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Abstract

We proposed a back force model for simulating dislocations cutting into a γ′ pre-

cipitate, from the physical viewpoint of work for making or recovering an antiphase

boundary (APB). The first dislocation, or a leading partial of a superdislocation, is

acted upon by a back force whose magnitude is equal to the APB energy. The second

dislocation, or a trailing partial of a superdislocation, is attracted by the APB with

a force of the same magnitude. The model is encoded in a 3D discrete dislocation

dynamics (DDD) code and demonstrates that a superdislocation nucleates after two

dislocations pile up at the interface and that the width of dislocations is naturally

balanced by the APB energy and repulsion of dislocations. The APB energy adopted

here is calculated by ab-initio analysis on the basis of the density functional theory

(DFT). Then we applied our DDD simulations to more complicated cases, namely,
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dislocations near the edges of a cuboidal precipitate and those at the γ/γ′ interface

covered by an interfacial dislocation network. The former simulation shows that dis-

locations penetrate into a γ′ precipitate as a superdislocation from the edge of the

cube, when running around the cube to form Orowan loops. The latter reveals that

dislocations become wavy at the interface due to the stress field of the dislocation

network, then cut into the γ′ precipitate through the interspace of the network.

Our model proposed here can be applied to study the dependence of the cutting

resistance on the spacing of dislocations in the interfacial dislocation network.

Key words: Discrete Dislocation Dynamics, Superdislocation, Ni-based

Superalloy, Anti-Phase Boundary, Interfacial Dislocation Network

1 Introduction

Ni-based superalloys possess a characteristic microstructure in which cuboidal

γ′ phases are precipitated in the γ matrix. The size of the precipitates is pre-

cisely controlled to aquire the highest heat tolerance; the typical length of

a cuboidal precipitate is less than 0.5µm and the width of the γ matrix is

decreased to a few tens of nanometer in fourth- and higher-generation su-

peralloys. The degree of lattice mismatch between the γ and γ′ phases is so

small that they form coherent interfaces; however, dislocations are strongly

affected by the morphology of the microstructure. Such dislocation behavior

has attracted considerable interest for the understanding of the deformation

mechanism of superalloys.
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Dislocations in the microstructure are carefully observed by transmission elec-

tron microscopy and their role in creep resistance is discussed in the overview

by Pollock and Argon (1992). Recent computational approaches such as strain

gradient crystal plasticity have also suggested significant insights, e.g., dislo-

cation density around a γ′ precipitate or cross slip by lattice rotation (Busso

and McClintock, 1996; Ohashi, 1998; Busso et al., 2000). It is still difficult,

however, to study in more detail the interaction between a dislocation and

the γ/γ′ interface by experimental observations or continuum computational

analysis, since the phenomena involve two completely different length scales

(microscale and nanoscale). Therefore atomistic or dislocation dynamics stud-

ies are necessary to clarify the dislocation behavior at the γ/γ′ interface. From

such a viewpoint, we have conducted several molecular dynamics (MD) sim-

ulations to determine the fundamental aspect of dislocations at the γ/γ′ in-

terface (Yashiro et al., 2002, 2004a). MD simulations, however, cannot treat

collective behavior of many dislocations nor thermally activated motions such

as a dislocation climb. Thus we are now scaling up our study using discrete

dislocation dynamics (DDD) simulation (Yashiro et al., 2004b). In the present

study, we derive the back force acting on dislocations cutting into a γ′ precipi-

tate from the work required to create or recover an antiphase boundary (APB).

DDD simulation for dislocations at a flat γ/γ′ interface is implemented with

the back force and demonstrates that a superdislocation nucleates after two

dislocations pile up at the interface and the width of dislocations is natu-

rally balanced by the APB energy and repulsion of dislocations. We have also

applied our DDD simulation to more complicated cases such as dislocations

at edges of cuboidal precipitate and those at the γ/γ′ interface covered by

an interfacial dislocation network. The APB energy adopted is calculated by

ab-initio analysis based on the density functional theory (DFT).
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2 Simulation Procedure

2.1 DDD outline

According to the formulation proposed by Zbib and coworkers (Zbib et al.,

1998, 2002), all dislocation lines and loops of arbitrary shapes are discretized

into short line segments and the time evolution of each dislocation is deter-

mined by calculating the motion of dislocation nodes. Discretization is updated

continuously to represent the arbitrary shapes of dislocations. The force acting

on node i of the position vector p is calculated using

Fi =
N−1∑
j=1

(
σD

j,j+1(p) + σa(p)
)
· bi × ξi + Fi−self , (1)

where σD
j,j+1(p) is the stress at p generated by a remote segment, σa(p) the

applied stress, and N the number of nodes; bi and ξi are the Burgers vector

and line sense vector at node i, respectively, as shown in Fig. 1. Thus the

first term on the right-hand side of Eq. (1) represents the Peach-Koehler (PK)

force. Fi−self is the line tension evaluated by the curvature at node i (Hirth,

1982). The motion of dislocations is traced by solving the following equation

of motion numerically.

mv̇i +
1

M(T, p)
vi = [F i]glide−component (2)

Here, vi is the glide velocity and m the effective mass per unit dislocation;

T and p are the temperature and pressure, respectively. M is the mobility

accounting for damping effects, such as phonon drag. In the present study, m

and M are set to ρb2/2 and 10−2 (Pa.s)−1, respectively, where ρ is the density.
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2.2 DDD-FEM coupling

The formulation of σD
j,j+1(p) is defined in the infinite body of a homogeneous

material, so that it could not directly be applied to solve problems involving

surfaces or heterogeneous interfaces. The superposition principle is used to

treat the problem. The displacement u, strain ε, and stress σ in a finite body

containing a γ′ precipitate are given by the sum of the two solutions

u= u∞ + u∗, ε= ε∞ + ε∗, σ= σ∞ + σ∗ , (3)

where ∞ implies the solution of DDD analysis for the domain V in an infinite

homogeneous body, while ∗ that of FEM for a finite body with a volume V .

In the FEM analysis, the following constitutive equations are defined for the

matrix and precipitate, respectively.

σ∗=Cmε∗ in Vm

σ∗=Cpε∗ + [Cp − Cm]ε∞ in Vp

(4)

Here, Cm and Cp are the elastic stiffnesses of the matrix and precipitate, Vm

and Vp are the volumes of the matrix and precipitate in the finite body V ,

respectively. The second term of the lower equation is the “eigenstress”. The

boundary conditions are

t∗ = ta − t∞ on ∂V ,

u∗ = ua on part of ∂V ,

(5)

where ta is the externally applied traction while t∞ is the traction caused by

dislocations resulting from the infinite-homogeneous-domain problem.
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2.3 Back force in precipitate

When a dislocation cuts into or glides in a γ′ precipitate, it leaves an antiphase

boundary on the slip plane. Thus, an excess energy equal to the APB energy

of the swept area is necessary to cut into or move in the precipitate. Consider a

straight segment of length L that travels normal to the segment at a distance n.

The APB energy of the swept area is expressed as

EAPB = χAPBLn , (6)

where χAPB is the inherent APB energy per unit area. Assume that the back

force on dislocation is constant in the precipitate. Then the work performed

by the dislocation is written as

W = FbLn , (7)

where Fb is the back force per unit length. Comparing Eqs.(6) and (7), we

obtain Fb = χAPB. The unit of the energy per area is converted to that of force

per length as J/m2=Nm/m2=N/m. When the next position of a dislocation

node i is in the area of γ′ precipitate, or the dislocation expands the APB,

the node receives a repulsive force of Fb. On the other hand, the follow-on

dislocation gliding in the APB receives an attractive force of Fb to dissolve

the APB. This back force model is schematically illustrated in Fig. 2.

2.4 Simulation models

The back force condition is encoded in the DDD-FEM simulation package, that

is, multiscale dislocation dynamics plasticity (MDDP), developed by Zbib et

al. (2002). All the short-range interactions of dislocations, such as annihilation,
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junction and jog formation, are included in the DDD package. Three simu-

lation models are considered in this study. The first, referred to as Model 1,

employs a cubic cell made of γ and γ′ layers, as shown in Fig. 3. The cell is

1.13 µm × 1.13 µm × 1.13 µm, and each of its layers has the same thickness

of 0.57µm. The shear moduli of the γ and γ′ phases are set to 80GPa and

85GPa, respectively. Poisson’s ratio is set to 0.3 for both phases. Two Frank-

Read (FR) sources whose Burgers vector is [011̄] are set on the same (111) slip

plane, as schematically shown in the figure. The source near the interface has a

width of 1.51µm (6040b, b is the magnitude of Burgers vector) while the other

source 0.21µm (800b). To accelerate the propagation of dislocation loops and

bring dislocations to the interface, a uniform stress of 500MPa is applied in

the z-direction in the DDD analysis. In the FEM analysis, the cell is divided

into 10×10×10 cubic elements and subjected to the loading conditions shown

in Fig. 3(b). Here, the periodic boundary condition tends to significantly mul-

tiply dislocations in the γ matrix and easily leads overloads of computation,

so that we adopt the free boundary condition in which dislocations receive the

image force near the surface.

The second simulation model, Model 2, is implemented with a cubic cell con-

taining a cuboidal precipitate, as shown in Fig. 4. The cell is 2.51µm in length

while the precipitate is 0.84µm in length. An FR source is set beneath the

precipitate and a dislocation is propagated from the source and approaches

the precipitate under a tensile stress of 500MPa. The Burgers vector and the

width of the FR source are [1̄01] and 0.35µm (1400b), respectively. 9 × 9 × 9

cubic elements are used in FEM. The boundary condition, shear moduli and

Poisson’s ratio are the same as those of Model 1. The misfit stress around

the cuboidal precipitate is not considered in the present study, so that we
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investigate the different behavior of dislocations at a flat surface and edges of

cuboidal precipitate depending only on the back-force.

The last simulation model, Model 3, is for describing the interaction between

an interfacial dislocation network and approaching dislocations. All the simu-

lation conditions of Model 3 is identical to those of Model 1, but 5×5 straight

dislocations are arranged at the γ/γ′ interface, as shown in Fig. 5. The slip

plane of the FR source crosses just at the intersections of the dislocation

network. The Burgers vectors of the network dislocations are defined exper-

imentally (Zhang et al., 2002). It is also revealed that the intersections have

different Burgers vectors, however, we simplify the network by removing any

intersections. The dislocation spacing of the network is set to 0.23µm (900b).

The APB energy χAPB is set to 126mJ/m2 in all the simulations. χAPB is

evaluated using the Vienna ab-initio simulation program (VASP, Kresse and

Hafner, 1993) with ultrasoft pseudopotential and generalized gradient approx-

imation (GGA). 2, 4 and 8 unit lattices of Ni3Al are stacked as supercells and

two APB planes are introduced in the supercells. χAPB is evaluated by the en-

ergy increase of these supercells from the reference energy of a perfect single

crystal. k-points of 8× 8× 3 ∼ 8× 8× 1 and a cutoff energy of 241.62 eV are

used in the calculations.
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3 Results and Discussions

3.1 Nucleation of superdislocation

Figure 6 shows the dislocation motion in the simulation of Model 1. There is

the γ′ phase in the lower half of the cell although it is not indicated in the

figure. The time increment ∆t = 10−11 s is used in the numerical integration

of Eq. (2). The first dislocation from the larger FR source piles at the interface

quickly. The second dislocation that propagates from the shorter FR source is

also blocked at the interface by the repulsive force from the first dislocation,

and straightened along the interface during t = 200 ∼ 500∆t. The pair of

these dislocations, however, cannot penetrate into the γ′ phase at this stage

despite an applied external stress of σzz = 500MPa. When the third disloca-

tion is generated by multiplication at the shorter FR source and approaches

the dislocation pair, the pair begins to cut into the γ′ phase and form a su-

perdislocation (t = 800 ∼ 900∆t). Once the superdislocation nucleates, it

goes through the γ′ phase as fast as the dislocations in the γ phase since the

repulsive and attractive back forces cancel out each other and the shear mod-

uli of both phases are almost same. The “superpartial”s maintain a constant

distance in the γ′ phase and their width is about 13 nm (52b). The third dis-

location piles at the interface again at t = 1000∆t (Fig. 6(f)). This motion of

dislocations is quantitatively indicated in Fig. 7. The abscissa is the time step,

and the ordinate the distance from the interface evaluated at the forefront of

dislocation loops. The first and second dislocations pile at the interface and

maintain a constant distance until the third dislocation approaches. Then the

first dislocation cuts into the γ′ phase at about t = 900∆t and the second ap-
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proaches the interface while keeping its distance to the first dislocation. During

this penetration, the velocity of two dislocations is low since the back force of

the APB acts only on the first dislocation. That is, in our model, the APB

does not generate an attractive force on the trailing dislocation away from the

interface, and expands larger than the equilibrium width in the nucleation of

a superdislocation. This phenomenon, however, does not conflict with our MD

results in which the APB does not attract a trailing dislocation (Yashiro et

al., 2004a). When the second dislocation reaches the interface, it receives an

attractive force from the APB and increases its velocity, resulting in the de-

crease in the width of superpartials. The superdislocation glides swiftly in the

γ′ phase when the trailing superpartial catches up with the leading dislocation

and reaches the equilibrium distance in which back forces cancel out.

3.2 Dislocations at Edges of Cuboidal γ′ Precipitate

Figure 8 shows the dislocation motion observed in the simulation of Model 2.

In the figure, the trigonal cross section of γ′ is indicated on the (111) slip plane.

The first dislocation faces the bottom of γ′ and is blocked there at t = 300∆t

(Fig. 8(b)). Then the dislocation runs around the cuboidal precipitate to form

Orowan loop at t = 400 ∼ 700∆t (Figs. 8(c),(d)). The dislocation slightly

intrudes in γ′ at the edge without a trailing dislocation but with the line

tension. This is consistent with the MD results (Yashiro et al., 2002). The

second dislocation is generated at the FR source and piles at the bottom of γ′

(Figs. 8(c),(d)). Due to the characteristic of the Burgers vector, the dislocation

loop reaches the right edge of the trigonal cross section slightly to the left, and

receives an attractive force from the APB at the edge. Thus a superdislocation

10



nucleates at the right edge and glides in the γ′ precipitate (Figs. 8(e),(f)). It

is natural that the superdislocation cuts into the γ′ precipitate from the edge,

which is supported by our MD results (Yashiro et al., 2004a).

3.3 Interfacial Dislocation Network

Finally, we show the dislocation motion near the interfacial dislocation net-

work in Fig. 9. The first dislocation swiftly piles at the interface despite the

presence of network dislocations (Fig. 9(a)). The second dislocation also piles

at the interface, however, the shape becomes wavy due to the stress field from

the network (Fig. 9(b)). In Fig. 9(c), we can find that the third dislocation

approaches the interface and piles there without nucleating the superdislo-

cation. The dislocations cut into the γ′ phase when the fourth dislocation

is generated at the FR source and they push forward the dislocation pair, as

shown in Fig. 9(d). Thus the resistance against penetration is increased by the

dislocation network. Figure 9(d) also suggests that the dislocations penetrate

into the γ′ phase from the interspace of the dislocation net. The dislocations

are also pinned and bowed out by the network dislocation; however, this is

debatable since the short-range interaction between misfit dislocations at the

interface and dislocations in the γ or γ′ is not modeled yet. In addition, the

stress field of this network, composed of dislocations in the γ phase, is much

stronger than those of the network made of misfit dislocations. This difference,

however, can be treated by putting the internal positive/negative stress on the

γ′ phase in FEM.
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4 Conclusion

To simulate dislocation behavior at the γ/γ′ interface, a back force model for

discrete dislocation dynamics (DDD) simulation is proposed according to the

work for making/recovering an antiphase boundary (APB). Dislocation nodes

cutting/gliding in the γ′ phase receive a repulsive back force equal to χAPB, the

APB energy per unit area, to leave the APB on the slip plane. On the other

hand, nodes on a trailing dislocation receive an attractive back force of the

same magnitude to dissolve the APB. We first evaluate a χAPB of 126mJ/m2

by ab-initio calculation based on the DFT-GGA (density functional theory

- generalized gradient approximation) ultrasoft pseudopotential method. The

APB energy is encoded in the DDD simulation package proposed by Zbib

et al. (1998, 2002) as the back force condition. It is demonstrated that a

superdislocation nucleates after two dislocations pile up at the interface and

that the width of superpartials is naturally balanced by the APB energy and

repulsion of dislocations. We applied our DDD simulation to more complicated

phenomena, namely, dislocations at the edges of a cuboidal γ′ precipitate and

those approaching the interfacial dislocation network. The former shows that

dislocations cut into the γ′ cube from the edge during forming Orowan loops.

The latter suggests that cutting resistance is increased by the network and

they cut into the γ′ phase from the interspace of the dislocation net.
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captions.

Fig. 1. Nodes and segments on dislocation loops.

Fig. 2. Schematic of back force acting on leading and trailing superpartials.

Fig. 3. Simulation model 1.

Fig. 4. Simulation model 2.

Fig. 5. Interfacial dislocation network model.

Fig. 6. Motion of dislocations in Model 1.

Fig. 7. Normalized position of dislocation forefront in Model 1.

Fig. 8. Motion of dislocations in Model 2.

Fig. 9. Motion of dislocations in Model 3.
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