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of Support Vector Machines
Using Hyperspheres

Shinya Katagiri, Shigeo Abe

Graduate School of Science and Technology, Kobe University, Kobe, Japan

Abstract

In the conventional incremental training of support vector machines, candidates
for support vectors tend to be deleted if the separating hyperplane rotates as the
training data are added. To solve this problem, in this paper, we propose an incre-
mental training method using one-class support vector machines. First, we generate
a hypersphere for each class. Then, we keep data that exist near the boundary of
the hypersphere as candidates for support vectors and delete others. By computer
simulations for two-class and multiclass benchmark data sets, we show that we can
delete data considerably without deteriorating the generalization ability.

Key words: Support Vector Machines; Incremental Training; Hyperspheres;
One-class Support Vector Machines; Multiclass Support Vector Machines

1 Introduction

Support vector machines (SVMs) (Vapnik, 1995, 1998) are widely used for
pattern classification because of their good generalization ability compared
with conventional classifiers. In a support vector machine, the input space is
mapped into the high dimensional feature space and the optimal separating
hyperplane is determined in that space. Since training of a support vector
machine is formulated as a quadratic optimization problem with the number
of variables being equal to the number of training data, we can obtain the
global optimal solution. In addition, among the training data, only support
vectors, which are boundary data between classes, are necessary to determine
the decision function. This characteristic alleviates one of the problems of
support vector machines: training becomes slow for a large number of training
data. Namely, we can select support vector candidates before training and
reduce the number of training data, thus memory consumption.
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Therefore, support vector machines are especially suited for incremental train-
ing (Mitra, Murthy, and Pal, 2000; Xiao, Wang, and Zhang, 2000; Cauwen-
berghs and Poggio, 2000; Pedroso and Murata, 2000; Domeniconi and Gunop-
ulos, 2001; Ralaivola and d’Alché-Buc, 2001; Shilton et al., 2005), where train-
ing data are obtained incrementally. By incremental training we can speedup
training and delete unnecessary training data.

To reduce the memory consumption, Mitra, Murthy, and Pal (2000); Domeni-
coni and Gunopulos (2001) proposed a simple incremental training method
that deletes data other than support vectors at each incremental training step.
But this method considers only support vectors at each step and thus training
data, which may become support vectors for the addition of training data,
may be deleted. Therefore to keep the generalization ability of the incremen-
tal support vector machines comparable with that of the batch support vector
machines, we need to consider future candidates for support vectors. Based
on the assumption that the separating hyperplane before incremental training
does not move very much after incremental training, Cauwenberghs and Pog-
gio (2000) proposed to set the region for data deletion based on the distance
from the separating hyperplane before incremental training. But there may
be cases where the data that are far away from the hyperplane may become
support vectors if the hyperplane rotates by incremental training. Thus, this
method is weak for the rotation of the separating hyperplane.

In this paper, we propose an incremental training method that is robust for
the rotation of the separating hyperplane. The proposed method is based on
the assumption that candidates for support vectors should exist near the sepa-
rating hyperplane and be located close to the surface of a region that includes
training data of each class. Based on this, first, we generate the minimum-
volume hypersphere that includes the training data of each class (Tax and
Duin, 2001), then we generate a concentric hypersphere with a smaller radius.
Next, we generate the hypercone whose vertex is at the center of the hyper-
sphere and which opens in the opposite direction of the separating hyperplane.
We delete the data that exist inside of the small hypersphere or inside of the
hypercone and keep the remaining data as candidates for support vectors.
We extend this method for two-class problems to multiclass problems and we
evaluate the effectiveness of the method using the benchmark data sets for
two-class and multi-class problems.

The structure of this paper is as follows. In Section 2, we summarize the
architecture of support vector machines, and in Section 3, we discuss the con-
ventional incremental training method. In Section 4, we discuss the proposed
method for two-class and multiclass problems and in Section 5, we show the
simulation results using benchmark data sets.



2 Support Vector Machines

In this section, we summarize support vector machines for two-class prob-
lems. In support vector machines, we map the input vector x to the high
dimensional feature space using the mapping function ¢(x) to enhance linear
separability. Let the M training input-output pairs be (x;, y(x;)), i =1, ..., M,
where y(x;) = 1 if x; belong to Class 1, and y(x;) = —1 if Class 2. If the train-
ing data are linearly separable in the feature space, we can obtain the decision
function:

fx) =wh(x) +0, (1)

where w is a weight vector, b is a bias term, and y(x;) f(x;) > Ofori =1, ..., M.
For unknown data x, if f(x) > 0, the data are classified into Class 1, and if
f(x) < 0, into Class 2. The distance between the separating hyperplane and
the training datum nearest to the hyperplane is called the margin. The hyper-
plane that has the maximum margin is called optimal separating hyperplane
that separates two classes.

If the classification problem is not linearly separable in the feature space,
the optimal separating hyperplane can be obtained by solving the following
optimization problem:

Minimize
1 M
Qw.&) = SlIwlP +C 36 )
i=1
subject to
y(x)(Wwio(x;) +0) >1-¢& for i=1,.. M, (3)

where C'is the regularization parameter that determines the tradeoff between
the maximization of the margin and minimization of the classification error,
and &; is the nonnegative slack variable for x;.

Introducing the Lagrange multipliers «;, we obtain the following dual problem:

Maximize
M 1 M
Qo) = a; — 3 > oy (x)y(x5) K (x4, %) (4)
i=1 i,j=1
subject to
M
Y oyxi)oy =0, 0< o <C. (5)
=1



Here, K(x,x’) is a kernel function that is given by

K(x,x') = ¢(x)"o(x'). (6)
Some of the kernels that are used in support vector machines are as follows:

Polynomial Kernels. The polynomial kernel with degree d is given by

K(x,x) = (x'x' + 1)~ (7)

Radial Basis Function Kernels. The radial basis function (RBF) kernel is
given by

K(x,x) = exp(—|[x — x'||*), (8)
where v is a positive parameter for slope control.

For the solution of (4) and (5), if a; > 0, x; are called support vectors; es-
pecially if o; = C', bounded support vectors and if 0 < a; < C, unbounded
support vectors. The special feature of support vector machines is that the
same solution is obtained even if we delete all the non-support vectors from
the training data.

Using the support vectors, the decision function is given by

J(x) = ay(x;) K(x;,%x) + b, 9)

€S

where S is the set of support vector indices. Here the weight vector w is given
by

W= y(x))a6(x;), (10)

jes

and the margin 0 is given by

1 1

[[wl] 3 y(x;)y(xp) oy K (x5, x3,)
7,k€S

4]

(11)




3 Conventional Incremental Training Method
3.1 Deletion of Data near the Separating Hyperplane

We explain how to select candidates for support vectors using a two-dimen-
sional example shown in Fig. 1. In the figure, the initial data are shown in
filled circles for Class 1 or rectangles for Class 2 and the added data are shown
in open circles for Class 1 or rectangles for Class 2. The optimal hyperplane
f(x) = 0 that separates Class 1 from Class 2 with the margin ¢ is obtained
by the initial data. If we retrain the support vector machine, the data that
satisfy y(x)f(x) < 1 are candidates for support vectors. In addition, the data
that satisfy y(x)f(x) > 1 but are near y(x)f(x) = 1 can be support vectors.
Therefore we determine that the data are candidates for support vectors if

y(x)f(x) < B+1, (12)

where 5(> 0) is a user-defined parameter. If data satisfy (12), we keep the
data, and otherwise we delete them, which exist in the shaded region in Fig.
1. But if all new data satisfy

y(x)f(x) = 1, (13)

the separating hyperplane after retraining is the same as the separating hy-
perplane before retraining. Thus in this case, we only need to add the data
that satisfy (12) to the training data for future training.

Assume that we have an initial data set X, and an additional data set Xj.
The general procedure for incremental training is as follows:

(1) Train the support vector machine using the initial data set X,.

(2) Add the additional data set X, to X,: X, = X, U X,.

(3) If for x € X,, (12) is not satisfied, delete x from X,: X, = X, — {x}.
(4) If for x € X,, (13) is not satisfied, retrain the support vector machine.
(5) Repeat (2), (3), and (4).

3.2 Problem of the Conventional Method

In the conventional method, if the separating hyperplane after retraining is
almost parallel to the separating hyperplane before retraining, it is easy to
hold candidates for support vectors by user-defined parameter 5. But if the



separating hyperplane after retraining rotates considerably, candidates for sup-
port vectors related to the rotation of the separating hyperplane tend to be
deleted. We show this using examples shown in Figs. 2 to 5. Fig. 2 shows the
separating hyperplane before adding data. Filled circles and rectangles show
the initial data. Fig. 3 shows the state after data are added. In Fig. 4, we
show the separating hyperplane after deleting data and retraining. Dotted cir-
cles and rectangles are the deleted data. Filled circles and rectangles are the
deleted candidates for support vectors. In contrast to this figure, Fig. 5 shows
the separating hyperplane determined by batch training using the initial and
added data. Comparing Figs. 4 and 5, the separating hyperplanes are different
because candidates for support vectors are deleted in incremental training.

To avoid this, namely, to hold candidates for support vectors related to the
rotation of the separating hyperplane we must set a relatively large value to
(. But if we set too large a value to 3, we hold the unnecessary data that exist
near the center of each class and cannot reduce the memory consumption.

4 Proposed Method

4.1 Concept

First, we explain how we can estimate the candidates for support vectors
using the example shown in Fig. 6. In this figure, filled circles and rectangles
show the initial data and open circles and rectangles show the added data. The
separating hyperplane is determined by the initial data. Then after retraining,
the new separating hyperplane may exist in the shaded region. Therefore we
can predict that the candidates for support vectors exist near the boundary
of the shaded region. This region can be approximated by the shaded regions
in Fig. 7.

To keep the candidates for support vectors that exist in the shaded regions
in Fig. 7, we consider approximating the regions using hyperspheres. We ex-
plain our idea using the example shown in Fig. 8. In the figure, the data in
the shaded regions for Classes 1 and 2 are candidates for deletion, filled cir-
cles and rectangles show the remained data and open circles and rectangles
show the deleted data after adding data. In the following, we explain how to
approximate the shaded region for each class.

First, we generate the minimum-volume hypersphere that includes the train-
ing data of class j (j = 1,2) with radius R;. Next, we define a concentric
hypersphere with radius pR;, where p(0 < p < 1) is the user-defined pa-
rameter. Then, we define the hypercone whose vertex is at the center of the



hyperspheres and which opens in the opposite direction of the separating hy-
perplane. The user-defined parameter 6 (—90 < 6 < 90) defines the angle
between the separating hyperplane and the surface of the hypercone.

4.2 Deletion of Data

If the added data are in the shaded regions in Fig. 8, we delete the data. Now
we explain how to delete datum x using Fig. 9. If the distance r;(x) between
¢(x) and the center of the hypersphere, a;, is smaller than pR;:

Tj(X) < pRj’ (14>

we delete the data. Otherwise, if the angle between ¢(x)—a,; and the separating
hyperplane, 1;(x), is larger than 6:

77Z)j(x) > 07 (15)

we judge that ¢(x) exists inside of the hypercone and delete x.

But even if (14) or (15) is satisfied, if x satisfies

y(x)f(x) <1, (16)

x is a candidate for support vectors. In such a case, we do not delete x. In
addition, we do not delete the data that are support vectors for hyperspheres
because the support vectors for hyperspheres are candidates for the support
vectors for hyperspheres at the next training.

The general procedure for incremental training is as follows:

(1) Train the support vector machine using the initial data set X,.

(2) Add the additional data set X, to X,: X, = X, U X,.

(3) If for x € X,, (16) is not satisfied and x satisfies r;(x) < pR;, where j is
the class label for x or ¢,;(x) > 0, delete x from X,: X, = X, — {x}.

(4) If for x € X,, (16) is satisfied, retrain the support vector machine.

(5) Repeat (2), (3), and (4).

4.8  Generation of Hyperspheres

We approximate the region that includes training data of a class by a hyper-
sphere (Tax and Duin, 2001). The procedure of generating the hypersphere



for class j (7 = 1,2) is as follows.

To generate the minimum-volume hypersphere that includes the data for class
7, we need to solve the following optimization problem:

Minimize
Qp(Rj,a;,8") =R +C; > ¢ (17)

subject to
lo(xi) —ay|P < RS +&, & >0 for i€X; (18)

where X are sets of training data indices for class j (7 = 1,2), X; U X, =
{1,2,..., M}, XiNX, = 0, a; is the class j center, R; is the radius of the class j
hypersphere, 53 are slack variables, and () is the regularization parameter that
determines the tradeoff between the volume of the hypersphere and outliers.

Introducing the Lagrange multipliers ag , a; is given by
a; = > alo(x) (19)
i€X;

and we obtain the following dual problem:

Maximize
Qulad) = ¥ alK(xix) — Y alalk(xix) (20)
iGX]- i,leX]'
subject to
Sal=1, 0<al<C; for i€X (21)

1€X;
Using the unbounded support vector, which belongs to class j, R; is given by

Rj = ||o(x) — ayl]. (22)

The bounded support vectors with 53 > () are outside of the hypersphere and
thus outliers. From (21), o do not exceed 1. Thus, if we set C; = 1, all the
support vectors are unbounded support vectors.

The mapping of an unknown datum x is inside of the hypersphere if

K(x,x)—2> odK(x,x;)+ Y. alalK(x;,x;) <R3, (23)

iES]' i,kGSj



where S; is the set of support vector indices of the class j hypersphere.

4.4 Evaluation of 1;(x)

We discuss how to evaluate 1;(x). The distance r;(x) between ¢(x) and the
center of the hypersphere is given by

x) = [p(x) — aj]
\/Kx x) -2 Y dK(xx)+ Y alodK(xi,xz). (24)

iES]' i,kESj

From (10) and (19), the value of the decision function at the center of the
hypersphere is given by

f(aj) = WTaj +b= Z y(Xi)Oéz‘OéiK(Xz‘a Xy) +b. (25)
iES,kESj

The distance between ¢(x) and the separating hyperplane is given by

S yx)fx)

Iwil— llwl]

= y(x)f(x)d. (26)

The distance between the separating hyperplane and the hyperplane, which
is parallel to the separating hyperplane and which passes the center of the
hypersphere, is given by

|f(a;)]  y(x)f(a;)

il [wll

= y(x)f(a;)d. (27)

Thus the distance between ¢(x) and the hyperplane which passes the center of
the hypersphere is | f(x)— f(a;)|0. Then if y(x)(f(x)— f(a;))d is negative, ¢(x)
lies between the separating hyperplane and the hyperplane, which is parallel
to the separating hyperplane and which goes through a;. If it is positive, ¢(x)
and the separating hyperplane are on the opposite sides of the hyperplane
which goes through a;. Therefore ;(x) (—90 < 9;(x) < 90) is given by

P;(x) = sin™

1<y(X)(f(X) - f(aj))5>' (28)

7(x)

If 1;(x) is larger than 6, we delete x. The deleting region using the hypercone
is the shaded region shown in Fig. 9.



4.5  Extension to Multiclass Problems

Support vector machines are formulated for two-class problems and there are
several ways to extend to multiclass problems:

(1) one-against-all support vector machines (Vapnik, 1995, 1998),

(2) pairwise support vector machines (Krefiel, 1999),

(3) error-correcting-output code (ECOC) support vector machines (Bakiri
and Dietterich, 1995),

(4) all-at-once support vector machines (Vapnik, 1995, 1998).

Among them, one-against-all and pairwise support vector machines are widely
used and there is no much difference between their generalization abilities.
However, for an n-class classification problem, a pairwise support vector ma-
chine needs to generate n(n — 1)/2 decision functions, while a one-against-
all support vector machine, n decision functions. Thus, because of simpler
architecture, we use one-against-all support vector machines for multiclass
problems. In one-against-all support vector machines, an n-class problem is
converted into n two-class problems and for the ith two-class problem, class
1 is separated from the remaining classes. Thus we can apply the incremen-
tal training method for each decision function. Namely, for the ith decision
function, we approximate class ¢ and the remaining classes with hyperspheres.
Then, if datum x does not satisfy y(x) f(x)< 1 for all the n decision functions,
and x is not support vectors for hyperspheres for all the classes, we delete x.

5 Performance Evaluation

In this section we investigate how efficiently the proposed incremental training
method deletes training data while keeping the generalization ability high. We
also investigate the robustness of the method for the values of p and 6.

5.1 Benchmark Data and Evaluation Conditions

We use the benchmark data sets shown in Tables 1 and 2. Banana to waveform
data sets in Table 1! are the two-class data sets. Each data set consists of 100
(or 20) training and test data sets. Except for banana, ringnorm, and thyroid
data sets, we normalize the input ranges into [0, 1].

! http://ida.first.fraunhofer.de/projects/bench /benchmarks.htm
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Data sets shown in Table 2 are multiclass data sets: iris (Fisher, 1936; Bezdek
et al., 1999), numeral (Takenaga et al., 1991), blood cell (Hashizume, Motoike,
and Yabe, 1988), thyroid (Weiss and Kapouleas, 1999) 2 | hiragana (Abe, 2001),
and MNIST (LeCun et al., 1998)3 data sets. Each data set consists of one
training data set and one test data set. We normalize the input ranges into
[0, 1] for the blood cell data set. Because the MNIST data set with ten classes
is very large, we use only classes 7 and 9, which have the largest classification
error among the class pairs.

In approximating hyperspheres, we use the same kernels with the classifiers
and set C; = 1 so that all the data are inside of the hyperspheres.

For two-class problems, we randomly generate one incremental training data
set for each of 100 (or 20) training data sets, dividing the training data set into
the subsets whose size is about 5% of the total number. In the incremental
training, we add one of the subsets to the training set at each step. Likewise
for multiclass problems, for each training data set we randomly generate 100
incremental training data sets. For instance, the number of iris training data
is 75. Thus, truncating 75 x 0.05 the number of elements for each subset is 3
and the number of subsets is 25.

In incremental training, each subset is added to the classifier one at a time and
the classifier is trained by the conventional and proposed methods. Thus, for
each classification problem, we train classifiers 100 (or 20) times and calculate
the statistics.

The recognition rates of the test data, after incremental training is finished, are
compared with those by batch training using all the training data. To evaluate
the efficiency of data deletion, we evaluate the deletion ratio that is defined by
the number of the deleted data divided by the number of training data. For
batch training, the deletion ratio is the ratio of the deletable training data (i.e.,
training data minus support vectors) against training data. Thus assuming
that all the support vectors are retained, the deletion ratio for the batch
training is the upper bound for the deletion ratio for incremental training.

We also measure the computing time for batch training and incremental train-
ing using a personal computer (Xeon 2.8GHz, 1GB Memory) with the Linux
operating system. We use the primal-dual interior-point method combined
with the decomposition technique to train support vector machines.

2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
3 http://yann.lecun.com/exdb/mnist /
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5.2 Recognition Performance during Incremental Training

Figs. 10 and 11 show the recognition rates of the iris training and test data
sets during incremental training, respectively. In calculating the recognition
rate of the training data we use all the training data. Thus, some data are
not added yet to the classifier. We use polynomial kernels with d = 3 and set
the regularization parameter C' = 10000. Here, we determine the value of d by
cross validation, and use a large value of C' to show that incremental training
works even for the worst situation where there is a risk of overfitting. For
the conventional training method we set 3 = 1 and for the proposed method
p = 0.5,6 = 0. In batch training, at each step, we train the support vector
machine with the initial data set and all the added data sets.

The recognition rates of both the training and test data sets by the incre-
mental training are non-decreasing at almost all steps. By the batch training,
however, the variation of the recognition rate is large. This is because in batch
training the support vector machine is retrained at every incremental step.
Thus, overfitting to a local data set may results in the variation in the recog-
nition rate. But in the conventional method and the proposed method, the
support vector machine is not retrained if the data all satisfy y(x)f(x) > 1.

5.3  Parameter Setting

In applying the proposed method to classification problems, we need to set
the values to p and 6. But if we need to optimize the values for each problem,
the applicability of the method is diminished. To solve this, we determine
the values using one data set, namely, the twonorm data set, and use them
throughout the study. As will be shown later, this method works very well.
On the contrary, for the conventional method, we cannot set a value of 3 that
works well for most of the data set.

Table 3 shows the results of the proposed method for the twonorm data set
using polynomial kernels with d = 4 and the regularization parameter C' =
10000 for different values of p and €. In the table, “Test,” “Trn,” and “Del”
denote the recognition rate of the test data, that of the training data, and
deletion ratio after incremental training is finished, respectively. In the table,
for example, 95.78+0.87 means that the average recognition rate is 95.78%
with the standard deviation of 0.87%.

In batch training, the recognition rate of the test data is 96.35+0.45% and
that of the training data is 99.93+0.13% under the same conditions. Com-
paring the result of the batch training with Table 3, the parameters values of
p =0.5,0 =0 are at the boundary where the recognition rates decrease. The

12



recognition rates are stable as p becomes smaller and 6 becomes larger. When
the parameters are p = 0.5 and 6 = 0, the recognition rates of the proposed
method are equal to those of the batch training. And 51% of the data are
deleted. The results for other data sets are similar to this result. Therefore we
can consider the parameters values of p = 0.5,0 = 0 as the optimal parame-
ters to keep the recognition rates high while deleting sufficient training data.
Therefore, in the following study we set p = 0.5 and 6 = 0.

5.4 Comparison between Conventional and Proposed Methods

We compare the conventional and proposed methods with the optimized ker-
nels and C' and with those and C' = 10000. Here, we use a large value of
C' so that comparison of incremental training with the optimum and non-
optimum values of C' becomes clear. To optimize kernels and C', we use 5-fold
cross validation. For polynomial kernels with d = [2,3,4], and RBF kernels
with v = [0.1, 1, 10], we perform 5-fold cross validation for the regularization
parameter C' = [1, 10,50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000,
100000], and select the kernel, its parameter, and the regularization parameter
with the highest average recognition rate in the batch training.

Table 4 shows the parameters for the two-class problems. In the table, the
column “Kernel” lists the kernels determined by cross validation. For example,
~v1 and d2 denote RBF kernels with v = 1 and polynomial kernels with d = 2,
respectively. The same kernels are used for two cases: (1) optimal C' and (2)
C' = 10000. The parameters for case (1) are listed in the columns “Batchl,”
“Hplanel,” and “Spherel,” and those for case (2), “Batch2,” “Hplane2,” and
“Sphere2.” For each case, the same regularization parameter value is used for
batch training, the conventional and proposed methods.

For the proposed method, we use p = 0.5 and 6 = 0 for all cases as listed in
“Spherel” and “Sphere2.” As will be shown immediately, for the conventional
method we cannot select a value of 5 common to all cases because the optimal
value changes as the data set changes. Thus not to favor the proposed method,
we set the optimal value to 3. Namely, we select the value of § so that the
comparable recognition rate with that of batch training is obtained.

Table 5 shows the results for the two-class problems. In each problem the max-
imum deletion ratios for Hplanel and Spherel and for Hplane2 and Sphere2
are shown in boldfaces. The recognition rates for Batchl and Spherel, and
Batch2 and Sphere2 are almost the same using the user-defined parameters
(p=0.5,0 =0). And about 30% to 60% of the training data are deleted. Since
the recognition rates of the proposed method are almost the same with those
of batch training, we can consider that almost all support vectors remain af-

13



ter incremental training. Consequently we can conclude that we delete many
unnecessary data without deleting candidates for support vectors.

The deletion ratios of Spherel are often larger than those of Hplanel and the
deletion ratios of Sphere2 are often larger than those of Hplane2.

The optimal value of § for the conventional method changes as the data set
changes. Thus, it is difficult to set the optimal value of 3 in advance. But for
the proposed method, the choice of p = 0.5,6 = 0 is almost always good.

To show how the performance changes for the change of 3, we calculate
the averages and the standard deviations for 5 = [0.01,0.1,0.5,1,2,3,4,5,
6,7,8,9,10,30,50]. Table 6 shows the results of the conventional method for

the two-class data sets.

For the ringnorm to the waveform data sets except the twonorm data set, the
standard deviations of the recognition rates for training and test data sets
are small. Therefore, changing /3 has little influence on the recognition rates.
But for the banana to the image data sets and the twonorm data set, the
standard deviations of the recognition rates for training and test data sets are
large. Therefore, the effect of changing [ is large. In addition, the standard
deviations of the deletion ratios for all the data sets are large. Therefore the
effect of changing 3 is large for deleting data and it is difficult to set the
optimal value of 3 for these data sets.

Table 7 shows the computing time for two-class problems. We divide the total
computing time “Total;” into three parts: incremental training time “Trng,”
deletion time “Del;,” and total hypersphere generation time “Sph;.” The dele-
tion time denotes the time to check if the data can be deleted in incremental
training. For Batchl, at each incremental training step, batch training using
all the data obtained so far is performed and Total; = Trn;. For the conven-
tional method, Total; = Trn; + Del;. And for the proposed method, Total; =
Trn; + Del; + Sphg.

We only show the results for five data sets. The tendency of the results for
the remaining data sets is the same. From the table, the incremental training
time, Trng, of the proposed method is shorter than that of batch training and
comparable with that of the conventional method. The deletion time, Del;, of
the proposed method is longer than that of the proposed method because the
deletion check is complicated. This tendency becomes prominent if the number
of deleted data is large. In the proposed method, hypersphere generation time,
Sphy, is negligible except for the splice data set. The total computing time,
Totaly, except for the image data, the ratio of the deletion time in the total
training time is small. For the image data set, because of the long deletion
time, the total computing time is longer than that of batch training.

14



Table 8 shows the parameters for the multiclass problems. Here, we also con-
sider two cases: (1) optimal C' and (2) C' = 10000.

As before, for the proposed method, we use p = 0.5 and # = 0. For the con-
ventional method the value of (3 is selected so that the comparable recognition
rate with that of batch training is obtained.

Table 9 shows the results for the multiclass problems. For the iris data set
for Hplanel and Spherel, we cannot delete data. Except for these cases, the
proposed method realizes (almost) the same recognition rates with those of
batch training while deleting 40% to 70% of the training data.

As before, the optimal value of g for the conventional method changes as the
data set changes. Thus, it is difficult to set the optimal value of § in advance.

Table 10 shows the results of the computing time for the multiclass problems
excluding the iris and the numeral data sets. The total computing time, Total;
of the proposed method is usually shorter than that of batch training and
comparable with that of the conventional method. For the MNIST data set,
on average the total computing time of the proposed method is shorter than
that of batch training. But the large variance indicates that, in some cases the
total computing time of the proposed method is longer. The training time,
Trng, of the proposed method is usually much shorter than that of batch
training. As before, the deletion time of the proposed method is longer than
that of the conventional method and the hypersphere generation does not take
much time.

6 Discussions

According to the simulation results, the proposed method with p = 0.5 and
0 = 0 is shown to have generalization ability comparable to batch training
while deleting 30% to 60% of the training data. This is especially favorable
since it is difficult to tune parameters in incremental training.

But since cross validation is not possible for incremental training, optimal
selection of kernels and the value of C is difficult. To solve this problem, we
need to optimize these kernels and parameters during incremental training.
But since there is no known way, we leave this as future work.
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7 Conclusions

In this paper, to reduce the memory consumption by deleting unnecessary
data, we discussed incremental training of support vector machines using hy-
perspheres.

Namely, we generate the minimum-volume hypersphere that includes the train-
ing data of each class and a concentric hypersphere with a smaller radius. Next,
we generate the hypercone whose vertex is at the center of the hypersphere
and which opens in the opposite direction of the separating hyperplane. We
delete the data that exist inside of the small hypersphere or inside of the
hypercone and keep the remaining data as candidates for support vectors.

Using the two-class and multiclass benchmark data sets, we showed that we
can delete the data significantly while keeping the generalization ability of
the incremental support vector machine comparable with that of the batch
support vector machine by the fixed user-defined parameters.
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Fig. 11

Recognition rate of the iris test data during incremental training
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Fig. 4. After deleting data and re-
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Fig. 8. Deletion of the data using the hyperspheres
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Table 1
Two-class benchmark data specification

Trn  Test Inputs Classes

Banana 400 4900 2 2
B. cancer 200 77 9 2
Diabetes 468 300 8 2
German 700 300 20 2
Heart 170 100 13 2
Image 1300 1010 18 2
Ringnorm 400 7000 20 2
F. solar 666 400 9 2
Splice 1000 2175 60 2
Thyroid 140 75 5 2
Twonorm 400 7000 20 2
Waveform 400 4600 5 2
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Table 2
Multiclass benchmark data specification

Trn  Test Inputs Classes

Iris 75 75 4 3
Numeral 810 820 12 10
Blood cell 3097 3100 13 13
Thyroid (M) 3772 3428 21 3
Hiragana-50 4610 4610 50 39
Hiragana-13 8375 8356 13 38
Hiragana-105 8375 8356 105 38
MNIST 12214 2037 784 2
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Table 3

Effect of parameters on performance for the twonorm data set (%)

0 Term p=203 p=04 p=0.5 p=0.6 p=0.7
Test 95.78+0.87 95.78+£0.87 95.78+0.87  95.764+0.87 95.8+0.81
—-30 Trn  99.42+0.61 99.42+0.61  99.42+0.61 99.41+0.61 99.414+0.59
Del 87.59+2.17 87.59+£2.17 87.59+2.17 87.66+1.95 87.77+1.89
Test  96.00£0.65 96.00£0.66 96.00+0.65 95.9840.66 95.934+0.78
—20  Trn 99.66+0.42 99.66+0.42 99.66+0.42  99.61+£0.47 99.55+0.75
Del 84.26+4.24 84.254+4.24 84.24+4.24 84.51+£4.13 85.06+3.75
Test 96.19+£0.52 96.19+£0.52 96.194£0.51 96.17+0.54 96.144+0.54
—10  Trn 99.78+0.32 99.78+0.32  99.79£0.31  99.76£0.30 99.78+0.32
Del 70.01£6.86 70.01£6.86 69.99£7.00 70.62+6.59 74.33+5.70
Test 96.35+0.45 96.35+0.45 96.35+0.45 96.34+0.44 96.314+0.48
0 Trn 99.93£0.13 99.934+0.13 99.93+0.13 99.93+0.13 99.924+0.14
Del 50.81+4.25 50.81+4.27 51.004+4.36 53.174+4.40 61.2644.29
Test 96.35£0.45 96.35£0.45 96.35+0.45 96.34+0.44 96.33+0.44
10 Trn 99.93+0.13 99.93+0.13  99.93+0.13  99.93+0.13  99.93+0.13
Del 29.80£5.69 29.81£5.70 30.30£5.58  33.75+4.89 45.72+4.81
Test 96.35£0.45 96.35£0.45 96.35+0.45 96.35+0.44 96.324+0.45
200 Trn  99.93£0.13 99.93£0.13  99.93+0.13  99.934+0.13 99.924+0.14
Del 12.07£5.17 12.074£5.17  12.1844.90 16.05£5.28 31.844+4.89
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Table 4
Parameters for two-class problems

Data Kernel Bacthl Hplanel Spherel Batch2 Hplane2 Sphere2

C B p 0 C B p 0
Banana ~v1 10 2 0.5 0 10000 10 0.5 0
B. cancer 71 1 0.01 0.5 0 10000 4 05 0
Diabetes d2 50 0.5 0.5 0 10000 1 0.5 0
German ~v1 10 0.1 0.5 0 10000 2 0.5 0
Heart 71 50 0.5 0.5 0 10000 4 05 0
Image ~v1 1000 2 0.5 0 10000 5 0.5 0
Ringnorm  ~0.1 1 0.1 0.5 0 10000 0.1 05 0
F. solar d2 10 0.5 0.5 0 10000 2 05 0
Splice 710 1 0.1 0.5 0 10000 0.1 0.5 0
Thyroid d2 1 1 0.5 0 10000 3 0.5 0
Twonorm d4 50 2 0.5 0 10000 2 05 0
Waveform 71 1 0.1 0.5 0 10000 2 05 0
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Table 5

Comparison between conventional and proposed methods for two-class problems

(%)
Data Term  Bacthl Hplanel Spherel Batch2 Hplane2 Sphere2
Banana  Test 89.31+0.53 89.31£0.53  89.314+0.53 87.05+0.99 87.04£0.99 87.05+0.99
Trn  91.954+1.30 91.93+1.30  91.93+1.30 94.674+1.33 94.644+1.33 94.67+1.33
Del 73.5842.30 64.294+3.69 69.77+2.68 76.914+3.05 47.114+7.28 53.21+£6.59
B. cancer Test 73.25+4.53 73.25+£4.53  73.254+4.53 65.40%£4.65 65.40£4.57 65.40%£4.65
Trn 82.804+1.72 82.80+1.72  82.80£1.72 98.334+0.62 98.1440.75 98.33+0.62
Del 34.59£2.73 0.07+0.27 0.06+0.22  50.06£3.35 26.31+8.36 37.42+5.52
Diabetes Test 76.464+1.85 76.46+1.85  76.46+1.85 74.58+1.72 74.524+1.84 74.58+1.72
Trn 78.484+1.22 78.484+1.22  78.48+1.22 81.824+1.23 81.70+1.14 81.82+1.23
Del 45.53+1.73 15.6848.32 27.83+13.44 49.2842.32 36.60+5.14 44.134+8.07
German  Test 76.63+£2.14 76.704+2.26  76.63+£2.14 69.88+£2.54 69.82+£2.54 69.884+2.54
Trn 81.1441.27 80.94+1.41  81.14+1.27 99.044+1.10 98.814+1.13 99.04+1.10
Del 43.83+1.52 33.844+5.65 35.4943.72 49.9242.44 44.9443.34 52.81£5.65
Heart Test 83.68+£3.39 83.68+£3.39  83.6843.39 79.68+3.43 79.75+£3.49 79.75+3.49
Trn 85.954+1.92 85.95+1.92  85.95+£1.92 93.06+1.65 92.96+1.62 93.06+1.65
Del 56.334+3.43 24.89+21.91 32.36+27.62 58.63+4.07 39.314+7.91 47.07+6.44
Image Test 97.144+0.48 97.12+£0.47  97.13+0.48 96.87+0.38 96.78+£0.45 96.86+0.38
Trn 98.60£0.18 98.60£0.17  98.60£0.18 99.51+0.17 99.42+0.21 99.50£0.17
Del 88.31+0.71 60.224+3.76 61.66+4.67 91.224+0.58 59.114+3.79 61.64+6.83
Ringnorm Test 98.414+0.10 98.414+0.10  98.41+£0.10 98.344+0.12 98.344+0.12 98.34+0.12
Trn  99.91+0.15 99.91£0.15  99.914+0.15 100.04£0.00 100.0£0.00 100.0£0.00
Del 61.4842.29 45.59+16.27 31.03+11.14 62.144+2.23 51.86+2.93 34.94+2.51
F. solar  Test 68.2941.85 68.29+1.85  68.29£1.85 66.304+2.06 66.254+2.02 66.25+2.02
Trn 68.1941.26 68.19+1.26  68.19£1.26 69.224+1.24 69.114+1.24 69.22+1.24
Del 18.934+1.93 4.51+3.46 11.45+8.63 18.15+2.12 8.61+3.48 15.33+5.58
Splice Test 88.66+0.71 88.66+0.72  88.66+£0.71 89.234+0.71 89.204+0.71 89.234+0.71
Trn  99.09£0.24 99.09£0.24  99.094+0.24 99.984+0.04 99.98+£0.04 99.98+0.04
Del 26.4941.29 11.85+10.74 13.174+11.95 25.774+1.40 20.26+1.32 23.51+1.65
Thyroid Test 96.31+£1.90 96.31+1.90  96.31£1.90 95.514+2.23 95.514+2.23 95.51+2.23
Trn  99.344+0.49 99.34£0.49  99.344+0.49 100.04£0.00 100.0£0.00 100.0£0.00
Del 88.924+1.33 66.49+11.29 60.89+£6.68 91.784+1.02 55.66+19.45 61.19+7.90
Twonorm Test 97.57+0.12 97.57£0.12  97.574+0.12 96.35+0.45 96.35+£0.45 96.35+£0.45
Trn  98.244+0.55 98.24£0.55  98.244+0.55 99.93+0.13 99.93£0.13 99.93+0.13
Del 79.094+1.56 57.47+6.42 51.21+6.82 90.53+1.94 72.24+6.73 51.00+4.36
Waveform Test 90.00£0.45 90.00£0.45  90.00£0.45 87.964+0.80 87.96+0.80 87.96+0.80
Trn 93.51£1.37 93.51£1.37  93.514+1.37 100.0£0.00 100.0£0.00 100.0£0.00
Del 61.634+2.24 36.79+28.02 38.164+25.66 72.994+3.06 45.55+4.08 61.77+3.22
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Table 6

Effect of a parameter on performance by the conventional method (%)

Data Kernel C Trn Test Del
Banana ~v1 10000  88.80+5.43 82.1844.30 59.03£23.95
B. cancer 71 10000 94.13+4.92 63.83+1.67 25.80+18.61
Diabetes d2 10000 80.91+1.58 74.11£0.96 15.44+21.73
German ~v1 10000 94.1146.70 67.84+2.68 27.55+27.21
Heart 71 10000 91.2542.64 78.57+£1.54 21.06+21.62
Image 71 10000  98.184+1.90 95.68+1.65 55.87+31.24
Ringnorm  ~0.1 10000 100.00£0.00 98.34£0.00 9.47+19.40
F. solar d2 10000 68.74+0.76  65.994+0.61  6.59+£8.02
Splice ~v10 10000  99.98+0.00 89.23£0.01  3.431+7.96
Thyroid d2 10000 99.474+0.69 95.184+0.39 44.05+32.34
Twonorm d4 10000 99.15+1.92 95.65+1.71 38.47+35.31
Waveform 71 10000  99.68+0.67 87.78+0.38 27.10+30.40
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Table 7
Training time and deleting time for two-class problems (s)

Data Bacthl Hplanel Spherel

Diabetes Total; 24.15+3.56 19.7248.43 14.524+5.79
Trng 24.15+3.56 19.35+8.26 11.85+4.67
Dely — 0.37+0.18 2.35+1.34
Sphy — — 0.3240.05

German  Totaly 90.11+15.60 58.54+13.30 62.65+10.48
Trng 90.11+£15.60 57.37+13.13 55.27+10.44

Del — 1.1740.21 6.58+1.20
Sphy — — 0.80£0.08
Image Totaly  27.0043.90 14.48+3.02 30.0043.45
Trng 27.00£3.90 13.84+2.98 11.04+1.42
Del — 0.64+0.07 18.25+2.45
Sphy — — 0.71£0.07

F. solar  Total; 108.19£11.45 75.14+£41.38 73.79+41.20
Trng  108.19+11.45 74.18+40.73 65.66+35.39
Del — 0.96+0.66 7.54+7.18
Sphy — — 0.59£0.08

Splice Totaly 514.33£27.07 314.28+161.69  314.40+146.27
Trny  514.33+£27.07  309.11+£158.15 256.04+123.84
Del — 5.17+3.55 32.18+27.92
Sphy — — 26.18+3.90
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Table 8
Parameters for multiclass problems

Data Kernel Bacthl Hplanel Spherel Batch2 Hplane2 Sphere2

C B p 0 C g p 0
Iris d3 10 0.01 0.5 0 10000 1 05 0
Numeral d2 10 0.5 0.5 0 10000 0.5 05 0
Blood 710 500 2 0.5 0 10000 3 05 0
Thyroid(M) d3 50000 3 0.5 0 10000 2 05 0
Hiragana-50 ~0.1 100000 0.01 0.5 0 10000 0.1 05 0
Hiragana-13 ~10 100000 0.01 0.5 0 10000 0.01 05 0
Hiragana-105  ~0.1 100000 0.01 0.5 0 10000 0.01 05 0
MNIST d2 1000 1 0.5 0 10000 2 05 0
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Table 9

Comparison between conventional and proposed methods for multiclass problems
(0)
Data Term  Bacthl Hplanel Spherel Batch2 Hplane2 Sphere2
Iris Test 97.33£0.00 97.33+0.00 97.33+0.00 94.67£0.00 94.67+0.00 94.67+0.00
Trn 98.67+0.00 98.67£0.00 98.67£0.00 100.0+0.00 100.040.00  100.040.00
Del 57.33£0.00 0.00%0.00 0.0+£0.00  84.004£0.00 39.07£1.80 55.47+2.08
Numeral Test 99.63£0.00 99.63+0.00 99.63+0.00 99.39£0.00 99.39+£0.00  99.39+0.00
Trn 100.04£0.00 100.0£0.00  100.0£0.00 100.0£0.00 100.040.00  100.0£0.00
Del 79.44+0.15 21.944+1.27 34.31+1.61 85.16+0.46 23.42+1.38 53.82+2.07
Blood Test 93.59+£0.02 93.5940.05 93.594+0.04 93.59£0.02 93.57£0.15 93.59+0.04
Trn 97.924+0.02 97.91£0.02  97.92+£0.07 99.26+0.00 99.224+0.04  99.264+0.09
Del 79.09+£0.12 31.37£0.53 30.20£2.00 80.80+0.08 55.60+0.50 69.69+1.97
Thyroid(M) Test 97.554+0.02 97.53+£0.07 97.55+0.05 97.524+0.01 97.47+0.05 97.514+0.10
Trn 99.4440.02 99.404+0.04  99.43+0.01 99.2940.02 99.274+0.05 99.2840.11
Del 89.82+0.28 38.73+0.66 53.97+19.83 88.93£0.50 35.52+1.25 50.46+19.74
Hiragana-50 Test 99.35+£0.00 99.344+0.01  99.354+0.02 99.35£0.00 99.34+0.02  99.354+0.02
Trn 100.04£0.00 100.0£0.00  100.0£0.00 100.0+0.00 100.040.00  100.040.00
Del 72.05£0.00 67.38£0.09 58.09+0.40 72.02+0.20 50.894+0.37 57.80£0.83
Hiragana-13 Test 99.87£0.00 99.86+0.01 99.87+0.00 99.87£0.00 99.86£0.01  99.87+0.00
Trn 100.04£0.00 100.0£0.00  100.0£0.00 100.0£0.00 100.04£0.00  100.040.00
Del 92.67£0.45 57.01+0.12 66.79£0.14 93.03+0.21 56.92+0.34 66.81+0.07
Hiragana-105 Test 100.0£0.00 100.04+0.00 100.04+0.00 100.0£0.00 100.0£0.00  100.0£0.00
Trn 100.04£0.00 100.0£0.00  100.0£0.00 100.0£0.00 100.04+0.00  100.040.00
Del 81.22+0.05 76.22+0.11 73.37+0.15 81.17+0.08 76.33+£0.19 73.50+0.37
MNIST Test 92.83+£0.83 92.83+0.81 92.82+1.37 91.05+0.25 90.85+1.32 91.05+0.37
Trn 94.044+0.69 94.04+0.44 94.03+1.15 92.544+0.03 92.34+£1.42 92.54+0.36
Del 93.50+0.09 39.01£1.71 58.60+0.30 93.26£0.02 58.81+2.96 62.33+0.62

29



Table 10

Learning time and deleting time for multiclass problems (s)

Data Bacthl Hplanel Spherel
Blood Totaly 138.15+2.34 98.01+2.16 116.65+2.57
Trng 138.15+2.34 91.614£2.07 87.16+2.31
Dely — 6.40+0.09 27.33£0.33
Sphy — — 2.16+0.07
Thyroid(M)  Totaly 124.46+£3.51 74.19+1.86 131.55426.91
Trng 124.46+3.51 72.13+1.82 76.67+12.00
Dely — 2.06+0.08 53.56+14.93
Sphy — — 1.3240.04
Hiragana-50  Total; 855.93+6.05 278.86+3.71 370.36+4.85
Trng 855.93+6.05 241.41+3.33 313.69+3.96
Del; — 37.45+0.40 53.614+0.84
Sphy — — 3.07+0.12
Hiragana-13 ~ Total;  4495.12420.34 1980.50+49.79 1588.12+11.19
Trny  4495.12+20.34 1887.94+48.23 1455.31+10.17
Dely — 92.56+1.66 121.49£1.10
Sphy — — 11.324+0.15
Hiragana-105 Total, 4387.784+17.40 1099.37+14.55 1358.604+23.59
Trny  4387.78+17.40 916.54+12.72 1103.294+19.99
Del; — 182.83+1.88 244.29+3.57
Sphy — — 11.02+0.11
MNIST Total; 8399.60+828.14 6168.05+1335.35  7755.64+2867.97
Trng  8399.60+£828.14  5999.85+1344.04  4541.91+4111.39
Dely — 168.21+8.73 3185.4+2455.8
Sphy — — 28.33+0.51
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