
Kobe University Repository : Kernel

PDF issue: 2025-02-22

Comparison between error correcting output
codes and fuzzy support vector machines

(Citation)
Pattern Recognition Letters,26(12):1937-1945

(Issue Date)
2005-09

(Resource Type)
journal article

(Version)
Accepted Manuscript

(URL)
https://hdl.handle.net/20.500.14094/90000150

Kikuchi, Tomonori
Abe, Shigeo

Comparison between Error Correcting Output Codes and Fuzzy Support

Vector Machines

Tomonori Kikuchi a, Shigeo Abe ∗b

a Electrical and Electronics Engineering, Kobe University, Kobe, Japan

b Graduate School of Science and Technology, Kobe University, Kobe, Japan

One-against-all support vector machines with discrete decision functions have unclassifiable regions. To re-
solve unclassifiable regions, support vector machines with continuous decision functions and fuzzy support vector
machines have been proposed. If, in ECOC (error correcting output code) support vector machines, instead of
discrete error functions, continuous error functions are used, unclassifiable regions are resolved. In this paper,
first we prove that for one-against-all formulation, support vector machines with continuous decision functions
are equivalent to fuzzy support vector machines with minimum and average operators. Then we discuss minimum
operations as well as average operations for error functions of support vector machines and show the equivalence
of ECOC support vector machines and fuzzy support vector machines for one-against-all formulation. Finally,
we show by computer simulations that ECOC support vector machines are not always superior to one-against-all
fuzzy support vector machines.

1. Introduction

Since support vector machines are formulated
for two-class classification problems [1], an exten-
sion to multiclass problems is not unique. There
are roughly four ways to solve this problem:
one-against-all, pairwise, error-correcting output
code, and all-at-once classifications.

Original formulation by Vapnik [1] is one-
against-all classification, in which one class is sep-
arated from the remaining classes. By this formu-
lation, however, unclassifiable regions exist. In-
stead of discrete decision functions, Vapnik [2,
p. 438] proposed to use continuous decision func-
tions. Namely, we classify a datum into the class
with the maximum value of the decision func-
tions. Inoue and Abe [3] proposed fuzzy support
vector machines, in which membership functions
are defined using the decision functions. Abe [4]
showed that support vector machines with contin-
uous decision functions and fuzzy support vector
machines with minimum operators are equivalent.

In pairwise classification, the n-class problem

∗E-mail: abe@eedept.kobe-u.ac.jp
URL: www2.kobe-u.ac.jp/˜abe/index.html

is converted into n(n − 1)/2 two-class problems.
Kreßel [5] showed that by this formulation, un-
classifiable regions reduce, but still they remain.
To resolve unclassifiable regions for pairwise clas-
sification, Platt, Cristianini, and Shawe-Taylor
[6] proposed decision-tree-based pairwise classi-
fication called Decision Directed Acyclic Graph
(DDAG). Pontil and Verri [7] proposed to use
rules of a tennis tournament to resolve unclas-
sified regions. Not knowing their work, Kijsirikul
and Ussivakul [8] proposed the same method
and called it Adaptive Directed Acyclic Graph
(ADAG).

Classification by DDAGs or ADAGs is faster
than pairwise fuzzy SVMs. But the problem is
that the generalization ability depends on the
structure of decision trees. To solve this problem
for ADAGs, Phetkaew, Kijsirikul, and Rivepi-
boon [9] proposed to reorder an ADAG so that
the Euclidean norm sum of the coefficient vectors
of the hyperplanes associated with the leaf nodes
is minimized. Takahashi and Abe [10] proposed
to optimize the structure so that the class pairs
with higher generalization abilities are put in the
upper nodes of the tree.

Abe and Inoue [11] extended one-against-all
fuzzy support vector machines to pairwise classi-
fication and Tsujinishi and Abe [12,13] proposed
fuzzy least-squares support vector machines.

Dietterich and Bakiri [14] proposed error cor-
recting output codes (ECOC) to enhance gener-
alization ability of classifiers borrowing the idea
of error correcting codes used for correcting bit
errors in transmission channels. One-against-all
formulation is a special case of error correcting
codes with no error correcting capability, and by
introducing “don’t” care bits, also is pairwise for-
mulation [15]. Using the continuous Hamming
distance for support vector machines, instead of
the Hamming distance, unclassifiable regions are
resolved.

In all-at-once formulation we need to determine
all the decision functions at once [16,17], [2, pp.
437–440]. But this results in simultaneously solv-
ing a problem with a larger number of variables
than the above mentioned methods.

In this paper, we discuss ECOC support vec-
tor machines in comparison to fuzzy support vec-
tor machines. First we summarize one-against-
all fuzzy support vector machines and prove that
fuzzy support vector machines with minimum and
average operators are equivalent to support vec-
tor machines with continuous decision functions.
Then we discuss ECOC support vector machines.
First, we define the distance between codes by the
maximum of continuous error functions as well as
the continuous Hamming distance, which is the
sum of continuous error functions. Next, we show
that these definitions are equivalent to the fuzzy
support vector machines with minimum and av-
erage operators, respectively. Then we compare
recognition performance of ECOC support vector
machines with that of one-against-all fuzzy sup-
port vector machines.

In Section 2, we explain two-class support vec-
tor machines, and in Section 3 we summarize one-
against-all fuzzy support vector machines, and
prove that support vector machines with contin-
uos decision functions are equivalent to fuzzy sup-
port vector machines with minimum and average
operators. Then in Section 4 we discuss ECOC
support vector machines. In Section 5, we com-
pare recognition performance of ECOC support

vector machines with average and minimum op-
erators with one-against-all fuzzy support vector
machines.

2. Two-class Support Vector Machines

Let M m-dimensional inputs xi (i = 1, . . . , M)
belong to Class 1 or 2 and the associated labels
be yi = 1 for Class 1 and −1 for Class 2. Let the
decision function be

D(x) = wt x + b, (1)

where w is an m-dimensional vector, b is a scalar,
and

yi D(xi) ≥ 1 − ξi for i = 1, . . . , M. (2)

Here ξi are nonnegative slack variables.
The distance between the separating hyper-

plane D(x) = 0 and the training datum, with
ξi = 0, nearest to the hyperplane is called mar-
gin. The hyperplane D(x) = 0 with the maxi-
mum margin is called optimal separating hyper-
plane.

To determine the optimal separating hyper-
plane, we minimize

1
2
‖w‖2 + C

M∑
i =1

ξi (3)

subject to the constraints:

yi (wt xi + b) ≥ 1 − ξi for i = 1, . . . , M, (4)

where C is the margin parameter that deter-
mines the tradeoff between the maximization of
the margin and minimization of the classification
error. The data that satisfy the equality in (4)
are called support vectors.

To enhance separability, the input space is
mapped into the high-dimensional dot-product
space called feature space. Let the mapping func-
tion be g(x). If the dot product in the fea-
ture space is expressed by H(x,x′) = gt(x)g(x),
H(x,x′) is called kernel function, and we do not
need to explicitly treat the feature space. The
kernel functions used in this study are as follows:

1. Polynomial kernels

H(x,x′) = (xt x′ + 1)d, (5)

where d is an integer.

2. RBF kernels

H(x,x′) = exp(−γ ‖x − x′‖2), (6)

where γ is a positive parameter for slope
control.

3. One-against-all Support Vector Ma-
chines

3.1. Support Vector Machines with Con-
tinuous Decision Functions

For the conventional support vector machine
for an n-class classification problem, let the ith
decision function that classifies class i and the
remaining classes be

Di(x) = wt
i g(x) + bi, (7)

where g(x) is the mapping function that maps x
into the l-dimensional feature space, wi is the l-
dimensional vector, and bi is a scalar.

The hyperplane Di(x) = 0 forms the optimal
separating hyperplane in the feature space and, if
the training data are linearly separable, the sup-
port vectors belonging to class i satisfy Di(x) = 1
and those belonging to the remaining classes sat-
isfy Di(x) = −1. For the conventional support
vector machine, if for the input vector x

Di(x) > 0 (8)

satisfies for one i, x is classified into class i. Since
only the sign of the decision function is used, the
decision is discrete.

If (8) is satisfied for plural i’s, or there is no
i that satisfies (8), x is unclassifiable. To avoid
this, datum x is classified into the class [2, p.
438]:

arg max
i

Di(x). (9)

Since the continuous value of the decision func-
tion determines classification, the decision is con-
tinuous.

3.2. Fuzzy Support Vector Machines
Here we summarize fuzzy support vector ma-

chines discussed in [3]. We introduce the mem-
bership function to resolve unclassifiable regions,
while realizing the same classification results for

the data that satisfy (8) for one i. To do this,
for class i we define one-dimensional membership
functions mij(x) in the directions orthogonal to
the optimal separating hyperplanes Dj(x) = 0 as
follows:

1. For i = j

mii(x) =
{

1 for Di(x) ≥ 1,
Di(x) otherwise. (10)

2. For i �= j

mij(x) =
{

1 for Dj(x) ≤ −1,
−Dj(x) otherwise. (11)

Since only the class i training data exist when
Di(x) ≥ 1, we assume that the degree of class i
membership is 1, and otherwise, Di(x).

Here, we allow the negative degree of member-
ship so that any data that are not on the bound-
ary can be classified.

For i �= j, class i is on the negative side of
Dj(x) = 0. In this case, support vectors may
not include class i data but when Di(x) ≤ −1,
we assume that the degree of class i degree of
membership is 1 and otherwise, −Dj(x).

Using the minimum operator for mij(x) (j =
1, . . . , n), we define the class i membership func-
tion of x:

mi(x) = min
j=1,...,n

mij(x). (12)

The shape of the resulting membership function
is the truncated polyhedral pyramid [18, pp. 76–
78] in the feature space.

We can also define the class i membership func-
tion using the average operator:

mi(x) =
1
n

∑
j=1,...,n

mij(x). (13)

Now the datum x is classified into the class

arg max
i=1,...,n

mi(x). (14)

Instead of using membership functions, it is
possible to resolve unclassifiable regions by calcu-
lating Euclidean distances from the hyperplanes
or posterior probabilities. But class regions by
these methods do not necessarily include those
determined by support vector machines with dis-
crete decision functions.

3.3. Equivalence of FSVMs and SVMs
with Continuous Decision Functions

It is shown in [4] that support vector machines
with continuous decision functions are equiva-
lent to fuzzy support vector machines with min-
imum operators for one-against-all classification.
Here, we show that one-against-all support vector
machines with continuous decision functions and
one-against-all fuzzy support vector machines
with average operators as well as minimum op-
erators are equivalent in that they give the same
classification result for any input.

Let mm
i (x) and ma

i (x) be the membership func-
tions for class i using the minimum and average
operators, respectively.

Then (12) and (13) are rewritten as follows:

mm
i (x)
= min (min(1,Di(x)),

min
k=1,...,n

k �=i

min(1,−Dk(x))), (15)

ma
i (x)

=
1
n

(min(1,Di(x))

+
n∑

k=1,k �=i

min(1,−Dk(x))). (16)

Thus ma
i (x) − ma

j (x) is given by

ma
i (x) − ma

j(x)

=
1
n

[min(1,Di(x)) + min(1,−Dj(x))

−min(1,Dj(x)) − min(1,−Di(x))]. (17)

Now we prove the equivalence classifying the
cases into three:

1. Di(x) > 0, Dj(x) ≤ 0 (j = 1, . . . , n, j �= i)

By the support vector machine with contin-
uous decision functions, input x is classified
into class i.

From (15) and the conditions on the signs
of Dk (k = 1, . . . , n),

mm
i (x) > 0, mm

j (x) ≤ 0. (18)

Thus by the fuzzy support vector machine
with minimum operators, input x is classi-
fied into class i.

From (17),

ma
i (x) − ma

j(x)

=
1
n

[min(1,Di(x)) + min(1,−Dj(x))

−Dj(x) + Di(x))] > 0. (19)

Thus by the fuzzy support vector machine
with average operators, input x is classified
into class i.

2. 0 > Di(x) > Dj(x) (j = 1, . . . , n, j �= i)

By the support vector machine with con-
tinuos decision functions, x is classified into
class i.

From (15) and the conditions on the signs
of Dk(x) (k = 1, . . . , n),

mm
i (x) > mm

j (x). (20)

Thus input x is classified into class i by
the fuzzy support vector machine with min-
imum operators.

From (17),

ma
i (x) − ma

j(x)

=
1
n

[Di(x) − Dj(x) − min(1,−Di(x))

+ min(1,−Dj(x))] > 0. (21)

Thus input x is classified into class i by the
fuzzy support vector machine with average
operators.

3. Di(x) > Dj(x) > 0 > Dk(x) where j ∈ N1,
k ∈ N2, N1 ∩ N2 = φ, (N1 ∪ N2) ∩ {i} = φ,
N1 ∪ N2 ∪ {i} = {1, . . . , n}

Input x is classified into class i by the sup-
port vector machine with continuos decision
functions.

From (15),

mm
i (x) = min

j∈N1
−Dj(x), (22)

mm
j (x) = −Di(x) for j ∈ N1, (23)

mm
k (x) = min(−Di(x),Dk(x))

for k ∈ N2. (24)

Thus,

mm
i (x) > mm

j (x) for j ∈ N1 ∪ N2. (25)

Therefore, x is classified into class i by the
fuzzy support vector machine with mini-
mum operators.
From

ma
i (x) − ma

j(x)

=
1
n

[min(1,Di(x)) − Dj(x))

−min(1,Dj(x)) + Di(x))] > 0
for j ∈ N1 (26)

and from (19),

ma
i (x) > ma

j(x) for j ∈ N1 ∪ N2. (27)

Thus, input x is classified into class i by the
fuzzy support vector machine with average
operators.

Therefore, one-against-all support vector ma-
chines with continuos decision functions and the
fuzzy support vector machines with minimum or
average operators are equivalent.

4. Error-correcting Output Codes

Error correcting codes, which detect and cor-
rect errors in data transmission channels, are used
to improve generalization ability in pattern clas-
sification. For support vector machines, in addi-
tion to generalization improvement they can be
used to resolve unclassifiable regions. In this sec-
tion, first we discuss how error-correcting codes
can be used for pattern classification. Next, by
introducing “don’t care” output, we discuss a uni-
fied scheme for output coding that includes one-
against-all and pairwise formulations [15]. Then
we show the equivalence of the error correcting
codes with the membership functions.

Table 1
Error-correcting codes for three classes

Class g1 g2 g3

1 1 −1 −1

2 −1 1 −1

3 −1 −1 1

4.1. Output Coding by Error-correcting
Codes

Dietterich and Bakiri [14] proposed to use
error-correcting output codes for multiclass prob-
lems. Let gij be the target value of the jth deci-
sion function Dj(x) for class i:

gij =
{

1 if Dj(x) > 0 for class i,
−1 otherwise.

(28)

The jth column vector gj = (g1j , . . . , gnj)t is the
target vector for the jth decision function, where
n is the number of classes. If all the elements of
a column are 1 or −1, classification is not per-
formed by this decision function and two column
vectors with gi = −gj result in the same decision
function. Thus the maximum number of distinct
decision functions is 2n−1 − 1.

The ith row vector (gi1, . . . , gik) corresponds to
a code word for class i, where k is the number of
decision functions. In error-correcting codes, if
the minimum Hamming distance between pairs
of code words is h, the code can correct at least
�(h−1)/2�-bit errors. For 3-class problems, there
are three decision functions in maximum as shown
in Table 1, which is equivalent to one-against-all
formulation and there is no error-correcting func-
tion. Thus ECOC is considered to be a variant of
one-against-all classification.

4.2. Unified Scheme for Output Coding
Introducing “don’t care” outputs, Allwein,

Schapire, and Y. Singer [15] unified output codes
that include one-against-all, pairwise, and ECOC
schemes. Denoting a “don’t care” output by 0,
pairwise classification [5] for three classes can be
shown as in Table 2.

Table 2
Extended error-correcting codes for pairwise clas-
sification with three classes

Class g1 g2 g3

1 1 0 −1

2 −1 1 0

3 0 −1 1

To calculate the distance of x from the jth deci-
sion function for class i, we define the error εij(x)
by

εij(x) =
{

0 for gij = 0,
max(1 − gijDj(x), 0) otherwise. (29)

If gij = 0, we need to skip this case. Thus,
εij(x) = 0. If gijDj(x) ≥ 1, x is on the cor-
rect side of the jth decision function with more
than or equal to the maximum margin. Thus,
εij(x) = 0. If gijDj(x) < 1, x is on the wrong
side or even if it is on the correct side, the margin
is smaller than the maximum margin. We evalu-
ate this disparity by 1 − gijDi(x).

Then the distance of x from class i is given by

di(x) =
k∑

j=1

εij(x). (30)

Using (30), x is classified into

arg min
i=1,...,n

di(x). (31)

Instead of (29), if we use the discrete function:

εij(x) =

{ 0 for gij = 0,
0 for gij = ±1, gijDi(x) ≥ 1,
1 otherwise,

(32)

(30) gives the Hamming distance. But by this
formulation unclassifiable regions occur.

4.3. Equivalence of ECOC with Member-
ship Functions

Here, we discuss the relationship between
ECOC and membership functions. For gij = ±1,

the error εij(x) is expressed by the one-dimen-
sional membership functions mij(x):

mij(x) = min(gijDj(x), 1)
= 1 − εij(x). (33)

Thus, if we define the membership function for
class i by

mi(x) =
1

k∑
j=1

|gij |

k∑
j=1

gij �=0

mij(x) (34)

and classify x into

arg max
i=1,...,n

mi(x), (35)

we obtain the same recognition result as that by
(31). This is equivalent to a fuzzy support vector
machine with the average operator.

Similarly, instead of (30), if we use

di(x) = max
j=1,...,n

εij(x), (36)

the resulting classifier is equivalent to a fuzzy sup-
port vector machine with minimum operators.

5. Performance Evaluation

We evaluated recognition performance of
ECOC support vector machines with one-against-
all support vector machines using the blood cell
data and hiragana data listed in Table 3. The
blood cell classification involves classifying opti-
cally screened white blood cells into 12 classes
[19]. This is a very difficult problem; class bound-
aries for some classes are ambiguous because the
classes are defined according to the growth stages
of white blood cells. Hiragana data were gathered
from Japanese license plates. The original gray-
scale images of hiragana characters were trans-
formed into 5×10-pixel with the gray-scale range
being from 0 to 255. Then by performing gray-
scale shift, position shift, and random noise ad-
dition to the images, the training and test data
were generated [20]. Hiragana data are relatively
easy to be classified.

As error correcting codes we used the BCH
(Bose-Chaudhuri-Hochquenghem) codes, which

Table 3
Benchmark data specification

Data Inputs Classes Train. Test
Blood cell 13 12 3097 3100
Hiragana 50 39 4610 4610

belong to one type of cyclic codes. We used
four BCH codes with 15, 31, 63, and 127 word
lengths, properly setting the minimum Hamming
distances. For each word length we trained 10
ECOC support vector machines with C = 5000
changing code words.

Table 4 shows the results for the blood cell
data with polynomial kernels with degree 3. In
the “Code” column, e.g., (15, 7) means that the
word length is 15 bits and the minimum Ham-
ming distance is 7. The “Hamming,” “Average,”
and “Minimum” columns list the average recogni-
tion rate of the test and the training data (in the
brackets) using the Hamming distance, the aver-
age operator, and the minimum operator, respec-
tively. The boldfaced numeral shows the maxi-
mum recognition rate among different codes.

From the table, using the Hamming distance,
the recognition rates of both training and test
data improved as the word length was increased
and they reached the maximum at the word
length of 63. But since by the Hamming distance
unclassifiable regions exist, the recognition rates
are lower than by average and minimum oper-
ators. By the average and minimum operators,
however, the one-against-all support vector ma-
chines showed the best recognition rates. This
may be caused by the lower recognition rates of
the training data for the ECOC support vector
machines than by the one-against-all support vec-
tor machines.

Thus, to improve the recognition rate of the
test data, we used the RBF kernels. Table 5
shows the results for the RBF kernels with γ = 1.
The ECOC support vector machines showed bet-
ter recognition performance than the one-against-
all support vector machines. In addition, the av-
erage operator showed better recognition perfor-
mance than the minimum operator.

Table 6 shows the results of hiragana data for
the polynomial kernels with degree 3. The ECOC
support vector machine with the average opera-
tor and the word length of 127 showed the best
recognition performance. But some ECOC sup-
port vector machines showed lower recognition
performance than the one-against-all support vec-
tor machine. Thus the performance of ECOC
support vector machines was not stable.

Unlike blood cell data, since the recognition
rates of the training data are near 100% using
polynomial kernels, the improvement using RBF
kernels was not recognized. Thus, we do not in-
clude the results here.

5.1. Discussions
For the blood cell data, ECOC support vector

machines showed better performance than fuzzy
support vector machines when RBF kernels were
used, but for the hiragana data, improvement was
not significant if any. This is because for the hi-
ragana data fuzzy support vector machines could
achieve relatively good performance and little was
left for improvement.

For the blood cell data with polynomial ker-
nels and for the hiragana data, ECOC support
vector machines did not perform better than one-
against-all support vector machines. And for
the hiragana data, the recognition performance
against the length of code word was unstable.
Thus, to obtain good recognition performance, we
need to optimize the structure of ECOC support
vector machines.

As for the minimum operators and average op-
erators, sometimes average operators performed
better but there was not so much difference.

6. Conclusions

In this paper, first we proved that one-against-
all support vector machines with continuous de-
cision functions are equivalent to fuzzy support
vector machines with minimum and average op-
erators. Then, we discussed minimum opera-
tors as well as average operators for the error
functions of ECOC support vector machines and
showed the equivalence of ECOC support vector
machines and fuzzy support vector machines for

Table 4
Recognition rates (%) of blood cell data with polynomial kernels (d = 3)

Code Hamming Average Minimum

1-all 87.13 (92.41) 92.84 (96.09) 92.84 (96.09)

(15,7) 90.17 (93.34) 91.56 (94.45) 91.19 (93.95)

(31,11) 90.86 (93.60) 91.90 (94.59) 91.80 (94.16)

(63,31) 91.82 (94.64) 92.20 (94.98) 92.23 (94.32)

(127,63) 91.80 (94.58) 92.01 (94.82) 91.93 (96.09)

Table 5
Recognition rates (%) of blood cell data with RBF kernels (γ = 1)

Code Hamming Average Minimum

1-all 86.68 (98.58) 92.94 (99.29) 92.94 (99.29)
(15,7) 92.43 (98.27) 93.47 (98.49) 93.07 (98.18)
(31,11) 92.88 (98.36) 93.85 (98.59) 93.53 (98.13)
(63,27) 93.68 (98.64) 94.05 (98.68) 93.75 (98.37)
(127,55) 93.68 (98.60) 93.96 (98.61) 93.63 (97.94)

one-against-all formulation. By computer simula-
tions we showed that ECOC support vector ma-
chines are not always superior to one-against-all
fuzzy support vector machines.

REFERENCES

1. V. N. Vapnik. The Nature of Statistical
Learning Theory. Springer-Verlag, London,
UK, 1995.

2. V. N. Vapnik. Statistical Learning Theory.
John Wiley & Sons, New York, NY, 1998.

3. T. Inoue and S. Abe. Fuzzy support vec-
tor machines for pattern classification. In
Proceedings of International Joint Conference
on Neural Networks (IJCNN ’01), volume 2,
pages 1449–1454, July 2001.

4. S. Abe. Analysis of multiclass support vec-
tor machines. In Proceedings of Interna-
tional Conference on Computational Intelli-
gence for Modelling Control and Automation
(CIMCA’2003), pages 385–396, Vienna, Aus-

tria, February 2003.
5. U. H.-G. Kreßel. Pairwise classification and

support vector machines. In B. Schölkopf,
C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods: Support Vec-
tor Learning, pages 255–268. The MIT Press,
Cambridge, MA, 1999.

6. J. C. Platt, N. Cristianini, and J. Shawe-
Taylor. Large margin DAGs for multiclass
classification. In S. A. Solla, T. K. Leen, and
K.-R. Müller, editors, Advances in Neural In-
formation Processing Systems 12, pages 547–
553. The MIT Press, Cambridge, MA, 2000.

7. M. Pontil and A. Verri. Support vector
machines for 3-D object recognition. IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(6):637–646, 1998.

8. B. Kijsirikul and N. Ussivakul. Multiclass
support vector machines using adaptive di-
rected acyclic graph. In Proceedings of In-
ternational Joint Conference on Neural Net-
works (IJCNN 2002), pages 980–985, 2002.

Table 6
Recognition rates (%) of hiragana data with polynomial kernels (d = 3)

Code Hamming Average Minimum

1-all 97.55 (100) 99.28 (100) 99.28 (100)

(15,7) 95.50 (99.96) 97.63 (99.85) 96.93 (99.97)

(31,11) 98.38 (99.99) 99.01 (100) 98.56 (99.97)

(63,31) 99.01 (100) 99.30 (100) 99.17 (99.97)

(127,63) 99.31 (100) 99.46 (100) 99.26 (99.97)

9. T. Phetkaew, B. Kijsirikul, and W. Rivepi-
boon. Reordering adaptive directed acyclic
graphs: An improved algorithm for multi-
class support vector machines. In Proceedings
of International Joint Conference on Neu-
ral Networks (IJCNN 2003), volume 2, pages
1605–1610, July 2003.

10. F. Takahashi and S. Abe. Optimizing di-
rected acyclic graph support vector machines.
In Proceedings of Artificial Neural Networks
in Pattern Recognition (ANNPR 2003), pages
166–170, September 2003.

11. S. Abe and T. Inoue. Fuzzy support vector
machines for multiclass problems. In Proceed-
ings of the Tenth European Symposium on
Artificial Neural Networks (ESANN”2002),
pages 116–118, Bruges, Belgium, April 2002.

12. D. Tsujinishi and S. Abe. Fuzzy least squares
support vector machines. In Proceedings
of International Joint Conference on Neu-
ral Networks (IJCNN 2003), volume 2, pages
1559–1604, July 2003.

13. D. Tsujinishi and S. Abe. Fuzzy least squares
support vector machines for multiclass prob-
lems. Neural Networks, 16(5–6):785–792.

14. T. G. Dietterich and G. Bakiri. Solving mul-
ticlass learning problems via error-correcting
output codes. Journal of Artificial Intelli-
gence Research, 2:263–286, 1995.

15. E. L. Allwein, R. E. Schapire, and Y. Singer.
Reducing multiclass to binary: A unifying ap-
proach for margin classifiers. Journal of Ma-
chine Learning Research, 1:113–141, 2000.

16. K. P. Bennett. Combining support vector and

mathematical programming methods for clas-
sification. In B. Schölkopf, C. J. C. Burges,
and A. J. Smola, editors, Advances in Ker-
nel Methods: Support Vector Learning, pages
307–326. The MIT Press, Cambridge, MA,
1999.

17. J. Weston and C. Watkins. Support vec-
tor machines for multi-class pattern recog-
nition. In Proceedings of the Seventh Eu-
ropean Symposium on Artificial Neural Net-
works (ESANN’99), pages 219–224, 1999.

18. S. Abe. Pattern Classification: Neuro-fuzzy
Methods and Their Comparison. Springer-
Verlag, London, UK, 2001.

19. A. Hashizume, J. Motoike, and R. Yabe.
Fully automated blood cell differential sys-
tem and its application. In Proceedings of
the IUPAC Third International Congress on
Automation and New Technology in the Clin-
ical Laboratory, pages 297–302, Kobe, Japan,
September 1988.

20. M.-S. Lan, H. Takenaga, and S. Abe. Char-
acter recognition using fuzzy rules extracted
from data. In Proceedings of the Third IEEE
International Conference on Fuzzy Systems,
volume 1, pages 415–420, Orlando, FL, June
1994.

