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1.Introduction 

In the last three decades, numbers of homogenization theories have been developed in order to predict 

the macroscopic behavior of heterogeneous materials from their microstructure. However, most of these 

theories are developed in the field of the classical continuum mechanics and give results independent of the 

scale of the microstructure. Despite the conspicuous development of the generalized continuum or nonlocal 

theories recently, works concerning the homogenization analysis of heterogeneous nonlocal continuum, e.g. 

[1,2], is rather rare and most characters of such kind of heterogeneous medium are not clear yet.  

The aim of this work is to develop a homogenization method for heterogeneous Cosserat materials. Such 

materials [3-5] are characterized by rotational degrees of freedom φ, which are independent of the 

translational motion u. They belong to nonlocal continuum and have found much application, e.g. [6-8], now. 

We [9,10] once developed a homogenization method for this type of material by asymptotic homogenization 

approach. In this paper, a homogenization method is derived after the discussion of properties of the Cosserat 

composite with periodic microstructure on the micromechanics sense. Then some scale-dependent behaviors 

of porous media are discussed.  

Throughout the paper, a bold character denotes a tensor. Dot means first order contraction and : the 

double contraction. ⊗ stands for tensor product and ∇ is the Nabla operator. 

2.Micropolar composite with periodic microstructure 

2.1. Basic field equations 

A composite Ω with a periodic microstructure can be defined by the smallest repeatable element, i.e., 

representative volume element (RVE) or unit cell Y (see Fig.1). Here we suppose that the constituents of the 

RVE are micropolar materials and their spatial distribution and mechanical properties are given. The static 

elastic problem with no body force and body couple is considered in this paper. The equations governing the 
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equilibrium stress and deformation fields in such a linear isotropic micropolar elastic composite material are 

then [5] 
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where ε, κ are strain and curvature strain tensors, u and φ 

are displacement and rotation vectors, t and µ are stress and 

couple stress tensors. Besides, I2 denotes unit tensors of the 

second order. The elastic moduli λ and µ+µc=2C are 
readily recognized as Lame coefficients, while µ−µc=2G 
denotes the Cosserat shear modulus which couples the 

skew-symmetric stress-strain components. Moreover, an 

intrinsic length scale lc and a coupling factor N can be 

introduced as 
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With N=0, equation (1c) gives the same stress-strain 

relation as the classical elastic theory. 

Assume that the microscopic scale (the size of unit cell Y) is small enough compared to the macroscopic 

scale (the size of Ω) that the heterogeneities can be ‘smeared-out’ and Ω can be homogenized to behaves as a 

homogeneous body. Then imposing some boundary displacement, force, or couple force will result in a 

homogeneous strain ΕΕΕΕ and a homogeneous curvature ΚΚΚΚ throughout Y. These homogeneous strain and 

curvature generate a homogeneous stress ΤΤΤΤ and a homogeneous couple stress ΜΜΜΜ    and the homogenized (or 

effective) constitutive relations express the relations between ΕΕΕΕ, ΚΚΚΚ    and ΤΤΤΤ, ΜΜΜΜ.  

Let y denote the position of a point in the unit cell. The local strain field εεεε and κκκκ can be split into the 
overall strain ΕΕΕΕ,    ΚΚΚΚ    and a perturbation terms ε∗ε∗ε∗ε∗ and κ∗κ∗κ∗κ∗, which account for the presence of heterogeneities. 
Then it obtains that: 
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Correspondingly, the displacement and microrotation field u and φ  can be split into U, ΦΦΦΦ and periodic 

fields u* and *φ  respectively, where 
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Here all the deformation fields, εεεε, κκκκ, t, µµµµ , u* and φ* , conforming themselves to the periodic arrangement 

of the cells, are supposed periodic at the microscopic scale, which means 
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where g denotes an arbitrary deformation parameter, d is the constant vector that determines the period of the 

structure. 

2.2. Properties of overall stress and strain tensors 

The definitions of overall strain and curvature strain tensors have been given in Eq. (4). In addition, we 

define the overall stress and couple stress as 
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where <g> denotes the average of any variable g over the volume of unit cell Y, i.e. 
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One of the most important properties of the above-defined overall strain and stress tensors is: 

Lemma 1: Let t and µµµµ be self-equilibrated stress and couple stress field on Y which fulfill (1b) and εεεε and κκκκ the 
compatible strain and curvature fields given by (4) and satisfy (1a), then if boundary condition (5) is satisfied, 

the following relation holds: 

Κ:ΜΕ:Τκ:µε:t +>=+<                               (8) 

In another word, the average of the microscopic internal work is precisely the macroscopic work of 

effective stress <t>, <µµµµ>. This conclusion plays a fundamental role in the discussion of effective properties of 

micropolar composite materials. 

To prove (8), we firstly consider the internal work of perturbation strains ε∗ε∗ε∗ε∗ and κ∗κ∗κ∗κ∗. After the 
introduction of (4), and considering the equilibrium equation (2), it can be obtained that: 
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It then can be obtained from Gauss’s theorem and the periodicity of t, µµµµ and u*,φ* that the above 

equation gives zero value. Then Eq. (8) can be easily obtained after the introduction of Eq. (4) into Eq. (9). 

2.3 Solution of perturbed deformation field and effective macroscopic properties 

The local stress and strain fields induced at the microscopic unit cell Y by overall strain ΕΕΕΕ, ΚΚΚΚor overall 

stress T, ΜΜΜΜ can be obtained by solving the following equilibrium and periodic boundary conditions: 

periodic are    ,*,*,          Y,                     
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Once the problem (10) is solved, the macroscopic stress <t> and couple stress <µµµµ> can then be computed 

and the effective stiffness Dof the composite is determined through the relation 
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It can be proved that  D share the same symmetry as micD , namely mnijijmn DD =  [10]. 

For the convenience of finite element calculation, we transfer the boundary condition problem (10) into 

its variational form: 
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where v={u,φφφφ}, V={U,ΦΦΦΦ}, } φφ,:eu{ε(v) ⊗∇−⊗∇= . The solution of Eq. (12) yields: 
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When the overall (macroscopic) deformation field U, ΦΦΦΦ is given, the microscopic deformation field v* 

can then obtained from Eqs. (13), (14).  
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3. Analysis of scale dependent deformation behaviors of porous materials 

The above homogenization method is applied to investigate 

the elastic plane strain problem of porous materials. The shapes 

of the voids inside the matrix are supposed ellipse and the 

geometry of the unit cell is given in Fig. 2. As shown in the 

figure, the unit cell has its height and width of 2L and contains 

an elliptic void of aspect ratio a/b at its center. The geometry of 

the voids is also represented by equivalent radius R, where 

R
2
=ab. 

Consistent with definition of the material constants of 

isotropic elastic micropolar media given in Eqs. (1c) and (2), 

here we define the characteristic length of the homogenized 

material as 

, 
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and the homogenized value of the Cosserat shear moduli C and 

G as: 

CH=D1212+D1221,  GH=D1212-D1221        (16) 

The unit cell problem Eq. (13) is solved by finite element method. Triangle element is used and typical 

finite element mesh of the unit cell is also given in Fig.2. To emphasize the difference of current method with 

classical homogenization approach, we focus our attention on the analysis of some size effect phenomenon, 

i.e., the dependence of the above-defined elastic constants on the size of unit cell L. The influence of the 

geometry of unit cell, relative void radius R/L and aspect ratio a/b, are also analyzed. In the following part, 

subscript m and H denote matrix and homogenized values, respectively. 

The value of homogenized Cosserat elastic modulus CH is shown in Fig.3. It indicates that with the 

increase of the size of unit cell L, CH decreases and converges to some constants, while the classical results 

(when coupling factor N=0) show no such size dependence. Furthermore, the values of above constants are 

dependent on the geometry of the unit cell. When aspect ratio a/b or relative radius R/L of the internal void 

becomes larger, the constants become smaller. Furthermore, larger value of a/b and R/L also give rise to 

quicker change of CH. In other words, it shows more obvious size dependence in this case. 
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FIG.3  

Dependence of homogenized modulus CH on the relative size of unit cell L/lm and (a) aspect ratio of void, (b) 

relative radius of void R/L 

 

 

 

 

 

 

 

 

                                                                        (a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

FIG.4  

Dependence of homogenized modulus GH on the relative size of unit cell L/lm and (a) aspect ratio of void, (b) 

relative radius of void R/L 
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FIG.5 

Dependence of homogenized characteristic length lH on the relative size of unit cell L/lm and (a) aspect ratio 

of void, (b) relative radius of void R/L 

 

Fig.4 gives the value of homogenized Cosserat elastic modulus GH. It shows that with the increase of the 

size of unit cell L, CH decreases and converges to zero rapidly. Although it could be also seen the influence of 

the aspect ratio a/b and relative radius R/L of the internal void, it is quite little and almost ignorable.  

Fig.5 shows the changes of the homogenized characteristic length lH. It is a much interesting parameter 

because it greatly settles the nonlocal behavior of composite. The conclusion given in the figure is: larger the 

value of a/b or/and R/L, larger the value of lH. That means it tends to show nonlocal properties. At the same 

time, if the size of unit cell is quite small, say at the same order of the characteristic length lm, the 

characteristic length of the composite lH is much smaller.  

4. Conclusion: 

Some properties of Cosserat composite with periodic microstructure are discussed. It is proved that the 

composite can be made equal to a homogenous Cosserat medium with the same value of strain energy. 

Additionally, a homogenization theorem is developed. The numerical implementation of the theorem is also 

presented and used to analyze some scale-dependent deformation behaviors of porous materials. The 

calculated results show that the homogenized elastic constants depend obviously on the size of unit cell and 
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geometry of the internal void. 
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