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We investigate the characteristic deformation behavior of rubber with carbon black (CB) filler. The 

deformation behaviors of a plane strain rubber unit cell containing CB fillers under monotonic and 

cyclic strain are investigated by computational simulation with a nonaffine molecular chain network 

model. The results reveal the substantial enhancement of the resistance of the rubber to macroscopic 

deformation, which is caused by the marked orientation hardening due to the highly localized 

deformation in the rubber. The disentanglement of the molecular chain during the deformation of 

rubber results in the magnification of the hysteresis loss, i.e., the Mullins effect, occurring in 

stress-stretch curves under cyclic deformation processes. The increase in volume fraction and in 

aggregation of the distribution of CB substantially raises the resistance of the rubber to deformation 

and hysteresis loss. The effect of the heterogeneous distribution of the initial average number of 

segments of molecular chains on the hysteresis loss has been clarified. 

1. Introduction 

It is well known that the blending of particulate fillers such as CB as depicted in Figs.1 (a) and 

(b) induces a remarkable change in the mechanical properties of rubber[1]. Figure 1(c) shows the 

typical stress-stretch relations of CB-filled/unfilled rubbers. The hysteresis loss, i.e., the Mullins 
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effect [2], is seen during the loading and unloading processes for unfilled rubber. The Mullins effect 

for CB-filled rubber is marked compared with that of unfilled rubber, which is closely related to the 

ultimate properties of filled rubber[1]. Consequently, several mechanisms for the enhancement of 

the ultimate properties of filled rubber have been suggested[3,4]. Here, we focus our attention on the 

evaluation of the enhancement of deformation resistance and hysteresis loss caused by filling CB to 

rubber. 

The constitutive equation for rubber exhibiting the Mullins effect during the loading and 

unloading process is established by employing a nonaffine molecular-chain network model[5], 

which was originally developed for the orientation hardening of amorphous polymers and may 

account for the change in the entanglement situation for the physical linkages during the deformation 

processes. Meanwhile, although the distribution of CB is somewhat aggregated to random, we 

assume that this distribution is periodic and establish a unit cell model composed of rubber and 

heterogeneous CB particles. The same constitutive equation established  for rubber and the linear 

elastic constitutive equation are employed for rubber and CB, respectively, without introduction of 

additional material parameters. The computational simulations employing these constitutive 

equations and unit cell models of rubber containing CB clarify the mechanisms of enhancement of 

deformation resistance and hysteresis loss, and the effect of volume fraction and distribution patterns 

of CB, and the heterogeneity of the initial average number of segments of molecular chains of rubber 

on these characteristics. The computationally predicted results and experimental results are 

compared to evaluate the adequacy of the present simulation. 

 

2. BASIC EQUATIONS 

2.1 Constitutive Equations 

To duplicate the experimentally observed characteristic features of the rubber, as shown in Fig.2,  

the microstructure of rubber is assumed to consist of long molecular chains which are randomly 
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distributed in space. A single chain, which consists of several segments containing monomers, is 

defined by two linkages which are assumed to be chemically or physically entangled points of 

molecular chains. The physical links are, in general, not permanent and may change depending on 

deformation. On the other hand, chemical links are permanent and preserve the entanglement 

situation. Figure 3(a) indicates a schematic illustration of a molecular chain network in the initial and 

deformed situations. The physical links may suffer breakdown during the thermodynamical process. 

Molecular dynamics simulation also suggests a change in the entanglement situation as depicted in 

Fig.3 (b). The decrease in the number of entangled points due to deformation causes an increase in  

the average number of segments N  in a single chain, enhanced extensibility, and a reduction in the 

stiffness of the material, i.e., softening, which play a very important role in the manifestation of the 

hysteresis of cyclic deformation behavior of rubber[6]. To account for the change in the number of 

entangled points, namely, in the number of segments N , depending on the temperature change and 

deformation during the orientation hardening process of amorphous polymers, a nonaffine molecular 

chain network theory was developed [5] in which the number of entangled points is expressed as  

suitable function of temperature and an appropriately defined measure of deformation.  

The complete constitutive equation for the rubber exhibiting the Mullins effect is derived on the 

basis of the nonaffine molecular-chain network theory[5]. It is easily adapted to an affine molecular 

chain network theory in order to account for the change in the entanglement situation depending on 

deformation and temperature change. Several affine molecular-chain network models have been 

proposed and employed for the evaluation of the deformation behaviors of rubber and amorphous 

polymer. Here we employ the eight-chain model [7]. The principal stress iσ  and principal stretch iλ  

relations become  
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where TnkC B

R =  is a constant, n  is the number of chains per unit volume, Bk  is Boltzmann’s 

constant, L  is the Langevin function, and p  is an indeterminate hydorstatic pressure.  

After some algebra[8], the rate-type expression of constitutive equation (1), which relates the 

rate of Kirchhoff stress ijS
&  to strain rate klε&  becomes 

ijklijklij PLS ′−= ε&& ,    ijklijklijkl FRL −=  , ijij pP δ&=′                                                                (2) 
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where ijσ , ijδ and ijB are the Cauchy stress tensor, Kronecker’s delta and the left stretch tensor, 

respectively. In this investigation, we introduce the volume constant constraints through the penalty 

method involving a fictitious bulk modulus K . Hence, the rate of change of the pressure in Eq.(2) is 

expressed as mmKp ε&& −= , with K  is at each instant determined as ( )
ijklLK maxψ= , with a 

sufficiently large number of ψ .  

To account for the change in the number of entangled points, namely, in the number of 

segments N , depending on the deformation during the orientation hardening process of rubber, we 

adopted the nonaffine molecular chain network theory [5], where the number of entangled points 

depends on the suitable measure of the deformation and temperature. Here, we employ the simplest 

version of the nonaffine molecular-chain network model[5] to accommodate the change in the 

number of segments N  depending on stretch cλ , as 

( ) ( )cc fNN λλ += 0 ,  =Nn constant,                                                      (4) 
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where 0N  is the initial average number of segments in a single chain, )( cf λ  is a polynomial which 

suitably expresses the experimental results, and we employ the quartic expression of cλ . We obtain 

the nonaffine generalization of Eqs.(1) to (3) by substituting  N  with ( )cN λ of Eq.(4). 

2.2 Homogenization Method 

 So far we have restricted our attention to the unfilled rubber. With regard to the CB-filled 

rubber, the volume fraction, morphology and distribution patterns substantially affect the 

mechanical characteristics of the rubber. Here, although the distribution of CB is  somewhat random, 

we assume a periodic distribution and discuss the essential features of the effect of filling CB in the 

rubber on the mechanical characteristics. To correlate the microscopic scale deformation to the 

macroscopic scale deformation, we employ the homogenization method.  

Consider the two-dimensional (2D) problem shown in Fig.4, with domain Ω  and boundary 

S  subjected to surface force iP on tS  and prescribed velocity on uS . The body is formed by the 

spatial repetition of a base cell Y made of different materials. Assuming that the base cell is very 

small, of order η  compared with the dimensions of the entire body,  the global coordinate is ix  for 

the entire body and the local coordinate is 
iy  related to the single base cell, then η= /ii xy . Similar 

to the assumption used in the case of linear elastic materials[9], the velocity 
iv  is presumed to be 

expressed as an asymptotic expansion with respect to parameter η [10].  

( ) ( ) ( ) ( ) .......,,, 2210 +++= yxvyxvxvyxv iiii ηη                               (5) 

where ( )xvi
0  is the microscopically uniform part of velocity, whereas ( ) ( ),...,,, 21 yxvyxv ii

are 

Y-periodic and local perturbations due to the presence of heterogeneities in the unit cell. In this 

research, we consider the first terms ( ) ( )yxvxv ii , , 10  in Eq.(5) only. The velocity gradient 
jiv , and 

strain rate 
ijε& are expressed as  
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Substituting the velocity 
iv  into Eq.(6), we have the expression of strain rate  

 ( ) { } 1110001, ijijijijij EEyx &&&&& ηεηεηε +++= −                          (7) 

 














∂

∂
+

∂

∂
=

i

k
j

j

k
ik

ij
x

v

x

v
E

2

1
& ,















∂

∂
+

∂

∂
=

i

k
j

j

k
ik

ij
y

v

y

v

2

1
ε&  

 Introducing thus obtained velocity, velocity gradient and strain rate into the virtual work 

principle[11,12] with the constitutive equation (Eq.(2)) and rearranging at the same order η , we 

arrive at the virtual work principle for a macroscopic body:  
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In Eq.(9) Y  indicates the area of the unit cell shown in Fig.4. 

 Equations (8), (9) and (10), (11) are the governing equations for the macroscopic and 

microscopic scales, respectively. The notations kl
pχ and kφ  are characteristic functions defined in the 

unit cell, which satisfy the Y periodicity and are determined by the following equations. 
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 Thus, characteristic functions kl
pχ and kφ  for the unit cell depend solely on the material 

characteristics and configuration of the microstructure of the unit cell, which are, in turn, obtained 

without interacting stress and strain of the macroscale. On the other hand, the macroscopic 

equilibrium given by Eq. (8) can be solved independently because the macroscopic characteristic 

functions indicated in Eq. (9) are identified through Eqs. (12) and (13). The homogenized material 

characteristics indicated by Eq. (9) reflect the volume fraction, size and distribution of 

second-phase-particle-dependent onset and propagation of the shear band in the unit cell. Once the 

average stress rate is estimated, different types of stress rates can be obtained using the same 

transformation rule on the microscale [13]. Equation (8) can be applied to solve the general 

boundary value problems for the materials with periodic microstructures under macroscopically 

nonuniform deformation. In the present investigation, we use Eq.(8) for clarification of the 

deformation behavior of a unit cell under macroscopically uniform deformation. 

By the way, the relationship between ( ) ( )yxyxv kl

ii , ,,1 χ  and ( )yxi ,ψ  can be expressed by 

( ) ( ) ( ) ( )yxxEyxyxv ikl

kl

ii ,,, 01 ψχ +−= & . The detailed derivation of this relationship can be found in [9, 

10]. 

 

3. COMPUTATIONAL MODEL 

The mechanical characteristics of CB-filled rubber are strongly dependent on the volume 

fraction and distribution patterns of CB. Although the distribution of CB is somewhat aggregated to 

random as can be seen in Figs.1 (a) and (b), we assume that such distribution is periodic. To evaluate 

the detailed characteristics of microscopic deformation and clarify their effect on the macroscopic 

mechanical characteristics of CB-filled rubber, discussions are focused on the essential feature of the 
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effect of volume fraction and distribution patterns of CB on the mechanical characteristics of 

CB-filled rubber. 

Figure 5 shows the computational model in which heterogeneous CB are assumed distributed 

periodically. Here, the rubber obeys the constitutive equation (2) and CB obeys the linear elastic 

constitutive equation. As indicated in Fig. 5, in the present investigation, the heterogeneous CB are 

assumed to comprise of circular cylinders of radii 1r  and 2r  contained in a square unit cell. Case A 

corresponds to CB distributed throughout the unit cell, and Case B is the somewhat aggregated case. 

The homogenization method that indicated in the previous section has been employed to correlate 

the micro- to macroscopic deformation behavior. The boundary conditions on the macroscopic scale 

are that the top and bottom surfaces are shear-free with a constant displacement constraint, whereas 

the right and left surfaces are assumed to be stress-free. It is important to note that the constitutive 

models used do not have a material length scale. Thus, the only length scales in the problem are the 

cell dimensions, which govern the solution through the dimensionless variables 21 / rr  and volume 

fraction 0f . 

Here we will discuss the effects of volume fraction 0f  and distribution patterns of CB with the 

size 2/ 21 =rr  on such macroscopic deformation behaviors as the average stress-strain relationship, 

hysteresis loss, i.e., Mullins effect[2], and on microscopic deformation behavior such as localization 

of deformation in rubber. For a typical unit cell, which is the microscopic element of CB-filled 

rubber, a macroscopically homogeneous strain is applied. The material parameters for the rubber 

employed are 5.40 =N , 261036.4 ×=aN (the number of segments per unit volume), 

394.000 == TknC B

R , 00 / NNn a= , K2960 =T . For CB, elasticity modulus and Poisson’s ratio are 

MPa100=cE , 3.0=cν  respectively. To suppress the onset of numerical instability caused by the 

extreme difference between the stiffness of CB and rubber, rather low stiffness for CB is introduced. 

It has, however, been verified that this value provides suitable results.  
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4. RESULTS AND DISCUSSIONS 

First we discuss the deformation behavior of rubber without filling CB.  Figure 6(a) indicates the 

stress-stretch relationship for unfilled rubber under cyclic loading. The dotted lines represent the 

experimental results. To reproduce the experimental results, we express the concrete form of Eq.(4) 

by using the fourth-order polynomial of cλ  and identify the coefficients of the equation, by the least 

mean squares method, for the loading process of the first cycle; the number of segments N  is 

preserved during the unloading process. Furthermore, the number of segments N  is preserved until 

the stretch cλ  due to the subsequent loading reaches the maximum value of previous loading 

processes. This implies that the stress-stretch relationship is identical to that of previous unloading 

processes up to the maximum stretch during the previous loading processes. The number of 

segments N  restarts to change following Eq.(4) when stretch cλ exceeds the maximum attained in 

the previous deformation. The resulting change in the number of segments N  with respect to stretch 

cλ  is represented in Fig.6 (b). The corresponding stress-stretch relationships for cyclic deformation 

behavior are shown in Fig.6 (a) by solid lines, which  reproduce the experimentally obtained results 

well. These characteristic deformation behaviors will be used to describe the rubber containing CB 

without introduction of additional material parameters. 

Next, we will discuss the deformation behavior of CB-filled rubber. Although as indicated in 

Figs.1 (a) and (b), the distribution of CB is somewhat complicated and the shape of CB is spherical 

with heterogeneous sizes, here in this investigation, we try to clarify the main mechanism of 

enhancement of mechanical characteristics by means of simplified computational model indicated in 

the previous chapter. Figure 7 indicates the stress-stretch relationships for CB-filled rubber. For the 

purpose of comparison,  the gray lines indicate the stress-stretch relationship for unfilled rubber 

under cyclic loading. The solid lines indicate the stress-stretch relations for CB-filled rubber in 

which rubber obeys the constitutive equation expressed by the gray lines. The marked increase in the 

resistance to  deformation in the loading processes and the hysteresis loss  for the CB-filled rubber 
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reproduce the experimentally obtained results well. Figure 8 indicates the strain distribution at six 

different stages of deformation during the loading and unloading stages. Small but recognizable 

differences between  the same deformations in the loading and unloading stages is attributable to the 

Mullins effect. This suggests the mechanism of enhancement of the resistance and softening in 

CB-filled rubber. That is, the local concentration of the deformation due to the existence of CB 

causes a high stretching which results  in a  high orientation hardening and deformation induced 

softening. Therefore, the resistance to deformation and the hysteresia loss for CB-filled rubber are 

markedly increased as compared with those for unfilled rubber. 

Next, the problems associated with the effects of the volume fraction and distribution patterns of 

CB, and the heterogeneity of the number of segments N  on the micro- to macroscopic deformation 

behavior of CB-filled rubber are clarified by employing the computational model presented in the 

previous section. Three cyclic deformations up to the maximum average stretches of 1.1, 1.3 and 1.5 

for the 1
st
, 2

nd
 and 3

rd
 cycles, respectively, are simulated. 

Figure 9(a) shows the typical stress-stretch relationships for unfilled rubber and CB-filled rubber 

for cases A and B in Fig.5. Figure 9(b) shows the effect of the volume fraction of CB 0f  on the 

stress-stretch relationships. CB-filled rubber exhibits a markedly high deformation resistance 

compared with unfilled rubber. The aggregated distribution of CB, in case B, contributes to the 

further increase in deformation resistance. The resistance to deformation rises with an increase in  

the volume fraction of CB 0f . Figure 10 shows the distributions of rotation θ , stretch cλ  and 

tensile stress 22σ  for cases A and B with the average stretch of 1.5. The concentrated deformation 

connecting the CB causes high stretching accompanied by locally large rotation in the area 

surrounding high stretching. The orientation hardening of rubber develops in the highly stretched 

area where the resistance to deformation rises and the stress attains a high value. On the other hand, 

in the highly rotated area, deformation is mainly absorbed by rotation and orientation hardening 

is suppressed, which limits the stress to a  low value. The localized deformation connecting large 
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particles is much stronger. Therefore, in addition to the distance between the particles, the 

heterogeneity of the particles also affects the deformation resistance. The increase in the volume 

fraction of CB reduces the particle spacing, which facilitates the emergence of localized deformation 

connecting the particles and a high resistance to deformation. Thus, an additional increase in 

deformation resistance is expected upon filling the rubber with CB. 

Furthermore, as indicated above, the higher concentration of the deformation causes locally high 

stretching in rubber, which promotes a change in the number of segments N . As a result, this 

contributes to the manifestation of hysteresis loss in the cyclic stress-stretch relationships. Figure 

11(a) indicates the hysteresis loss for the 1
st
, 2

nd
 and 3

rd
 cycles for unfilled rubber and CB-filled 

rubber with patterns A and B. The hysteresis loss is defined by the difference in area under the 

stress-stretch curves between a loading cycle and a susequent unloading cycle. That is, 

100)/( ×∆=∆ LH WWφ , where HW∆  is the area of hysteresis loss and LW  is the area under the 

stress-stretch curve for the loading process. Hysteresis loss φ∆  increases with the increases in the 

average stretching  and the aggregation of CB. Furthermore, Fig. 11(b) depicts the effect of the 

volume fraction of CB on hysteresis loss for three cycles. The results suggest that the effect of the 

volume fraction of CB on hysteresis loss is substantial and is amplified with the increase in the 

number of cycles, namely, with the increase in the amount of stretch in the present loading processes. 

These effects are attributable to the softening caused by the change in the number of segments N  

due to the increase in the amount of stretch. 

Finally, the effect of heterogeneous distributions of the initial average number of segments 0N  

on the Mullins effect has been explored. Three normal distribution cases, as indicated in Fig.12 (a), 

are considered, in which the mean value, 0N , is equal to 5.4 , 5.4 and 0.9  and the variation, 

min

0

max

0 NN − , is equal to 5.1 , 3.0  and 5.1  for cases 1, 2 and  3, respectively. The distribution of the 

initial average number of segments 0N  is specified such that, depending on the total number of 
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finite elements in a unit cell, a specific value of 0N  is allocated to a square element. Figures 12(b) 

and (c) indicate the tensile stress distributions and hysteresis loss for the corresponding cases. The 

increase in the heterogeneity of the initial average number of segments 0N  promotes the local stress 

concentration that results in the enhancement of hysteresis loss. The increase in the mean value of 

the initial average number of segments 0N  yields a high extendibility that drives the relaxation of 

the local stress concentration and reduces the hysteresis loss. 

The results obtained partially clarify the essential physical enhancement mechanisms of 

deformation resistance and hysteresis loss, namely., the Mullins effect, for rubber filled with CB 

with different distribution patterns and volume fractions. The effect of the heterogeneous 

distribution of the average number of segments of molecular chains on the hysteresis loss has been 

clarified. These results describe the experimentally obtained evidence well, however, the problems 

associated with the time-dependent nature of the deformation behavior of the rubber[14-17] and the 

interface effect[18-20] between the rubber and CB should be addressed in order to refine the model. 

5. Conclusion  

We developed a computational model of the monotonic and cyclic deformation behavior of 

CB-filled rubber by means of the homogenization method and the constitutive equation accounting 

for the changes in the entanglement situation due to the deformation of rubber.  A series of 

simulations has revealed  the mechanisms of  the enhancement of characteristic mechanical behavior 

of CB-filled rubber.  

Initially, for unfilled rubber, the proposed model  reproduces the stress-strech relations and 

softening, namely, the Mullins effect, that occur in the stress-stretch curves during cyclic 

deformation processes in the experiment well. For the case of CB-filled rubber, without any 

additional material parameters, the present model captures the marked increases of resistance of 
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deformation and the Mullins effect well, which is closely related to the orientation hardening in the 

rubber caused by highly localized deformation due to filling with CB. That is, the substantial 

enhancement of orientation hardening and promotion of the disentanglement of molecular chain of 

rubber results in the magnification of the hysteresis loss in stress-stretch curves under the cyclic 

deformation processes. Correspondingly, the increases in  volume fraction and  the heterogeneity of 

the distribution of CB substantially increases  the resistance to deformation and hysteresis loss. The 

increase in the heterogeneity of the initial average number of segments promotes the local stress 

concentration that results in the  enhancement of hysteresis loss. The increase in the mean value of 

the initial average number of segments yields the high extensibility that drives the relaxation of the 

local stress concentration and reduces the hysteresis loss.  

All results describe the experimentally observed evidence well, however, the problems 

associated with the time-dependent nature of the deformation behavior of the rubber and the 

interface effect between the rubber and CB should be addressed in order to refine the model. 
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(a) Aggregated case   (b) Distributed case                   (c) Stress-stretch relations 

Figure 1 CB-filled rubber 
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Figure 2   Hierarchy of molecular structures 
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(a) initial situation                            (b) deformed situation 

Figure 3 Deformation of molecular chain 
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Figure 4 Explanation of homogenization method 
 
 
 



 

 

 

 

 

 

 

Figure 5  Simulation models of CB-filled rubber with volume fraction 20% and different radii, 
. Case A: Random distribution of carbon blacks, Case B: Aggregated distribution of CB 2/ 21 =rr



 

 

 

 

 

 

       
 

             (a) Stress-stretch relationships           (b) Change of the number of segments 

Figure 6 Hysteresis of CB-filled rubber under cyclic loading 



 
 

 

 

 

 

 

 

 

Figure 7  True stress-stretch relations for monoto
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nic and cyclic loadings of CB-filled rubber.  
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Figure 8  Snap-shot of strech distribution at different stages of deformations in loading and 

unloading processes 

  
 

 



 

 

 

 

 

 

         
 

(a) Effect of distribution patterns of CB                       (b) Effect of volume fraction of CB 

Fgure 9 Stress-stretch relationships of CB-filled rubber 
 



 
 
 
 
 
 
 

 
 

 (a) Rotation θ                                                      (b) Stretch cλ  

 

Figure 10 
Distribution of field variables 

   
(c) Stress 22σ  

 



 
 
 
 
 
 
 
 

 
 

(a) Effect of distribution patterns of CB 

 
 

(b) Effect of distribution patterns of CB 

Figure 11 Hysteresis loss 
 
 
 



 
 
 
 
 
 

     
            

(a) Distribution of                                (b) Distribution of stress 0N

 
(c) Hysteresis loss 

Figure 12 Effect of heterogeneous distribution of initial average number of segments  0N
 


