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Abstract 

In contrast to conventional electrode reactions, an electron transfer (ET) at an oil 

(O)/water (W) interface is a bimolecular reaction, so that the “microscopic” diffusion of a 

redox species in the immediate vicinity of an O/W interface should be not a linear one, 

but like a hemispherical diffusion. Accordingly, the second-order rate constant obtained 

from usual kinetic measurements involves such a bimolecular-reaction effect, having a 

certain upper limit determined by the microscopic diffusion process. In this study, the 

diffusion-controlled rate constant of ET at an O/W interface has been calculated in the 

analogy of the Smoluchowski–Debye theory for a bimolecular reaction in a homogeneous 

medium. It has been shown that when the heterogeneous ET process is very fast, the 

overall or observed rate constant may be restricted by the diffusion-controlled rate 

constant. 

 

Keywords: Liquid/liquid interfaces; Electron transfer; Diffusion-controlled rate constant; 

Smoluchowski–Debye theory; Marcus theory 

 

1. Introduction 

Since Samec et al. [1] reported the first example of an electron transfer (ET) at the 

polarized oil (O)/water (W) (or liquid/liquid) interface, extensive studies have been 

carried out using several electrochemical techniques including cyclic voltammetry [1,2], 

current scan polarography [3], the ac impedance method [4,5], scanning electrochemical 

microscopy (SECM) [6–12], voltammetry with micro liquid/liquid interfaces [13], in situ 
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spectroscopy in total internal reflection [14], laser trapping of a single oil droplet [15], etc 

(for reviews see [16,17]). It has been recognized through these studies that reaction 

mechanisms of ET at an O/W interface are classified into two major categories, i.e., the 

ion-transfer (IT) mechanism and the ET mechanism. The former involves an IT process 

of the ionic product of a homogeneous ET in one phase (usually, the W phase). The 

ferrocene (O)–ferricyanide (W) system, as the first example of a “heterogeneous” ET [1], 

has recently been found to come into the IT mechanism class, where the ET occurs 

“homogeneously” in the W phase and the IT of ferricenium cation as the reaction product 

is responsible for the current flowing through the interface [18]. A biomimetic ET system 

between ascorbate (W) and chloranil (O) [19] has also been shown to belong to the 

category of IT mechanism [20–23]. On the other hand, the ET mechanism corresponds to 

a heterogeneous ET across the O/W interface. 

Red1 (W) + Ox2 (O) 
 

 Ox1 (W) + Red2 (O) (1) 

Such a “true” ET was first realized by Geblewicz and Schiffrin [2] who employed a 

highly hydrophobic, lutetium biphthalocyanine complex as the redox species in the O 

phase. In subsequent studies [24,25], other hydrophobic organometallic compounds were 

also claimed to show true ETs in the absence of possible IT. These experimental studies 

then stimulated theoretical studies by several researchers [26–34], and the applicability of 

the theory by Marcus [26–30] has been tested by means of the ac impedance method [5] 

and SECM [6–12]. 

In the previous kinetic studies the electrochemical measurements were usually 

performed by adding the redox couple in one phase in an excess amount compared with 
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that in the other phase. Pseudo first-order rate constants were then determined by 

considering that the phase containing the excess redox species is a metal electrode in 

conventional electrochemical measurements. The mass transport process for the 

non-excess redox species in another phase was usually treated as a semi-infinite linear 

diffusion to a flat O/W interface. However, we should recognize that a heterogeneous ET 

at an O/W interface is a bimolecular reaction, and thus the “microscopic” diffusion of a 

redox species in the immediate vicinity of the O/W interface should be not a linear one, 

but like a hemispherical diffusion as shown in Fig. 1. This situation is similar to that for 

an ultramicroelectrode array [35], which gives a steady-state current limited by the 

hemispherical diffusion of a redox species toward each electrode surface (while the 

diffusion layers of the individual electrodes are not overlapped). Similarly, the ET rate at 

an O/W interface could be affected by the microscopic hemispherical diffusion. In usual 

kinetic measurements the rate constant of the interfacial ET is determined by treating the 

mass transport process as a conventional, linear diffusion (for a flat interface). Therefore, 

the rate constant thus determined should involve the bimolecular-reaction effect, having a 

certain upper limit determined by the microscopic diffusion process. 

In this study we have obtained theoretically the upper limit of the rate constant, i.e., 

the diffusion-controlled rate constant for ET at an O/W interface. The proposed theory is 

an analogy of the Smoluchowski–Debye theory [36–38] for diffusion-controlled 

bimolecular reactions in homogeneous solution. A somewhat different approach to the 

present issue has been advanced by Senda [39], who proposed a cylindrical-diffusion 

model to include the bimolecular-reaction effect. 
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2. Derivations of theoretical equations 

 

Fig. 2 shows models for diffusion-controlled bimolecular reactions (a) in 

homogeneous solution and (b) at an O/W interface. 

In homogeneous solution, molecule B can diffuse from all directions to react with 

molecule A. In a diffusion-controlled reaction, when the contact of molecules A and B 

immediately yields the product, the molar flux of B, BJ ′ (mol s–1), across the spherical 

surface of the radius of rAB (= rA + rB, i.e., the sum of the radii of molecules A and B) 

around the center of molecule A can be given by 

B][4  ABABB DrJ π=′ , (2) 

where the bracket [ ] represents the molar concentration (mol cm
–3
), and DAB (cm

2
 s
–1
) is 

the relative diffusion coefficient that is assumed to be given by the sum of the diffusion 

coefficients of A and B 

DAB = DA + DB. (3) 

This is because of the simultaneous movement of both molecules. On this basis, 

Smoluchowski [36] and later Debye [37] provided an equation for the 

diffusion-controlled second-order rate constant (cm
3
 mol

–1
 s
–1
) as 

kD,hom = 4πrABDABL, (4) 

where L is Avogadro’s number. However, this equation should be modified if both the 

reactants, A and B, are ions and thus have a long-range coulomb interaction [37,38,41]. 

The reaction rate will be increased when the signs of the ionic charges are opposite. This 
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is the case for the interfacial reaction that is described below. For the sake of simplicity, 

however, we assume that at least one of the reactants is not an ion. 

At an O/W interface, molecule B in the W phase can access molecule A staying in 

contact with the O-phase side of the interface, only from the W-phase side. It is here 

assumed that molecule B reacts with molecule A just when it reaches the “reaction 

surface”, i.e., the part of the spherical surface of the radius of rAB around the center of A 

which bulges out to the W phase (see the shadowed part in Fig. 2(b)). If the O/W interface 

is “rigid”, this assumption is not valid, because molecule B can access the reaction 

surface only from the vertical direction. However, considering the “softness” of an O/W 

interface, the assumption may be adequate for simulating real reactions. The 

diffusion-controlled molar flux of B toward the reaction surface ( hetB,J ′ ) would then be 

obtained by a simple extension of the Smoluchowski–Debye theory for a bimolecular 

reaction in a homogeneous medium. However, the relative diffusion coefficient DAB in Eq. 

(2) should be replaced by the absolute diffusion coefficient of B in the W phase (DB

W
), 

because in this case, molecule A is regarded as staying at the interface for a reaction with 

B. Consequently, hetB,J ′  can be expressed as 

B][4  W

BABhetB, DrJ ξπ=′ . (5) 

Here, ξ is defined as the ratio of the reaction surface to the surface area of the sphere 

with the radius of rAB, i.e., 

 
2

cos  1
  

4

)cos  1(2
  

AB
2

AB
2 θ
π

θπ
ξ

−
=

−
=

r

r
, (6) 

where θ is the angle shown in Fig. 2(b) and given by 
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θ  =  cos –1 
rA

rAB

 

 
  

 
  =  cos–1 

rA

rA  +  rB

 

 
  

 
 . (7) 

Next, let us estimate the interfacial reaction rate in an area of S (cm
2
). The total flux 

of B to reach all A molecules in the area of S is expressed using the number of A in S, 

N(A): 

hetB,hetB,  A)(  JNJ ′= . (8) 

Here, it is assumed that molecules A existing at the interface are fully isolated from 

each other so that diffusion layers of B are not overlapped. This assumption seems to be 

valid, so far as the concentration of A is not much higher than that of B. 

Since the JB,het given by Eq. (8) is regarded as the diffusion-controlled rate, we obtain 

from Eqs. (5) and (8): 

diffusion-controlled rate hetB,
B   

d

d-
 J

t

n
==  

 =  4πrABξDB

W[B]N(A), (9) 

where nB is the molar number (mol) of B existing in the area of S. 

The rate equation for a bimolecular second-order reaction at an O/W interface is 

written as 

1

S
–
dnB

dt

 

 
 

 

 
  =  khet[A][B], (10) 

where khet (cm
4
 mol

–1
 s
–1
) is the second-order rate constant for a unit area. 

Although the estimate of N(A) in Eq. (9) is somewhat arbitrary, we assume that N(A) 

is the number of A existing in an interfacial layer of a thickness of 2rA (see Fig. 2(b)): 

N(A) =  2rAS[A]L  (11) 

Here, the concentration of A is assumed to be the same as the bulk concentration, [A], 
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at any point in the layer. Although this assumption may lead to some overestimation of 

N(A), the combination of Eqs. (9)–(11) yields an expression of the diffusion-controlled 

rate constant: 

kD,het  =  8πrArABξDB

WL . (12) 

This equation has been derived by assuming that the reaction rate is limited by the 

diffusion of B in W. If the diffusion of A in O is the rate-determining step, we can obtain 

the following equation: 

kD,het  =  8πrBrABζDA

OL  (13) 

where DA

O
 is the diffusion coefficient of A in O, and ζ is given by 

2

cos  1
  

4

)cos 1(2
  

AB
2

AB
2 ω
π

ωπ
ζ

−
=

−
=

r

r
 (14) 

with 

ω  =  cos–1 
rB

rAB

 

 
  

 
  =  cos–1 

rB

rA  +  rB

 

 
  

 
 . (15) 

Thus, the diffusion-controlled rate constant for a bimolecular reaction at an O/W 

interface could be formulated using the model shown in Fig. 2(b). In the model, molecule 

B is assumed to diffuse to the “fixed” reaction point where molecule A is located. This 

approach would appear to be for a unimolecular reaction. However, the number of 

reaction points in a definite area of the interface is proportional to the concentration of A 

as shown in Eq. (11), though the value should be given by a statistical average because of 

the molecular motion of A. Consequently, the upper limit of the rate constant for the 

“bimolecular” reaction could be expressed by Eq. (12) or (13). 
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3. Discussion 

3.1. Kinetic equation of the ET at an O/W interface 

The diffusion-controlled rate constant thus estimated is related to the initial step of 

ET at an O/W interface: 

 diffusion ET 

  kD,het kET 

A (O) + B (W) 
 

 A…B   →   products (16) 

 kuni 

where A…B represents the encounter complex of A and B, which is formed at the 

interface; kuni is the dissociation rate constant of A… B; kET is the first-order 

heterogeneous rate constant of the intramolecular ET. In this manner, we consider the 

diffusion process and the ET process independently, and then assume that the forward rate 

constant of the diffusion process is approximated by kD,het. In general cases, however, the 

backward reaction for the diffusion process (i.e., kuni) should be taken into account, 

because the concentration of B (alternatively, A) is not necessarily zero at the O/W 

interface. 

On the analogy of a bimolecular reaction in homogeneous solution [40,41], the 

steady-state approximation method is here used to obtain an expression of the overall rate 

constant (k): 

k  =  
kD,hetkET

kET  +  kuni
 =  

kD,het

1 +  (kuni /kET )
. (17) 

As is evident from this equation, kD,het is the attainable maximum value of k; when kET >> 

kuni, the overall reaction becomes diffusion-controlled, i.e., k = kD,het. For slow reactions 

where kET << kuni, the first step in the reaction scheme (16) is in equilibrium, i.e., 
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k = KkET (18) 

with K = kD,het/kuni. 

With a treatment similar to that for a homogeneous reaction in solution [40,41], we 

may relate kuni (cm s
–1
) to kD,het (cm M

–1
 s
–1
; M = mol dm

–3
) as 

kuni  =  
10–3

L

 

 
 

 

 
 
kD,het

∆V
, (19) 

where the volume ∆V (cm
3
) contains the encounter complex and is approximately 

(4/3)πr3AB. 

The first-order heterogeneous rate constant, kET, for the intramolecular ET of A…B 

at the O/W interface would be estimated, based on transition state theory, in a similar 

manner as that for electrode reactions [42–44]: 

kET  =  κZhetexp –
∆G‡

RT

 

 
 

 

 
  (20) 

where κ is the Landau-Zener non-adiabacity factor (κ = 1 for an adiabatic reaction); Zhet is 

the frequency factor; ∆G
‡
 is the standard Gibbs energy of activation of the reaction; R and 

T have their usual meanings. The value of ∆G
‡
 may be estimated using the theoretical 

equation by Marcus [26–30]: 

2
rp0

r 1
4

 






 −+∆
++=∆ +

+

λ
λ wwG

wG , (21) 

where w
r
 and w

p
 are the work terms, respectively, for bringing the reactants from infinite 

distance and for removing the products to the infinite distance; λ is given by the sum of 

the reorganization energy of “outer sphere”, i.e., the solvents (λo) and that of “inner 

sphere”, i.e., the intramolecular ligands (λi); and ∆G
0
 is the standard Gibbs energy of the 

ET reaction (the forward reaction of Eq. (1)), which is expressed by the Galvani potential 
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difference (∆O

Wφ ) of the O/W interface as ∆G
0
 = nF(∆O

Wφ  – 0W

Oφ∆ ) (where n is the number 

of electrons and 0W

Oφ∆  is given by the difference between the standard potentials of the 

respective redox couples as 0W

Oφ∆  = 
0

22

O

/RedOxE  – 
0

11

W

/RedOxE  versus the same reference 

electrode). Accordingly, Eq. (21) is rewritten as 

( ) ( ) ( )( ){ }rp0W

O

W

O

20W

O

W

O

220W

O

W

O

0
2

4

1

2
1  wwnFFnnFGG −∆−∆+∆−∆+∆−∆+∆=∆

+
++

+

φφφφ
λ

φφ

 (22) 

where 
+
+∆ 0

G  stands for ∆G
‡
 at ∆O

Wφ  = 0W

Oφ∆ . If the work terms can be neglected, Eq. (22) 

is reduced to 

( ) ( )20W

O

W

O

22
0W

O

W

O

0

42
  φφ

λ
φφ ∆−∆+∆−∆+∆=∆

+
++

+ FnnF
GG  (23) 

with 
+
+∆ 0

G  = λ/4 (cf. Eq. (21)). Substituting Eq. (23) to Eq. (20) and taking the logarithm 

yields 

( ) ( )20W

O

W

O

22
0W

O

W

OhetET
424

 )( ln  ln φφ
λ

φφ
λ

κ ∆−∆−∆−∆−−=
RT

Fn

RT

nF

RT
Zk  (24) 

Accordingly, a plot of log kET against ∆G
0
 = nF(∆O

Wφ  – 0W

Oφ∆ ) should show an upward 

parabola with the apex at ∆G
0
 = –λ. 

 

3.2. Application to experimental data 

Previously, Bard’s group [7,10] used SECM to determine bimolecular rate constants 

for heterogeneous ETs between the oxidized form of (5,10,15,20-tetra-

phenylporphyrinato)-zinc(II) (ZnPor
+
) and various aqueous reductants, which were 

claimed to show the driving-force (i.e., ∆G
0
) dependence in accordance with the Marcus 
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theory. In the theory, however, it is tacitly assumed that the above-discussed microscopic 

diffusion process is too rapid to affect the whole ET rate. In the following, we will try to 

examine the applicability of our proposed theory to the experimental data [10]. 

First, let us estimate the kD,het value for the ET reaction between ZnPor
+
 (= A) in O 

and a reductant such as -4

6Fe(CN) (= B) in W. The following parameters are here assumed: 

rA = 8 × 10
–8
 cm; rB = 5 × 10

–8
 cm; DA

O
 = 2.5 × 10–6 cm2

 s
–1
;DB

W
= 1 × 10–5 cm2

  s
–1
. If the 

diffusion of B in W is the rate-determining step, we use Eqs. (6) and (7) to obtain ξ = 

0.192. Substituting this value and some of the above parameters into Eq. (12), we obtain 

kD,het = 302 cm M
–1
 s
–1
. If the diffusion of A in O limits the rate, we likewise obtain ζ = 

0.308 from Eqs. (14) and (15), and then kD,het = 76 cm M
–1
 s
–1
 from Eq. (13). Because the 

kD,het value for the latter is smaller than that for the former, the diffusion-controlled rate 

constant for the present system should be considered as 76 cm M
–1
 s
–1
. 

The kD,het value thus obtained enables us to calculate the kuni value (= 1.4 × 10
–5
 cm 

s
–1
) based on Eq. (19) with ∆V ≈ (4/3)πr3AB = 9.2 × 10–21 cm3

. The overall rate constant k 

can then be evaluated from Eq. (17) using the values of kD,het and kuni. In Fig. 3, the thick 

solid line represents the dependence of k on the driving force ∆E1/2 (= –∆G
0
/nF = –(∆O

Wφ  

– 0W

Oφ∆ )); here, n = 1. In drawing the theoretical curve, we have treated the values of λ (= 

0.8 eV) and κZhet (= 9 × 10
–5
 cm s

–1
) as adjusting parameters to fit the experimental data 

as well as possible. It should here be noted that the overall rate constant plateaus at the 

diffusion-controlled rate constant indicated by the broken straight line. The upward 

parabola shown by the broken line represents the value of KkET that corresponds to the k 

value for kET << kuni (i.e., if the diffusion process was very fast). In Fig. 3 is also shown 
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the theoretical curve (thin solid line) by Ding et al. [10], who did not consider the 

contribution of the diffusion process of interest. Neither their nor our theoretical curve, 

however, has an absolute advantage in fitting the experimental data showing considerable 

scatter. It should also be noted that both the theoretical curves have been drawn by 

neglecting the work terms, though the experimental data consist of those obtained with 

three different organic solvents and some different aqueous reductants. Further 

experimental verification seems to be desirable. 
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Figure captions 

 

Fig. 1. “Microscopic” hemispherical diffusion of redox species in the immediate vicinity 

of an O/W interface. This figure is drawn for the case when the redox species in the W 

phase diffuse toward the interface to react with redox species in the O phase. 

 

Fig. 2. Models for diffusion-controlled bimolecular reactions (a) in homogeneous 

solution and (b) at an O/W interface. For details, see the text. 

 

Fig. 3. Driving-force dependence of the second-order rate constant (log k) for 

heterogeneous ETs between ZnPor
+
 and aqueous reductants: −4

6Ru(CN) , -4

8Mo(CN) , 

-4

6Fe(CN) , −4
8)(W CN , Fe(EDTA)

2–
, +2

63 )Ru(NH , V
2+
, and Co(Sep)

2+
 (Sep = sepulchrate). 

Thick solid line: from Eqs. (17) and (24) with λ = 0.8 eV and κZhet = 9 × 10
–5
 cm s

–1
. Thin 

solid line: the theoretical curve by Ding et al. [10]. The plots show their experimental data 

for the benzonitrile/W ( ), benzene/W ( ), dichloroethane/W ( ) interfaces. For 

further details, see the text. 
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