0|c=1 = 0 is γ = 1. Hence, ∂g(k, γ)/∂k > 0 for any k > k0. Therefore,

g(k, γ) has its minimum value at k = k0.

Second, we show ∂g(k0, γ)/∂c < 0. The derivation yields

∂g(k0, γ)

∂c
=
∂g(k0, γ)

∂k
× ∂k0

∂c
=
∂g(k0, γ)

∂k

[
−1

2c2(2γ + 1)

]
< 0.

The last inequality is satisfied because ∂g(k, γ)/∂k > 0. Hence, g(k0, γ) is a decreasing function

for c and it has its minimum value when c = 1.

From the above discussion, g(k0, γ) has the following minimum value at k = k0 and c = 1:

g(k0, γ)
∣∣
c=1

= (1−γ)2(γ+1)
(2γ+1)3

> 0. Because g(k0, γ)
∣∣
c=1

is positive, ∀k > k0, g(k, γ) > 0. This result

implies that sign{ΦN − ΦI} depends only on “1− 4γk.” Hence, ΦN > ΦI iff k < 1/(4γ).

Appendix B. Proof of Result 1.

Case (i). From Proposition 2, the equilibrium regime is either “IN&NI” or “NN” if f > ΦN ;

and the equilibrium regime is “II” if f < ϕN . Hence, to prove the first part, we should show

that CSII > CSIN (= CSNI) > CSNN . This is because underinvestment occurs only if f > ΦN .

Case (ii). Applying a similar discussion to that in case (i), we find that underinvestment

occurs only if f > min{ΦN ,ΦI}, where the equilibrium regime is also either “IN&NI” or
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“NN .” Hence, in both cases, if we show CSII > CSIN > CSNN , the proof is complete.

First, we consider sign{CSII − CSIN}:

CSII − CSIN =
(1− c)2(1− γ)k2 ψCS

1

2[(4γ + 2)k − 1)]2 [γ + (−4γ2 + 8γ + 8) k − 3]2
,

where ψCS
1 ≡ 8(2 + 10γ + 9γ2 − 4γ3 − 2γ4)k2 − 8γ(2− γ2)k − γ2 + 2γ − 3.

sign{CSII − CSIN} depends only on ψCS
1 . Because ψCS

1 is a quadratic function of k and

the coefficient of k2 is positive, ψCS
1 = 0 has two roots: kCS

1 and kCS
2 . By solving ψCS

1 > 0 for

k, we obtain k < kCS
1 or k > kCS

2 , where

kCS
1 ≡ 2γ(2−γ2)−

√
6γ4−40γ3+34γ2+52γ+12

4(2+10γ+9γ2−4γ3−2γ4)
; kCS

2 ≡ 2γ(2−γ2)+
√

6γ4−40γ3+34γ2+52γ+12

4(2+10γ+9γ2−4γ3−2γ4)
.

We compare kCS
2 with k0. We consider the case c = 1. Using numerical calculation, we find

∀γ ∈ [0, 1), k0|c=1 > kCS
2 . Because k0 takes the minimum value at c = 1, k0 > kCS

2 > kCS
1 for

any c > 0. Hence, CSII − CSIN > 0.

Next, we consider CSIN − CSNN and apply a proof similar to that above:

CSIN − CSNN = − (c− 1)2(γ − 1)k2 ψCS
2

(1− 2(γ + 2)k)2 [γ + (−4γ2 + 8γ + 8) k − 3]2
,

where ψCS
2 ≡ 4(3γ4 − 6γ3 − 6γ2 + 16γ + 8)k2 − 4γ(γ2 − 2γ + 2)k − 3 + 2γ.

sign{CSIN −CSNN} depends only on ψCS
2 . Because the coefficient of k2 in ψCS

2 is positive,

by solving ψCS
2 > 0 for k, we obtain k < kCS

3 or k > kCS
4 , where

kCS
3 ≡ γ(γ2−2γ+2)−(2−γ)

√
γ4−6γ3+γ2+14γ+6

2(3γ4−6γ3−6γ2+16γ+8)
; kCS

4 ≡ γ(γ2−2γ+2)+(2−γ)
√

γ4−6γ3+γ2+14γ+6

2(3γ4−6γ3−6γ2+16γ+8)
.

We show k0 > kCS
4 (> kCS

3 ). At c = 1, using numerical calculation, we find that, ∀γ ∈ [0, 1),

k0|c=1 > kCS
4 . Because k0 has its minimum value at c = 1, for any c > 0, k0 > kCS

4 > kCS
3 holds.

Therefore, CSIN − CSNN > 0.
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Appendix C. Proof of Result 2.

In both regimes, we need to determine, given the downstream R&D cost f , which regime maxi-

mizes the total surplus.

We consider case (i) and compare the gross benefits. First, we consider ΨTS
21 −ΨTS

10 :

ΨTS
21 −ΨTS

10 =
(1− c)2(1− γ)2k2 gTS(k, γ)

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3γ]2
.

sign{ΨTS
21 − ΨTS

10 } depends only on gTS(γ, k). From Figure 2, we obtain gTS(γ, k) > 0 if

max{1/2, k0} < k < kTS .

Next, we consider ΨTS
21 −ΨTS

20 :

ΨTS
21 −ΨTS

20 =
(1− c)2(1− γ)2k2 gTS(γ, k)

4[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
.

Hence, sign{ΨTS
21 −ΨTS

20 } is the same as sign{ΨTS
21 −ΨTS

10 }. Then, we obtain ΨTS
21 −ΨTS

10 > 0 if

max{1/2, k0} < k < kTS .

Finally, we consider ΨTS
20 −ΨTS

10 :

ΨTS
20 −ΨTS

10 =
(1− c)2(1− γ)2k2 gTS(γ, k)

4[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
.

sign{ΨTS
20 −ΨTS

10 } is also the same as sign{ΨTS
21 −ΨTS

10 }. Thus, ΨTS
20 −ΨTS

10 > 0 if max{1/2, k0} <

k < kTS .

From these, we have the following ranking of the thresholds:

ΨTS
10 < ΨTS

20 < ΨTS
21 if max{1/2, k0} < k < kTS ,

ΨTS
21 ≤ ΨTS

20 ≤ ΨTS
10 if k ≥ kTS .

 (10)

Then, we establish Lemma 1.

Lemma 1. (i) For max{1/2, k0} < k < kTS, the best regime for total welfare is “II” if f ≤ ΨTS
20 ;

and “NN” if f > ΨTS
20 . (ii) For k ≥ kTS, the best regime for total welfare is “II” if f ≤ ΨTS

21 ;

“IN” or “NI” if ΨTS
21 < f ≤ ΨTS

10 ; and “NN” if f > ΨTS
10 .

By comparing ΨTS
10 , ΨPS

20 , ΨTS
21 , ΦI , and ΦN , we show the ranking of thresholds. First, we
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show ΦI < min{ΨTS
10 ,Ψ

TS
21 }. The difference ΨTS

10 − ΦI yields

ΨTS
10 − ΦI =

(1− c)2(1− γ)k2 gTS
10,I

[1− 2(γ + 2)k]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
,

where gTS
10,I ≡ 4(7γ4 − 10γ3 − 42γ2 + 32γ + 40)k2 − 4(4γ3 − 11γ2 − 6γ + 16)k + 2γ2 − 7γ + 4.

sign{ΨTS
10 −ΦI} depends only on gTS

10,I . By solving gTS
10,I = 0 for k, we obtain two roots k110,I and

k210,I , where k
1
10,I < k210,I . Because the coefficient of k2 in gTS

10,I is positive, gTS
10,I > 0 if k < k110,I

or k > k210,I . Additionally, using numerical calculation, we can show k110,I < k210,I < 1/2. As we

assume k > max{1/2, k0}, we obtain gTS
10,I > 0, which leads to ΨTS

10 − ΦI > 0.

Next, we consider ΨTS
21 − ΦI :

ΨTS
21 − ΦI =

(1− c)2(1− γ)k2 gTS
21,I

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
,

where gTS
21,I ≡ 32(10γ6 +4γ5 − 23γ4 − 14γ3 +98γ2 +128γ+40)k4 − 96(5γ5 − 2γ4 − 12γ3 +7γ2 +

26γ+12)k3+4(65γ4− 78γ3− 87γ2+118γ+90)k2+4(−15γ3+28γ2+ γ− 14)k+5γ2− 12γ+5.

sign{ΨTS
21 − ΦI} depends only on gTS

21,I . To prove ΨTS
21 − ΦI > 0, we show (i) gTS

21,I > 0 at

k = 1/2 and ∂gTS
21,I/∂k > 0; and (ii) ∂gTS

21,I/∂k > 0 at k = 1/2 and ∂2gTS
21,I/∂k

2 > 0.

First, we show (ii) ∂gTS
21,I/∂k > 0 at k = 1/2 and ∂2gTS

21,I/∂k
2 > 0:

∂2gTS
21,I

∂k2
= 8

 48
(
10γ6 + 4γ5 − 23γ4 − 14γ3 + 98γ2 + 128γ + 40

)
k2

−72
(
5γ5−2γ4−12γ3+7γ2+26γ+12

)
k + 65γ4−78γ3−87γ2+118γ+90

 .
By solving ∂2gTS

21,I

/
∂k2 = 0 for k, we obtain two roots. Using numerical calculation, we can show

that all roots are smaller than 1/2. Because the coefficient of k2 in the equation ∂2gTS
21,I/∂k

2

is positive and we assume k > max{1/2, k0}, ∂2gTS
21,I/∂k

2 > 0. Furthermore, by substituting

k = 1/2 into ∂gTS
21,I/∂k, we obtain

(
∂gTS

21,I

/
∂k

)∣∣
k=1/2

= 4(40γ6 − 74γ5 + 9γ4 + 67γ3 + 207γ2 +

163γ+20) > 0. Thus, we obtain (ii) ∂gTS
21,I/∂k > 0 at k = 1/2 and ∂2gTS

21,I/∂k
2 > 0, which leads

to ∂gTS
21,I/∂k > 0 ∀k > 1/2.

Because we already have ∂gTS
21,I/∂k > 0, to prove (i) gTS

21,I > 0 at k = 1/2 and ∂gTS
21,I/∂k > 0,

we only show gTS
21,I > 0 at k = 1/2: gTS

21,I

∣∣
k=1/2

= 20γ6− 52γ5+43γ4+8γ3+86γ2+52γ+3 > 0.
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Therefore, ∀k > 1/2, gTS
21,I > 0, which implies ΨTS

21 − ΦI > 0. From this and ΨTS
10 − ΦI > 0, we

obtain Lemma 2.

Lemma 2. ΦI < min{ΨTS
10 , Ψ

TS
21 }.

We show ΨTS
21 > ΦN and ΨTS

20 > ΦN . We consider ΨTS
21 − ΦN :

ΨTS
21 − ΦN =

(1− c)2(1− γ)k2 gTS
21,N

[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k + γ − 3]2
,

where gTS
21,N ≡ 4(4γ4 − 16γ3 + 3γ2 + 26γ + 10)k2 − 4(2γ3 − 7γ2 + 3γ + 5)k + γ2 − 3γ + 1.

sign{ΨTS
21 −ΦN} depends only on gTS

21,N . By solving gTS
21,N = 0 for k, we obtain two roots k121,N

and k221,N , where k121,N < k221,N . The coefficient of k2 in gTS
21,N is positive; hence, gTS

21,N > 0 if

k < k121,N or k > k221,N . Additionally, using numerical calculation, we can show k121,N < k221,N <

1/2. Because we assume k > max{1/2, k0}, we obtain gTS
21,N > 0, which leads to ΨTS

21 −ΦN > 0.

Next, we consider ΨTS
20 − ΦN :

ΨTS
20 − ΦN = −

(c− 1)2(γ − 1)k2 gTS
20,N

4[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [γ + (−4γ2 + 8γ + 8)k − 3]2
,

where gTS
20,N ≡ 64(13γ6−8γ5−134γ4−44γ3+200γ2+176γ+40)k4−32(27γ5−49γ4−214γ3+72γ2+

280γ+100)k3+12(27γ4−78γ3−131γ2+140γ+114)k2−4(13γ3−50γ2−17γ+54)k+3γ2−14γ+7.

sign{ΨTS
20 −ΦN} depends only on gTS

20,IN . To prove ΨTS
20 −ΦN > 0, we show (i) gTS

20,N > 0 at

k = 1/2 and ∂gTS
20,N/∂k > 0; and (ii) ∂gTS

20,N/∂k > 0 at k = 1/2 and ∂2gTS
20,N/∂k

2 > 0.

First, we show (ii) ∂gTS
20,N/∂k > 0 at k = 1/2 and ∂2gTS

20,N/∂k
2 > 0:

∂2gTS
20,N

∂k2
=24

 32(13γ6−8γ5−134γ4−44γ3 + 200γ2+176γ+40)k2

−8(27γ5−49γ4−214γ3+72γ2+280γ+100)k+27γ4−78γ3−131γ2+140γ+114

 .
Solving ∂2gTS

20,N/∂k
2 = 0 for k, we obtain two roots. Using numerical calculation, we can show

that both roots are smaller than 1/2. Because the coefficient of k2 in ∂2gTS
20,N/∂k

2 is positive

and we assume k > max{1/2, k0}, ∂2gTS
20,N/∂k

2 > 0. Additionally, by substituting k = 1/2 into

∂gTS
20,N/∂k, we obtain

(
∂gTS

20,N

/
∂k

)∣∣
k=1/2

= 4
(
104γ6−226γ5−697γ4+685γ3+825γ2+165γ+8

)
>

0. Therefore, we obtain (ii) ∂gTS
20,N/∂k > 0 at k = 1/2 and ∂2gTS

20,N/∂k
2 > 0, which leads to
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Figure 6: Region for gTS
10,N (k, γ) > 0

∂gTS
20,N/∂k > 0 for any k > 1/2.

Because we already have ∂gTS
20,N/∂k > 0, to prove (i) gTS

20,N > 0 at k = 1/2 and ∂gTS
20,N/∂k > 0,

we only show gTS
20,N > 0 at k = 1/2: gTS

20,N

∣∣
k=1/2

= 52γ6−140γ5−259γ4+420γ3+222γ2+24γ+1 >

0. Therefore, ∀k > 1/2, gTS
20,N > 0, which implies ΨTS

20 − ΦN > 0. Hence, we obtain Lemma 3.

Lemma 3. ΨTS
21 > ΦN and ΨTS

20 > ΦN .

Finally, we compare ΨTS
10 with ΦN :

ΨTS
10 − ΦN =

(1− c)2(1− γ)k2 gTS
10,N

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k + γ − 3]2
,

where gTS
10,N ≡ 32(22γ6−16γ5−223γ4−62γ3+274γ2+208γ+40)k4−96(7γ5−14γ4−56γ3+17γ2+

62γ+20)k3+4(55γ4−180γ3−297γ2+296γ+234)k2−4(7γ3−34γ2−13γ+40)k+γ2−8γ+5.

Note that all roots for the above equation are depicted in Figure 6. The blue curves represent

the set of pair (γ, k), which satisfies gTS
10,N (γ, k) = 0. The dashed line represents k = 1/2. Hence,

given γ, we can implicitly define k = kTS
10,N as the largest root if for k > 1/2, it exists. In the

shadow area, gTS
10,N (γ, k) > 0.

This result yields Lemma 4.

Lemma 4. ΨTS
10 > ΦN if k > kT10,N ; ΨTS

10 ≤ ΦN if max{1/2, k0} < k ≤ kT10,N .
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From Proposition 2 and Lemmas 1 and 4, we obtain three thresholds for k: 1/(4γ), kTS , and

kTS
10,N . They are depicted in Figure 7. Then, we obtain kTS

10,N < min{kTS , 1/(4, γ)}. However,

we cannot conclude that kTS
10,N < kTS because kTS

10,N is implicitly defined and it diverges to

infinity as γ → 0. Hence, we potentially have five regions: (i) max{1/2, k0} < k ≤ kTS
10,N ,

(ii) max{1/2, k0, kTS
10,N} < k ≤ min{1/(4γ), kTS}, (iii) max{1/2, k0, kTS} < k ≤ 1/(4γ), (iv)

max{1/2, k0, 1/(4γ)} < k ≤ kTS , and (v) max{1/2, k0, kTS , 1/(4γ)} < k. Each case is depicted

in Figure 8.
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Figure 7: Thresholds
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Figure 8: Cases for threshold ranking

From Proposition 2, Lemmas 2–4, and (10), we obtain the threshold ranking:

ΦI < ΨTS
10 ≤ ΦN < ΨTS

20 < ΨTS
21 if (i) max{1/2, k0} < k ≤ kTS

10,N ,

ΦI ≤ ΦN < ΨTS
10 ≤ ΨTS

20 ≤ ΨTS
21 if (ii) max{1/2, k0, kTS

10,N} < k ≤ min{1/(4γ), kTS},

ΦI ≤ ΦN < ΨTS
21 < ΨTS

20 < ΨTS
10 if (iii) max{1/2, k0, kTS} < k ≤ 1/(4γ),

ΦN < ΦI < ΨTS
10 ≤ ΨTS

20 ≤ ΨTS
21 if (iv) max{1/2, k0, 1/(4γ)} < k ≤ kTS ,

ΦN < ΦI < ΨTS
21 < ΨTS

20 < ΨTS
10 if (v) max{1/2, k0, kTS , 1/(4γ)} < k.

By combining this ranking with Lemma 1 and Proposition 2, we can identify the condition

for downstream underinvestment. Therefore, the proof is complete.
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Appendix D. SPNE outcomes in downstream Bertrand.

To identify Bertrand rivalry, we attach “ˆ” to the variables of the equilibrium solutions.

No one invests regime: NN

ŵNN = 1−(c+1)(2−γ)(γ+1)k
1−2(2−γ)(γ+1)k , x̂NN = 1−c

2(2−γ)(γ+1)k−1 , π̂
NN
U = (1−c)2k

2(2−γ)(γ+1)k−1 ,

p̂NN
e,i = 1−(γ+1)k(c−2γ+3)

2(γ2−γ−2)k+1
, and π̂NN

Di = (1−c)2(1−γ)(γ+1)k2

(2(γ2−γ−2)k+1)2
.

Mixed regime: IN or NI

ŵIN = 2(c+1)(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3)
4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3) ,

x̂IN = (1−c)(γ(γ+5)+3)
4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3) , π̂

IN
U = (1−c)2(γ(γ+5)+3)k

4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3) ,

p̂INe,i = −(2γ+1)k(c(γ+1)(γ+2)+5(1−γ)γ+6)+γ(γ+5)+3
γ(γ+5)−4(2γ+1)((2−γ)γ+2)k+3 , p̂INn,i = −(2γ+1)k(c(γ+1)(γ+2)+5(1−γ)γ+6)+γ(γ+5)+3

γ(γ+5)−4(2γ+1)((2−γ)γ+2)k+3 ,

p̂INe,j = −2(2γ+1)k(2γc+c+2(1−γ)γ+3)+γ(γ+5)+3
γ(γ+5)−4(2γ+1)((2−γ)γ+2)k+3 , π̂INDi = 2(1−c)2(1−γ)(2γ+1)(3γ+2)2k2

(4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3))2
,

and π̂INDj = 4(1−c)2(1−γ)(γ+1)3(2γ+1)k2

(4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3))2
.

All product-developers regime: II

ŵII = (c+1)(3γ+1)k−(γ+1)
(6γ+2)k−(γ+1) , x̂II = (1−c)(γ+1)

(6γ+2)k−(γ+1) , π̂
II
U = (1−c)2(γ+1)k

(6γ+2)k−(γ+1) , q̂
II
e,i =

(3γ+1)k(γc+c−γ+3)−2(γ+1)
4(3γ+1)k−2(γ+1) ,

and π̂IIDi =
(1−c)2(1−γ)(γ+1)(3γ+1)k2

2[2(3γ+1)k−(γ+1)]2
.
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