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Abstract

We build a successive Bertrand model with homogenous good. We show that increasing the pro-

duction efficiency of upstream industry can reduce upstream firms’ profits. We also show that

increasing the production efficiency of downstream industry may reduce downstream firms’ prof-

its. Hence, an industrial policy that aims at improving production efficiency may be undesirable

for firms.
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1 Introduction

We consider Dastider (1995)-type homogenous-good Bertrand competition in both upstream and

downstream markets. We show that when upstream and downstream production is efficient, in-

creasing upstream and downstream production efficiency reduces upstream and downstream

firms’ profits, respectively. Because improving efficiency in a vertical structure does not neces-

sarily increase firms’ profits, our results imply that aiming to improve efficiency is a problematic

issue in industrial policy.

According to an empirical study conducted by Flath (2012), among 70 Japanese industries,

35 engage in Bertrand competition, whereas five engage in Cournot competition. Although we

assume homogenous-good Bertrand competition in both upstream and downstream markets,

empirical evidence suggests that price competition is more common than quantity competition;

hence, our model is partially consistent with the results of the empirical study.

We incorporate Dastider (1995)-type Bertrand competition into a Salinger (1988)-type ver-

tical structure model. Salinger (1988) assumed Cournot competition in both upstream and

downstream markets.1 Dastider (1995) examined homogenous Bertrand competition with a

convex cost of firms, and demonstrated that, in homogenous Bertrand competition, equilibrium

has a range if oligopolists have a convex cost.2 To the best of our knowledge, price competition

for a homogeneous product in both upstream and downstream markets has not been considered

in a study.

2 Model

We consider a market with m upstream and n downstream firms. Each upstream and down-

stream firm produces homogenous input and a final product, respectively. Upstream firms

1Salinger’s (1988) model is frequently used in industrial organization literature, for example, see Matsushima
(2006) and Mukherjee (2019).

2Dastider’s model (1995) is applied in various scenarios; see, for example, Cabon-Dhersin and Drouhin (2014),
Mizuno and Takauchi (2020), and Takauchi and Mizuno (2021).
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have a convex cost function; we assume that the cost is γx2k if the output of upstream firm

k (= 1, . . . ,m) is xk. Upstream firms compete on price, and upstream firm k’s input price is

denoted by wk. Then, upstream firm k’s profit is πu
k ≡ wkxk − γx2k.

Each downstream firm purchases input from upstream firms, choosing the lowest input price

w ≡ min{w1, . . . , wm}. If multiple upstream firms choose w, then downstream firms purchase an

equal quantity of inputs from upstream firms. We assume that to produce one unit of output,

each downstream firm uses one unit of input. Additionally, downstream firms incur production

costs. When downstream firm i (= 1, . . . , n) produces qi output, its production cost is λq2i .

Downstream firms compete on price and the price of downstream firm i is denoted by pi. The

demand function in the downstream market is Q ≡ (a− p)/b, where p ≡ min{p1, . . . , pn}. Each

downstream firm’s demand is determined by qi = Q if for any j (= 1, . . . , n) and i ̸= j, pi < pj ;

qi = Q/s if pi is the lowest price and s downstream firms choose it; and qi = 0 if pi is not the

lowest price. Downstream firm i’s profit is Πd
i ≡ (pi − w)qi − λq2i . The consumer surplus is

CS = bQ2/2 and the total surplus is SW = CS +
∑m

k=1 π
u
k +

∑n
j=1Π

d
j .

The timing of the game is as follows: In the first stage, each upstream firm chooses its input

price wk. In the second stage, each downstream firm decides where to purchase its input and

chooses its final-good price pi.

Because we assume homogenous price competition with a convex cost, the equilibria of each

stage game are given by a certain closed interval (Dastider, 1995). To choose a unique equilib-

rium, we use the payoff-dominance criterion as equilibrium refinement. This criterion was often

used in previous studies (e.g., Cabon-Dhersin and Drouhin, 2014; Mizuno and Takauchi, 2020).

Hence, the equilibrium concept is a subgame-perfect equilibrium with a payoff-dominance crite-

rion. We further assume that λ < bn/(n−1) ≡ λ̂. Under this assumption, the downstream price

chosen through equilibrium refinement with the payoff-dominance criterion does not coincide

with the price that maximizes the joint profits of downstream firms.
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3 Equilibrium calculation

Because downstream firms are symmetric, they choose symmetric price p(w) in equilibrium.

We define the aggregate and each downstream firm’s outputs at p(w) as Q(w) = [a − p(w)]/b

and q(w) = Q(w)/n, respectively. In equilibrium, downstream firms never deviate from p(w).

Hence, the following inequalities must be satisfied:

[p(w)− w]q(w)− λq(w)2 ≥ [p(w)− w]Q(w)− λQ(w)2, [p(w)− w]q(w)− λq(w)2 ≥ 0.

The first inequality represents the condition under which each downstream firm does not under-

cut the price and the second inequality indicates that each downstream firm has no incentive to

increase its price.

Solving the above inequalities for p(w), we obtain Nash equilibrium prices as the interval:

p(w) ∈ [p(w), p̄(w)], where

p(w) =
bnw + aλ

bn+ λ
, p̄(w) =

bnw + a(1 + n)λ

bn+ (1 + n)λ
. (1)

Because we use the payoff-dominance criterion as equilibrium refinement, we derive symmet-

ric collusive price pcol(w) that maximizes the joint profit of downstream firms
∑n

j=1Π
d
j :

pcol(w) =
a(bn+ 2λ) + bnw

2(bn+ λ)
. (2)

Under the assumption λ < λ̂, we obtain p̄(w) < pcol(w). Hence, the subgame outcome is p̄(w);

that is, downstream firms choose the highest price in Nash equilibria.

Next, we consider the first stage. Because upstream firms are symmetric, they choose sym-

metric input price w∗ in equilibrium, which leads to symmetric demand Q(w∗)/m. As in the

second stage, the conditions under which upstream firms do not undercut or raise prices are

expressed by the following inequalities:

w∗Q(w∗)

m
− γ

[
Q(w∗)

m

]2
≥ w∗Q(w∗)− γQ(w∗)2, w∗Q(w∗)

m
− γ

[
Q(w∗)

m

]2
≥ 0.
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Then, input prices in Nash equilibria are given by the interval w∗ ∈ [w, w̄], where

w =
aγn

bmn+ λm+ λmn+ γn
, w̄ =

aγ(m+ 1)n

bmn+ λm+ n(γ + γm+ λm)
.

Similarly, the price that maximizes the joint profit of upstream firms is

wcol =
a(bmn+ λm+ λmn+ 2γn)

2[bmn+ λm+ n(γ + λm)]
.

Comparing the above input prices, we obtain the following lemma.

Lemma 1. (i) w̄ > w. (ii) wcol > w̄ iff γ < m[bn+(1+n)λ]
n(m−1) ≡ γ̂.

Proof. (i) w̄ − w = aγm2n(bn+λ+λn)
(bmn+λm+λmn+γn)(bmn+λm+γmn+λmn+γn) > 0.

(ii) wcol − w̄ = am(bn+λ+λn)(bmn+λm−γmn+λmn+γn)
2(bmn+λm+λmn+γn)(bmn+λm+γmn+λmn+γn) . Hence, Lemma 1 holds.

From this lemma, the equilibrium input price is w̄ if γ < γ̂; that is, wcol if γ ≥ γ̂.

4 Comparative statics

4.1 Case with upper bound pricing

First, we consider the case with γ < γ̂; that is, equilibrium upstream and downstream prices

are w = w̄ and p = p̄(w̄). Substituting these prices into the upstream and downstream profits

yields

π̄u =
a2γmn2

[bmn+ λm+ n(γ + γm+ λm)]2
, (3)

Π̄d =
a2λm2n

[bmn+ λm+ n(γ + γm+ λm)]2
. (4)

From (3) and (4), we establish Proposition 1.3

Proposition 1. Suppose γ < γ̂. (i) The profit of each upstream firm is a single-peaked function

of γ and takes its maximum value at γ = m[bn + (1 + n)λ]/[n(m + 1)] ≡ γ̄; the profit of

3For welfare analysis, we only have well-known results. Hence, these results are reported in the Online Ap-
pendix.
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each upstream firm decreases with λ. (ii) The profit of each downstream firm is a single-peaked

function of λ and takes its maximum value at λ = n[bm+ (1 +m)γ]/[m(n+ 1)] ≡ λ̄; the profit

of each downstream firm decreases with γ.

Proof. See the Appendix.

From this proposition, we confirm that it is possible that efficient technology reduces each

firm’s profit. The intuition behind this result is as follows.

First, we consider the effects of production efficiency in upstream and downstream markets

on upstream firms’ profits. The inefficiency of upstream technology, that is, an increase in γ,

has two effects: production inefficiency effect and competition mitigation effect. Because the

production cost of upstream firms is γx2k, large γ leads to inefficient production. Additionally,

the equilibrium input price is determined by the condition that each upstream firm does not

undercut the equilibrium input price. For large γ, if an upstream firm gains whole-market

demand by undercutting the input price, its production cost also becomes large. Therefore,

when γ is large, the equilibrium input price increases because upstream firms are less likely to

undercut the input price. Thus, an increase in γ has the effect of relaxing competition.

Next, consider the scenario in which each of the effects dominates. As γ converges to zero,

upstream competition approaches Bertrand competition with a constant marginal cost. Then,

upstream firms’ profits converge to zero. Additionally, when γ diverges infinitely, the profits

of upstream firms converge to zero. Thus, when γ is small, the competition mitigation effect

dominates, and when γ is large, the production inefficiency effect dominates. Therefore, the

profit of each upstream firm is an inverted-U shape for γ.

When downstream production becomes less efficient, that is, an increase in λ, upstream firms

face less efficient trading partners. Hence, an increase in λ always decreases upstream firms’

profits.

Second, we consider the effects of production efficiency in upstream and downstream markets
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on downstream firms’ profits. These effects are similar to those on upstream firms’ profits. An

increase in λ has production inefficiency and competition mitigation effects. Hence, the profit of

each downstream firm is an inverted-U shape for λ. Additionally, for large γ, downstream firms

face inefficient input suppliers. Hence, downstream firms’ profits decrease with γ.

Proposition 1 directly leads to the following.

Corollary 1. Upstream and downstream efficiency levels that maximize upstream and down-

stream profits increase with λ and γ, respectively; that is, ∂γ̄/∂λ > 0 and ∂λ̄/∂γ > 0.

As explained in the intuition behind Proposition 1, an increase in γ has a production in-

efficiency effect and competition mitigation effect in the upstream market. These effects are

balanced at γ = γ̄, where upstream firms’ profits are maximized. When downstream market

inefficiency increases, that is, λ increases, upstream firms can increase their profits by choosing

a higher price that achieves less output; that is, as downstream market inefficiency increases,

the competition mitigation effect is strengthened. Thus, at larger γ, upstream firms’ profits are

maximized, which means that γ̄ increases with λ.

The reason that λ̄ increases with γ can be explained in the same manner. Consider the case

in which λ increases at γ = γ̄, where downstream firms’ profits are maximized. Then, γ that

maximizes downstream firms’ profits increases because the effect of increasing γ on mitigating

competition is strengthened.
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4.2 Case with upstream collusive pricing

Next, we examine the case with γ ≥ γ̂, which yields collusive pricing in the upstream market.4

Then, the equilibrium prices are w = wcol and p = p̄(wcol), and equilibrium profits are

πu
col =

a2n

4[bmn+ λm+ n(γ + λm)]
, (5)

Πd
col =

a2λm2n

4[bmn+ λm+ n(γ + λm)]2
. (6)

(5) and (6) yield Proposition 2.

Proposition 2. Suppose γ ≥ γ̂. (i) The profit of each upstream firm decreases with γ and λ.

(ii) The profit of each downstream firm is a single-peaked function of λ and takes its maximum

value at λ = n(bm+ γ)/[m(n+ 1)] ≡ λcol; the profit of each downstream firm decreases with γ.

Proof. See the Appendix.

In this case, only the conditions that determine the equilibrium input price differ from the

case with upper bound pricing. When the equilibrium input price is collusive, the competition

mitigation effect of increased production inefficiency in the upstream market disappears. Hence,

upstream firms’ profits decrease with γ. The other results are similar to Proposition 1, and so

are their intuitions.

Acknowledgements
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4For a more detailed argument on collusive pricing, for example, see Dastider (2001) and Takauchi and Mizuno
(2021).
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Appendix A. Proofs

Proof of Proposition 1. Differentiating the profit of an upstream firm with respect to γ or λ

yields

∂π̄u

∂γ
= a2mn2[m(bn+λ+nλ)−n(1+m)γ]

[bmn+λm+n(γ+γm+λm)]3
,

∂π̄u

∂λ
= − 2a2γm2n2(n+1)

[bmn+λm+n(γ+γm+λm)]3
< 0.

Hence, ∂π̄u/∂γ > 0 if γ < m[bn+(1+n)λ]
n(m+1) ≡ γ̄. This threshold is undoubtedly smaller than γ̂:

γ̄ < γ̂. Additionally, ∂π̄u/∂γ ≤ 0 if γ̄ ≤ γ < γ̂. Thus, π̄u is a single-peaked function of γ.

Differentiating the profit of the downstream firm with respect to γ or λ yields

∂Π̄d

∂γ
= − 2a2λm2(m+1)n2

[bmn+λm+n(γ+γm+λm)]3
< 0,

∂Π̄d

∂λ
= a2m2n[n(bm+γ+mγ)−m(1+n)λ]

[bmn+λm+n(γ+γm+λm)]3
.

Hence, ∂Π̄d/∂λ > 0 if λ < n[bm + (1 + m)γ]/[m(n + 1)] ≡ λ̄. Hence, λ̄ < λ̂. Additionally,

∂Π̄d/∂λ ≤ 0 if λ ≥ λ̄. Therefore, Π̄d is a single-peaked function of λ.

Proof of Proposition 2. Differentiating profits yields

∂πu
col

∂γ
= − a2n2

4[bmn+λm+n(γ+λm)]2
< 0,

∂πu
col

∂λ
= − a2mn(n+1)

4[bmn+λm+n(γ+λm)]2
< 0,

∂Πd
col

∂γ
= − a2λm2n2

2[bmn+λm+n(γ+λm)]3
< 0,

∂Πd
col

∂λ
= a2m2n[n(bm+γ)−m(1+n)λ]

4[bmn+λm+n(γ+λm)]3
.

Hence, ∂Πd
col/∂λ > 0 if λ < n(bm+γ)/[m(1+n)] ≡ λcol. Additionally, ∂Π

d
col/∂λ ≤ 0 if λ ≥ λcol.

Therefore, Πd
col is a single-peaked function of λ and it takes its maximum value at λ = λcol.
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Online Appendix of “Bertrand competition

in vertically related markets”.

by Tomomichi Mizuno and Kazuhiro Takauchi

This appendix presents results of comparative statics of our model. For example, a change in

firm numbers, m and n, and production efficiencies, γ and λ, brings standard and well-known

welfare results.

Input and final-good prices: The differentiation with respect to firm numbers is:

∂w̄

∂m
= − aγn(bn+λ+λn)

(bmn+λm+n(γ+γm+λm))2
< 0,

∂p̄

∂m
= − abγn2

(bmn+λm+n(γ+γm+λm))2
< 0,

∂w̄

∂n
= aγλm(m+1)

(bmn+λm+n(γ+γm+λm))2
> 0,

∂p̄

∂n
= − abλm2

(bmn+λm+n(γ+γm+λm))2
< 0.

The differentiation with respect to γ and λ is:

∂w̄

∂γ
= am(m+1)n(bn+λ+λn)

[bmn+λm+n(γ+γm+λm)]2
> 0,

∂p̄

∂γ
= abm(m+1)n2

(bmn+λm+n(γ+γm+λm))2
> 0,

∂w̄

∂λ
= − aγm(m+1)n(n+1)

(bmn+λm+n(γ+γm+λm))2
< 0,

∂p̄

∂λ
= abm2n(n+1)

(bmn+λm+n(γ+γm+λm))2
> 0.

Profits: The differentiation with respect to firm numbers is:

∂π̄u
k

∂m
= −a2γn2(bmn+λm+n(−γ+γm+λm))

(bmn+λm+n(γ+γm+λm))3
< 0,

∂Π̄d
i

∂m
= 2a2γλmn2

(bmn+λm+n(γ+γm+λm))3
> 0,

∂π̄u
k

∂n
= 2a2γλm2n

(bmn+λm+n(γ+γm+λm))3
> 0,

∂Π̄d
i

∂n
= −a2λm2(bmn−λm+n(γ+γm+λm))

(bmn+λm+n(γ+γm+λm))3
< 0.

Welfare: Consumer surplus, C̄S, and total surplus, ¯SW , become:

C̄S =
a2bm2n2

2[bmn+ λm+ n(γ + γm+ λm)]2
, ¯SW =

a2m2n2(b+ 2(γ + λ))

2[bmn+ λm+ n(γ + γm+ λm)]2
.

The differentiation with respect to firm numbers is:

∂C̄S

∂m
= a2bγmn3

(bmn+λm+n(γ+γm+λm))3
> 0,

∂ ¯SW

∂m
= a2γmn3(b+2(γ+λ))

(bmn+λm+n(γ+γm+λm))3
> 0,

∂C̄S

∂n
= a2bλm3n

(bmn+λm+n(γ+γm+λm))3
> 0,

∂ ¯SW

∂n
= a2λm3n(b+2(γ+λ))

(bmn+λm+n(γ+γm+λm))3
> 0.
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The differentiation with respect to γ and λ is:

∂C̄S

∂γ
= − a2bm2(m+1)n3

(bmn+λm+n(γ+γm+λm))3
< 0,

∂ ¯SW

∂γ
= −a2m2n2(bn−λm+n(γ+2λ+γm+λm))

(bmn+λm+n(γ+γm+λm))3
< 0,

∂C̄S

∂λ
= − a2bm3n2(n+1)

(bmn+λm+n(γ+γm+λm))3
< 0,

∂ ¯SW

∂λ
= −a2m2n2(bm+m(2γ+λ+γn+λn)−γn)

(bmn+λm+n(γ+γm+λm))3
< 0.

Upstream collusive pricing

Profits: The differentiation with respect to m and n is:

∂πu
col

∂m
= − a2n(bn+ λ)

2(2bmn+ 2λm+ γn)2
< 0,

∂Πd
col

∂m
=

a2γmn(bn+ λ)

2(2bmn+ 2λm+ γn)3
> 0,

∂πu
col

∂n
=

a2λm

2(2bmn+ 2λm+ γn)2
> 0,

∂Πd
col

∂n
= −

a2m2
(
2b2mn+ 2bλm+ bγn+ 2γλ

)
4(2bmn+ 2λm+ γn)3

< 0.

Welfare: Consumer surplus, CScol, and total surplus, SWcol, become:

CScol =
a2bm2n2

8(2bmn+ 2λm+ γn)2
, SWcol =

a2mn(7bmn+ 6λm+ 2γn)

8(2bmn+ 2λm+ γn)2
.

The differentiation with respect to firm numbers is:

∂CScol

∂m
=

a2bγmn3

4(2bmn+ 2λm+ γn)3
> 0,

∂SWcol

∂m
=

a2γn2(5bmn+ 4λm+ γn)

4(2bmn+ 2λm+ γn)3
> 0,

∂CScol

∂n
=

a2bλm3n

2(2bmn+ 2λm+ γn)3
> 0,

∂SWcol

∂n
=

a2λm2(8bmn+ 6λm+ γn)

4(2bmn+ 2λm+ γn)3
> 0.

The differentiation with respect to γ and λ is:

∂CScol

∂γ
= − a2bm2n3

4(2bmn+ 2λm+ γn)3
< 0,

∂SWcol

∂γ
= −a2mn2(5bmn+ 4λm+ γn)

4(2bmn+ 2λm+ γn)3
< 0,

∂CScol

∂λ
= − a2bm3n2

2(2bmn+ 2λm+ γn)3
< 0,

∂SWcol

∂λ
= −a2m2n(8bmn+ 6λm+ γn)

4(2bmn+ 2λm+ γn)3
< 0.
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