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We solved the Schobinger equation for a particle in a uniform magnetic field in the
n-dimensional torus. We obtained a complete set of solutions for a broad class of
problems; the toru¥"=R"/A is defined as a quotient of the Euclidean spatdy

an arbitraryn-dimensional latticeA. The lattice is not necessary either cubic or
rectangular. The magnetic field is also arbitrary. However, we restrict ourselves
within potential-free problems; the Schiinger operator is assumed to be the
Laplace operator defined with the covariant derivative. We defined an algebra that
characterizes the symmetry of the Laplacian and named it the magnetic algebra. We
proved that the space of functions on which the Laplacian acts is an irreducible
representation space of the magnetic algebra. In this sense the magnetic algebra
completely characterizes the quantum mechanics in the magnetic torus. We devel-
oped a new method for Fourier analysis for the magnetic torus and used it to solve
the eigenvalue problem of the Laplacian. All the eigenfunctions are given in ex-
plicit forms. © 2003 American Institute of Physic§DOI: 10.1063/1.1616203

[. INTRODUCTION

In this paper we solve the Scliinger equation for a particle in a uniform magnetic field in
ann-dimensional torus. The problem looks plain at first sight but actually it turns out to be a hard
problem, which has not been solved before. Hence we begin this paper by a quick explanation of
the problem. After that we will describe our strategy to solve it. Subsequently we will briefly
mention studies by other people and describe our motivation of this study. At the end of the
Introduction we will give guides for quick access to main results of this paper.

An n-dimensional torus, on-torus, is defined ag"=R"/Z". In the coordinate a point
(t%, ... t0+1,... ") is identified with ¢*,... t/,... t") for eachj=1,... n. The eigenvalue
problem of the ordinary Laplacian in the torus is the equation

n (9 2
—Af=—j21 (ﬁ) f=gf (1.0

with the periodic boundary condition
f(t, . 0+, )= L, ). (1.2

The eigenvalue problem can be immediately solved by Fourier expansion. A plane-wave function
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Ye(th .t =e2miE kit (1.3

with quantized momentl; e Z is a solution. The whole set of eigenfunctiopgc| (K1, . . . Kn)
e Z"} constitutes a complete orthonormal set of the space of periodic functions over the torus.
This is a well-known result.

In this paper we would like to solve an eigenvalue problem of the magnetic Laplacian; the
magnetic Laplacian is defined by replacing the partial derivative in the ordinary Laplacian by a
covariant derivative as

1%

S N
Af= D ¢ -~ 2mA || o —2miA 1. 1.9

jI=1

Here A, is a component of th&J(1) gauge field

1o .
A|:—2 (b” tJ+a| (15)
2]:1

with integers{¢; = — ¢,;} and real number$a;}. The gauge fieldA=3_ A, dt' generates a
uniform magnetic field3=dA=(1/2)2?1,=l¢j, dt/Odt'. Moreover, we would like to consider a
general oblique torus"=R"/A; A is ann-dimensional lattice. Edges of the unit cell of the lattice

do not necessarily cross at a right angle and they do not necessarily have a same length. Hence we
introduce a metricg! in the definition of the magnetic Laplaciai.4) to take inclined and
stretched or shortened unit cells into account. The eigenvalue problé€hvibfs accompanied by

the condition

f(th, . 041, Y =em Skt R (), (1.6

which we call a twisted periodic condition. Thus the plain probldmi) with (1.2) is generalized
to the magnetic probler(l.4) with (1.6). At first glance it looks rather straightforward to gener-
alize the problem in this way but it is actually highly nontrivial and difficult to generalize the
solution.

Let us see where the difficulty lies. In the case of the ordinary Laplacian, the plane-wave
solution(1.3) is a simultaneous eigenfunction of the momentum operators

J
pj:_iﬁ (j=1,...,n) (1.7

aspjxx=2mK;x,. The Laplacian can be expressed in terms of the momentum operater as
ZE?zl(pj)z and, of course, it commutes with the momentum operators. Thus integers
(kq, ... k) are good quantum numbers. Then the whole set of simultaneous eigenfudgtipns
forms the complete solutions of the Laplacian problem. This is the way how Fourier analysis
works. However, when we turn to the magnetic Laplacian, we may seek for a simultaneous
eigenfunction of magnetic momentum operators

d
pJ-:—i(EJ-—ZWiAj) (j=1,...n). (1.8

But such a simultaneous eigenfunction does not exist because magnetic momenta do not commute
with each other and instead exhibit commutators

[ pj.pi =270 ¢ . (1.9
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The magnetic Laplacian can be still expressed in terms of the magnetic momentum operators as
—AzE}Ll(pj)z but it does not commute with; . Hence, the strategy of ordinary Fourier analy-
sis does not work well for the magnetic Laplacian.

To solve the problem we developed a new method, which we call Fourier analysis for the
magnetic torus. This is a main subject of this paper. Let us describe our strategy: First, we will find
a group of operators that commute with magnetic momentum operators. We call the group a
magnetic translation group. Second, we enlarge a family of operators to define an algebra, which
includes magnetic momenta and magnetic translations as its elements. We call the algebra a
magnetic algebra and construct its representations. Third, we show that the space of twisted
periodic functions over the torus is actually an irreducible representation space of the magnetic
algebra. By diagonalizing a maximal commutative subalgebra of the magnetic algebra we obtain
a complete orthonormal set of twisted periodic functions. This set of orthogonal functions provides
a kind of unitary transformation as the set of plane-wave functions provides the Fourier transfor-
mation which bridges between the momentum space and the real space. We note that it is easy to
diagonalize the Laplacian in the momentum space. Finally, we get a whole set of eigenfunctions in
the real space by applying the unitary transformation. In this procedure the third step is the hardest
part and is actually accomplished by lengthy cumbersome calculations. However, the strategy is
clear.

We would like to briefly review studies by other people on spectral analysis in magnetic field.
Brown' first examined the symmetry structure of the Sdimger equation for an electron in a
lattice in a uniform magnetic field and found that the symmetry is described by a noncommutative
discrete translation group. At almost the same time?Za&o found the same symmetry structure
and named the group a magnetic translation giddipG). Zak® immediately built a representation
theory of the MTG in the three-dimensional lattice. From the viewpoint of functional analysis,
Avron, Herbst, and Simon have been studying spectral problems of thed8ulgo operators in a
magnetic field in a series of papére Dubrovin and NovikoV® studied the spectrum of the Pauli
operator in a two-dimensional lattice with a periodic magnetic field and intensively analyzed the
gap structure above the ground state. FIdf8konstructed tensor product representations of the
MTG to analyze a three-particle system in a lattice in a magnetic field. Kuwdbatas been
studying quantum-classical correspondence from the viewpoint of spectral geometry. For example,
he'! proved that if the whole set of level spacings of the quantum spectrum is not deRse in
every trajectory of the corresponding classical particle is a closed orbitt*4caind a quantum
plane and quantum group structure in the quantum system in a singular magnetic field. Thus we
can see that quantum mechanics in a magnetic field has been an active research area. However, we
do not find a literature in which the quantum mechanics imdorus is solved.

Our study on quantum mechanics in magnetic fields originates from studies of extra-
dimension models of the space—time. In extra-dimension models the space—time is assumed to be
a base space of a fiber bundle with a compact fiber or a noncompact fiber. The history of extra-
dimension models is rather old, but an interest in these models is recently renewed as Arkani-
Hamed, Dimopoulos, and Dvéfi pointed out that the extra-dimension model may solve the
hierarchy problem of high energy physics. Inspired with extra-dimension modéfshwit a
model which has a circl&! as a fiber over an any-dimensional space—tilRE€s:. Then we
found that a twisted boundary condition in tB&-direction causes spontaneous breaking of the
translational symmetry. Based on this observation-®\weoposed a new mechanism of supersym-
metry breaking. Next weé-*8built a model which has a two-dimensional sph&feas a fiber over
the four-dimensional space—timB$. We solved dynamics in the sphere in a magnetic monopole
background and then found that the monopole induces spontaneous breaking of the rotational
symmetry and th&€ P symmetry. We also built a model which has mastdimensional torus as a
fiber and tried to analyze dynamics in the torus in a background magnetic field. However, its
analysis was not a straightforward task. Then we studied the symmetry structure of quantum
mechanics in the torus in the magnetic field. %Weonstructed the MTG in tha-torus and
classified irreducible representations of the MTG.

Armed with these tools we are now ready to solve the spectral problem in-tbeus T"
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=R"/A. We decide to solve the problem exhaustively; in our treatment the dimensions of the torus
is taken to be arbitrary, lengths and angles of edges of the unit céll afe arbitrary, and an
arbitrary constant magnetic field is applied to the torus. Thus we aim to solve the widest class of
guantum mechanics in thetorus in uniform magnetic fields.

For busy readers here we give guides for quick access to main results. In Sec. Il we provide
a geometric setting to define the problem. The problem to be solved is the eigenvalue problem of
the magnetic Laplaciaf2.13 with the twist condition(2.5). In Sec. Il we find a family of
operators that commute with the covariant derivative. Actually they are composition of ordinary
displacements and gauge transformations as show®.2t These displacement vectors form a
restricted family of vectors as shown(@:t8). These displacement operators generate the magnetic
translation grougMTG), which is noncommutative as shown &t12. Along (3.16—(3.28 we
construct irreducible representations of the MTG. In Sec. IV we introduce a coordinate system,
which will be revealed to be useful later. In Sec. V we define the magnetic algebra by adding
differential operator$5.2)—(5.4) and multiplicative operator&.9) to the MTG. Then we construct
and classify irreducible representations of the magnetic algebra. Section VI is devoted to calcula-
tion of simultaneous eigenfunctiori6.8) of a maximal commutative subalgebra of the magnetic
algebra. Then we obtain a complete orthonormal set of functions over the magnetic torus, which
provide an extension of Fourier analysis for the magnetic torus. This is one of the main products
of this paper. In Sec. VII by applying this method we solve the original problem, the eigenvalue
problem of the magnetic Laplacian. There we obtain a whole set of eigenfun€diis and
eigenvalueg7.12). These are the main results of this paper.

Il. GAUGE FIELD IN THE TORUS

Lett=(t%, ... t") denote a coordinate of andimensional torug"=R"/Z". Namely, a point
(th ... t0+1,... " is identified with ¢, ... t),... t") in T". A uniform magnetic field is
generated by the gauge field

n n n
1 :
A= Adi== X ¢yt dif+ X k. (2.1
k=1 2k k=1
Here{¢jx=— ¢;} and{«;} are real constants. Then the magnetic field is
1 n
B=dA=> > ¢ dt/Odt~. (2.2
2iiC1

Therefore, the numbep;, represents magnetic flux which penetrates thg!)-face of the torus.
We call the array of numbersf(,) a magnetic flux matrix.
Let us introduce a complex scalar fieidn the torus. The scalar field couples to the gauge
field via the covariant derivative
Df =df —2miAf. (2.3
We put the coefficient 2i in front of A for later convenience. Topology of the torus imposes a

boundary condition on the scalar field. The gauge field itself is not a periodic functi®i buot
it changes its form as

_ . 1
AL, H+L =AY, L )+ > > i dtt. (2.9
k=1

Therefore, if we make the gauge transformation
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f(th, . 41, M =em kbR (), (2.5

the covariant derivativé2.3) remains covariant as

DF(tY, ... H+1,... tM)=emZ-19 D (tL, ... 4, ... 7). (2.6)
We call the condition(2.5) a twisted periodic condition. There are two ways to bring a point
(th ot L Y to (8L, L K LY. The first way s
T S L B Lo g ) T I 1 = SR AU LS IR L)\
=evi{¢ik+2|n=1¢jltl+2|n:1¢k|tl}f(t1, .. ,tj, - ,tk, oM.
(2.7
The other way is
T TCST L T L B L) S N L TC SO L EUN LN L)
=it =t =Lty (L ek ).
(2.9
To make these two expressions coincide we need to have
em ¢’jk:e77i¢kj,
namely,
e (Pik— k) =2 djk=1, (2.9

Therefore, compatibility of the periodic conditio(.7) and(2.8) demands thad;y is an integer.
Hence, the magnetic flux through each face of the torus is quantized. We call the torus where the
magnetic field has been introduced a magnetic torus.

Since two displacements—t/+ 1 andt“—tX+1 are commutative, we can write the twisted
periodic condition(2.5) in a more general form

f(t+m)=e™ = k-19m s (1) (2.10
with an arbitrarym=(m?, ... ,m") e Z". An inner product of two twisted periodic functiorigt)
andg(t) is defined by

1 1
<f|g>=f dtl---f dt" f* (t)g(t). (2.1))
0 0

Equipped with this inner product the space of twisted periodic functions becomes a Hilbert space.

To define the Laplacian we need to introduce a metric into the torus.ALdie an
n-dimensional lattice in the Euclidean spaR8. We equip the torusl" with a Riemannian
structure by identifyingr" with the quotient spacB"/A. Let{u,, ... ,u,} be a set of vectors that
generates the latticA. Their inner products is denoted by

gjk={(u; i) (2.12

and its inverse is denoted Ig/*. Then the magnetic Laplacian is defined as
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n
Af= D, gk

jk=1

J . J ,

It is also referred to as the Bochner Laplacian in the literature. The purpose of this paper is to solve
the eigenvalue problem of the magnetic Laplacian accompanied by the twisted periodic condition

(2.5.

IIl. MAGNETIC TRANSLATION GROUP

Our goal is to find a complete set of eigenvalues and eigenfunctions of the magnetic Laplacian
(2.13 as announced above. A royal road to solving an eigenvalue problem is to detect symmetry.
In this section we determine a group of operators that commute with the Laplacian and construct
irreducible representations of the group.

The vector spac®" acts on the torus as isometries. However, the gauge field restricts the
admissible class of vectors as seen below. An arbitrary veet®" displaces the gauge fie(@.1)
as

1 n
A(t)'—>A(t—v)=A(t)—d(§ > ¢jkvitk). (3.2
jk=1
If we perform a gauge transformation of the scalar field simultaneously with the displacement
f(t)—F (1) =(U(W)F )(t)=e™ = k-1 “F (t—v), (3.2
then the covariant derivative is changed covariantly
Df (t)—>Df’ (1) = e™ k=14’ t(DFf ) (t—v). (3.3
In other words, the transformatid(v) commutes with the covariant derivative as
(DU(V)f)(t)=(U(v)DF )(1). (3.9
Hence it commutes with the magnetic Laplacian, which is defined in terms of the covariant
derivative. The operatdd (v) is unitary with respect to the inner produ@.11).
The displaced functioi(3.2) also must satisfy the twisted periodic condition. If the original
function f satisfies the conditiof2.10, the displaced function changes its form as
£/ (t+m) = 2™ = =10 mem S s () (3.5

for me Z". Thus the displaced function satisfies the conditi®ri0 if and only if

E ¢jkvjmk (36)

jik=1

is an integer for an arbitrargne Z". In other words,

121 oo’ (k=1,...n) (3.7)

must be an integer. We call such a restricted veetarmagnetic shift. The set of magnetic shifts
forms an Abelian group
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Q"={veR"| pve Z"}. (3.8

There is a sequence of Abelian subgrodds Q"CR". In particular, an integer vectane Z"
induces a displacement

(U(m)F ) (t)=em = k=12 “f (t—m).

However, owing to the twisted periodic conditio®.10), this is reduced to the identity transfor-
mation

(Um)f) () =£(t). (3.9
Thus we conclude that the gro@p of effective transformations is generated by
{U(v) |ve QM Z"}. (3.10
We call the groupgG the magnetic translation group. A product of transformations is
U(V)U (W) =e™ = k=1 Wy (v+ w). (3.11)
Their commutator is
U(WV)U(W)U (= V)U(—w) =2 =] k-1dje v, (3.12
We can say that the MTG is a central extension of the Abelian gfoUZ" by U(1).
We can express the MTG in a standard form. Lét,Z) denote a group of the-dimensional
matrices{S} of integers such that d&t&==+1. The matrixSe L(n,Z) acts onte R" by t— St and

this action induces an automorphism of the toflls= R"/Z". It also induces a transformation of
the magnetic flux matrix as

¢jk'_>¢j,k:|'él Dip S i S (3.13

The Frobenius lemnf&tells that for any integral antisymmetric matrix there exists a transforma-
tion to bring it into a standard form

0 o
-q; O
0 a
-q, O
()= . 0" , (3.14
g O

where{q;} are positive integers and they constitute a sequeRm®|- - -|q,,, which implies that
q; dividesq;, 1. For example, we may have a sequen(&12/48. Of course, th=<n. The vector
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subspace of the zero eigenvalue of the matpihas dimensionsi—2m and it is called null
directions. In the following we suppose that the flux matrix is in the standard (8rid).

Now we can write the magnetic shift8.8) in a more explicit form. Lefe,, ... e,} be the
standard basis d®" in the (t, . . . t")-coordinate. Then any magnetic shift is uniquely expressed
as

n—2m
S2

m

S2j-1 j

V=2, —], 92j—1+—_]ezj' + 2 Oomik€mik (3.19
=1\ G g; k=1

with integers{s,, ... Sy} and real number§f,n. 1, - - . ,0,}. Namely, the magnetic shifts are

generated by{(1/q;)ey;_1,(1/q;)&;|j=1,... m} with integral coefficients and{eym |k

=1,... h—2m} with real coefficients. Hence, if the flux matri¢ has null directionsn—2m

>0, the MTG has a continuous component. Otherwise, the MTG is a completely discrete group.
Here we summarize our discussion; the MTG is generated by the unitary operators

1 1
Uj:U(_-ezj_ ), VJ:U(_eZJ> (j:].,...,m) (316)
q; q
and

Wi (8)=U(0mi) (k=1,...Nn—2m). (3.17)

According t0(3.9), (3.11), (3.12, and(3.14), these generators satisfy the following relations:

(Updi=(V)li=1, (3.18
Ujv,u ity t=e?mla, 3.19
Wi(1)=1, (3.20

Wi ()W (0") =W, (6+6"), (3.21)

and other trivial commutators.

To solve the eigenvalue problem of the magnetic Laplacian we need to prepare the whole set
of irreducible representations of the MTG. Litq, ... :dq,...,d,_om)} be elements of a
representation space that are labeled by

r eZ/Zqj (j=1,...m, (3.22

deeZ (k=1,...n—2m). (3.23

Then the generator®.16 and(3.17) are represented by

Uj|r1, s ,rj e ,rm;dl, C ,dn_2m>:|r1, . ,rj+1,. . ,rm;dl, Ca ,dn_2m>, (324)
Vit ooy sy, e asamy =€ 2™ oy s dy, s om),s
(3.29
Wi(O)[rg, oo Ty, e oy =€ 2™,y o)
(3.26

Thus
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d1 Am
He= D PClry, ... rmidy, ... dnom (3.27
r{=0 rpu=0

provides an irreducible representation space of the MTG. Its dimension is
dimHy=q1X X - Xqpp- (3.28

The labelsr; anddy in (3.22 and(3.23 will become good quantum numbers for the Laplacian
(2.13. The dimension(3.28 will give the degree of degeneracy of each eigenvalue.

IV. DIAGONALIZATION OF THE MAGNETIC FIELD STRENGTH

To solve the eigenvalue problem of the magnetic Laplacian we need to take the (@ét?ic
into account. Remember that the bagis, . . . ,u,} generates the lattic& in the Euclidean space
R" and that the torus is isometric R"/A. Letx=(x%, ... x") be an orthonormal coordinate of
R". It is related to the normalized coordinate (t, ... t") via

x=ttu;+---+t"u,=Ut. (4.1

In these coordinates the magnetic fi¢kl2) is expressed as

1 . 1 2 . 1
B=5 > BupdOdx*=3 > Bjul uf di'OdtP=5 X ¢, di'OdtP. (4.2
2ik21 2 kTp=1 21021

The numberBy, is areal density of magnetic flux which penetrates thex{)-plane. If we
perform a coordinate transformation

x=Ry (4.3
by an orthogonal transformatidRe O(n,R), the components of the field strength is transformed

as

1 . 1 2 .
B=5 > BuydxiOd*=> > ByR R dy'OdyP. (4.4)
221 2 kTp=1

By a suitable orthogonal transformation the field strength matix)( can be brought into a
standard form

»='RBR= ' , (4.5
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where{v;} are positive real numbers. The'(. .. t"-coordinate system block-diagonalizes the
magnetic flux in the form of(3.14 while (y%,...y") block-diagonalizes the magnetic field
strength in the form of4.5). The transformation$4.1) and(4.3) are combined into

y='Rx='RUt=Lt. (4.6)
Then we obtain relations among the matrices
¢="UBU='"URv'RU="LwvL. 4.7

The phase factor i3.2) is rewritten as

n n
'2:1 vjd)jktk:j’k%:l oL jv|prktk
n
:j,I%=1 il lepyp
n m
:,Zl 2, ol (L iy = Ly ), (4.9

The gauge field2.1) is expressed in thg-coordinate as

n

m
A= v(y3 tdyP—yBdy? "+ X ay(L7Y!  dyk. (4.9
=1 ik=1

N| =

We set

n

Bi= 21 (L™, (4.10

j:

for later use.
Actually, we can choose a transformation matrixhat has zeros in this pattern

2i—1 2i—1 2i—1
L 2p—-1 L 2q L 2m+r * 00
2 2j 2j
L=( L 2p—1 L 2q L m+r [ = 0 (4-11)
2m+k 2m+k 2m+k
L 2p—1 L 2q L 2m+r o

withi,j,p,q=1,... mandk,r=1,... n—2m. The inverse matrix. ~* also has the same pattern
of zeros. This distribution of zeros is proved in Appendix A. Then we can rewrite the magnetic
shift operatorg3.16) and(3.17) with a help of(4.8) in the y-coordinate as

Ujf(y')=em S (g oy Loy Dyl 1, (10g))), (4.12
Vif(y')=e MLy (i 2 (L), (4.13
Wi(O)F(y) =F(y' =L 54 46) (4.14

for j=1,... mandk=1,... n—2m. From(4.11) and(4.7) we get a formula
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m

2i-1 _ 2A-1 21y —1y2
viL 21'—1—|p2l vl 2 L% (LD

M=

PN (L2|2j_}1 VIL2|2p_L2|2j71 Vlelzﬁl)(L_l)ZFz)i

3

=p§l q; §p (L™ H%B=a;(L™H%, (4.19

which will be repeatedly used later.

V. MAGNETIC ALGEBRA

In this section we introduce new operators which act on twisted periodic functions. These new
operators and the operators in the MTG generate an algebra, which we call a magnetic algebra. We
construct and classify its irreducible representations. In the next section we will prove that the
space of twisted periodic functions is actually an irreducible representation of the magnetic alge-
bra. In this sense, the magnetic algebra completely characterizes the quantum mechanics in the
magnetic torus.

Now we introduce a family of Hermite operators. Expanding the covariant derivi&igein
terms of they-coordinate

n
Df=i>, P,fay' (5.1)

=1

we define differential operators
. a . 2J .
sz,1:_| W+W|ij _ZTHBijl f (52)
Poy=—i| o — i wyy? 1 2 j=1 5

2j =1 ng——mvjy —2miBy | (j=1,...m), (5.3

. d .
P2m+k:_| W_2W|B2m+k (k=l,,n—2m) (54)

These are Hermitian with respect to the inner prod@ctl). Since §*, ... y") is an orthonormal
coordinate, the Laplaciaf?2.13 becomes

n
—Af=2 (P)?f. (5.5
i=1
Nontrivial commutators amonB’s are
[P2]_1,P21]227T|V] (le,,m) (56)

The other commutators vanish. We call the operaé¥s_,,P,;} transverse momenta while we
call the operator$P,,,.} longitudinal momenta. Since the covariant derivative commutes with
the magnetic shifts as seen(8t4), the momentum operatof®;} commute with the shift opera-
tors{U;,V;,W,}, which are defined &8.16 and(3.17).
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Next we introduce another family of unitary operators. For this purpose we need an observa-
tion; in thet-coordinate that expresses the magnetic flux matrix in the standard 3otd, t>m+*
(k=1,...nh—2m) are genuine cyclic coordinates. That is to say, the twisted periodic function
(2.5 is periodic with respect to these coordinates as

f(t, .. 2R ) =F( L PR ) (k=1,... n—2m) (5.7

and the magnetic shif3.2) is reduced to an ordinary continuous shift

(W (O)F)(t, ... 2kt =f(tL, ... 2™ k=g, . .. t"). (5.9
Then we define an operatdF for eachk=1,... n—2m which acts onf by multiplication

t2m+k 2m+k i

(TKE) (1) =2 7 (1) =e2m = DT Yi(y), (5.9

Here we used the inverde ! of the coordinate transformatiof#.6). The operatordT*} are
unitary operators with respect to the inner prod{@il). They satisfy

W, (0) T*=e 270 TkW, (), (5.10

[P, T¥=2m(L"H2MkTk (i=1,...n;k=1,...n—2m) (5.11)

and commute with the other generators of the MTG.

Combining all the operators introduced above we define an algdbnath the generators
{Pi, U,V W (60),TK[i=1,...n;j=1,...m k=1,... n—2m; R} and with the relations
(3.18—(3.22), (5.6), (5.10, (5.1 and other trivial commutators. We call the algebta magnetic
algebra. In the following we will construct all the irreducible representations of the algebral
classify their unitary equivalence classes.

A subset of generatof®y; _1,Pom+ i, V), Wi(6) | j=1,... m;1=1,... n—2m; R} gen-
erates a maximal Abelian subalgebra4f Hence these generators are simultaneously diagonal-
izable. Their simultaneous eigenstéiter,d) is labeled byr; e Z/Z0|j of (3.22 andd, € Z of (3.23
with new labels

koj—1,Kom+1 €R. (5.12

The generator$P,; _;,P,n |} act on these states as
sz,1|k,r,d>=27Tk2j,1|k,r,d>, (513

P2m+||kvr-d>:277k2m+l|kirvd>v (5.14
and{V;,W,(6)} act as(3.29, (3.26), respectively. The coefficient2 was set for later conve-
nience. Other generatof®; T'j=1,...m;I=1,... n—2m} act on the states as

J
<¢|P2j|k,r’d>=iijwkvf'd)' (5.19

T'k; ,r,dk>=eZW‘{ErLl(kZJflﬂ'kz;—lwkzj /Vj+EE;§mZ'pdp}|ki+A'ki rdct+8)y, (516
with A'kj=(L™ 2™, We will determine the if{—2m) X (n—2m) matrix Z'P later. Here|y)

represents an arbitrary state. The rétts| j=1,... m} act as(3.24. Therefore, in an irreducible
representation space the eigenvalkgs. ; are linked tod, via
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n—2m n—2m
komsi= 2, (LD~ Bamei= 2 (di—aom ) (LD (=1, n—2m).
(5.17

Here the real numbeB,,,.; coincides with the one that appeared(514). We also used the
relations(4.10 and (4.12).
The matrixZ'® is determined by the conditioh T'=T'T'". The action ofT'' T' gives

T 7'k, ,r’dk>:eZﬂ-i{ijzl(kzj,1+A'k2j,1)A'k2j Ivj+3p_5"2'Pdy}
s @2m{EL g (kgj 1+ Alkgj 1+ A" kgj - )A kg 1+ 252 5"2! P(dp+ 3,0
X |ki+ Ak +A K1, e 8+ 5. (5.18
while the action ofT'T!" gives
TV ki1, ) = @27HE 100y -1+ A Koy A by v 357372 P
s @2 =Ly (kgj - 1+ Al kg -1+ Alkgy - ) Al /v + 202 F"ZP(d+ 3,

X |ki+ AV K+ Ak r e 5+ 8. (5.19

To give T' T'=T'T" the matrixZ"" must satisfy
m m
,Zl (A'kzj,lA"kzj/vj)+z"'=j§=‘,1 (A kg1 A'kgy 1w+ 21" (5.20
A general solution of the above equation is
m
z”’:;1 (A'kgy 1A Koy v)) +8". (5.21)

Here we leave an arbitrary symmetric matg =S"! yet undetermined. Actually any choice of

S results in an equivalent representation, and therefore weSakeO.
A restricted set of vector§k,r,d)} that are labeled by the mutually independent parameters

Kyj—1€R, rjeZ/qu, dez (j=1,...m;l=1,...n—2m) (5.22

spans a Hilbert spac¥, for each fixed value ofd,m+ 1, @om+2, - - - ,&,). Thus we conclude that
a unitary equivalence class of irreducible representations of the algebes one-to-one corre-
spondence with the parameteryf,, 1, @oms 2, - - - ay) € RT2M/ZN~2m,

VI. FOURIER ANALYSIS FOR THE MAGNETIC TORUS

Now let us turn to the space of twisted periodic functions. It is a representation space of the
magnetic algebra. We will calculate the whole family of eigenfunctions of the maximal Abelian
subalgebra of the magnetic algebra. These eigenfuncfippg(t?, . . . t")=(t|k,r,d) satisfy

. d . - .
P2lek,r,d=_|(Wj_1+7ﬂ ij2]_277|:82j1)Xk,r,d=277k2lek,r,dr (6.
(9 L oj1 - - 9
Paj Xir,a=—1 oy Y — 2 By Xk,r,dzlvjm)(k,r,dr (6.2
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—2m
[ . " o
Pom+i Xior,d= 1 W_Zﬂ"ﬁzmH)Xk,r,d:ZW( 241 di(L™Y 250t = Bom+1 | Xkr.d
(6.3
mit?) 2j—1 1
Ui Xkrd=€™ Xird| t T = Xk, (r+1).d s (6.4
i
_ - mit?d Tl 2j 1 _ —2mir Iq;
Vij,r,d_e Xkr,d| T —a =€ Xk ds (6.5
j
Wi(0) Xir.a=Xir a2 = 0)=e 2790, | 4, (6.6)
T )(k,r,d:ezmzm+I kr.d:927”2?:1(1(21’1%'(2"’1)Ak2"/Vj+Egimzlpdp})(kwk,r,(dn), (6.7

forj=1,...m; I=1,... n—2m, and #eR. Here (+1) is an abbreviation ofr(+ 4;;) and
(d+1) is an abbreviation ofd,+ &,'). And Ak;=(L~%)*""" as given in(5.16. Theny, q is a
simultaneous eigenfunction ¢P; _1,P,m,V;,Wi(6)}. In the rest of this section we will solve
the set of equation&.1)—(6.7) to get the solutions

m n-—2m m
) 3 1 L
Xerd(Yh oo ,y”)=cexp{2m{ _121 ;1 di(L l)zg}tllﬁzj lvi— 51.21 viy? 1y21H

oo . 1 m B
X EU . exr{2m|§i j§|:=1 L% L% 4 (gioi+17)(g;0;

m

m
+rj)/(quj)+j21 ﬂzj—1[ y2j_1—i21 L2j2i_—11(qi0'i+ri)/Qi}

m m
+il§=:1 (gjoj+ri— Yj)(Ll)2j2|[y2|_E |—2|2i1(Qi<Ti+ri)/Qi]

i=1
n—2m

m
2 dk(L‘l)Zg“an.{yZm“—iEl Lzrz?fll(qiai+ri)/qi]
m m
+121 k2j—l[ y2J*1+sz/Vj_iZl L212i11(Qiai+ri_7i)/qi]]} (6.8

wherec is a common normalization constant. The coefficientare given later at6.13. The fact

that the eigenfunctions are uniquely determined up to the common coefficiemdlies that the

space of twisted periodic function is an irreducible representation space of the magnetic algebra.
Consequently, the eigenfunctiori6.8) constitute a complete orthonormal set of the space of
twisted periodic functions over the torus. This is one of the main results of this paper. Hence an
arbitrary twisted periodic function over the torus can be expanded as

f(y', ... 'yn):kZd Merd Xiord(Yh ooy (6.9

with unique coefficients\y , 4. Therefore, the complete séky , 4} provides a new basis for
Fourier analysis in the magnetic torus.
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In the rest of this section we give detailed lengthy calculations to prove the above statements.
The reader may skip them to the next section, where we calculate solutions of the eigenvalue
problem of the magnetic Laplacian using the main regul). First, a simultaneous solution of
(6.1) and(6.3) is

2j—1 2j—-1 2] n—2m y2m+j 2m+l
Xk,r,d(ylvyzl Ly ) eZﬂ'IEj {(kgj—1+B2j- 1)y —(12)vjy }e27'rIEJ| 1 4L ) om Y

X ¢k,r,d(y2!y41 e ,y2m), (61@

where ¢y, 4(y2,y*% ... ,y?™) is an arbitrary function to be specified later.
Next let us turn to the other equati©8.5). Using (4.13 we can rewrite(6.5) as

. 2| _ . . . .
e TRy (Y =Ly la) =672 iy (Y. (6.1

As discussed a@.11) we have taken the matrix such thatL.®,; *=0. Therefore, whett6.10) is
substituted, the LHS of6.11) becomes

e~ I (1)L, ”IVZH)(k,r,d(yi —L'y/q))

. — 2 2m+
— @23 {(kay— 1+ By - Y2 1= (U2)my? " Yy} g2z 2T (L H 2Ry

x 2725 1L Y B AL g (y2 - LF, 1)) (6.12
Hence, if we set
n—2m
2 dp(L™HZ AL, (6.13
(6.11 implies that
e 2™ gy ¢ o(y? —L7y/a) =€ 2 gy ¢ 4(y?). (6.14
If we introduce another coordinate system,¢?, . . . ,z™) which is related toy?,y4, . .. y?™ via
m
2 L (Z14)), (6.15

then(6.14) is rewritten as
gzt 21, 2N =m0 g (2D 2. (6.16
Moreover, if we set
ez 2™ =27 = L1 0=l bira(zt, .. 2", (6.17
then(6.16 implies that

D a2 2 =1, 2N =g g2 2. (6.18

Hencey, , 4 is a periodic function with the period 1 and can be expanded in a Fourier series

o

. .am i
et 2,z = > ck,r,d,”e2”'21=1"iz'. (6.19
o0

Note that the inverse transformation (@.15) is given by
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m
(6.20

Z]/qj :E 2

Combining the above equations we can write down the eigenfun¢id)) in a more specific

form as
n Zmd (L 1)2m+1 y2m+|

)= e2m =L (ko) 1+ Bo) - Dy -2yt Zl}ezmzJI T

X Z B Ck,r,d,o

Xk,r,d(ylvy21
(6.2

. 1.2
eZmEHZl(qjoj-%—rj—yj)(L 1) ’2|y )

Moreover, referring td4.11) and(4.14), we can see thdb.21) satisfies(6.6). Thus we have seen
that x4 is @ simultaneous eigenfunction {®,; _1,P,m.1,V, W (6)} as announced above.
The remaining task is to solv@.2), (6.4), and(6.7). Let us begin with(6.2). The left-hand

side (LHS) of (6.2) is

J L2l ;
—mivyy? " =2 By | Xk r d

gy
. 1 -1 - 1,2i
= E 2m __VJy +E (ioi+ri—=y)(L™5) 2]__ij :82j

T1,00, ...y Tp=—%°

w @2m 2L {(kai -1+ i - DYH L= (12)wy? y2 ) 2miz 2d (L 1)2;”nf'.y2m*'ckrd0

w 2™y (@oi+ri— )L H v

On the other hand, the right-hand sideHS) of (6.2) is
J . L . . _ B .
v — Ko Xkrd—IV @2 S {(kai— 1+ Bai - 1)y? 1= (U2wy? ~ L2 g2 =] 2T (LA 2
- ac .
X > (—k'r’d'gﬁLZWiyz'_lerdo)
01,00, ... Tm 07k2j—]_ o
% @2m = _y(aio+ri— (L H% v
Therefore, we have an equation
m
ICxrdo —1,2i
Ivj—ﬂkz- =2m '21 (dioi+ri=v) (L™ )%= B2j | Ckrd,o (6.22
i <
and get its solution
~3L1Bajkaj-1 /), (6.23

_oifsm o= (L~ D2 k.
Ck,r,d,o:COrd e 27TI{Eiyj:1(q|0'|+r| i) (L )2]- kzl,llvJ

Thus(6.21) becomes
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Yera(YLY2, ... ,yn):ezmz;“:l{(kz,-71+ﬁ2,-71)y21*1+k2j71ﬁ21/v;—<1/2>v,-y21'*1y2"}

i N—2m —1\2m+j 2m+l
x @2mZi 21 di (L) o Y

X E Cordo e277i2m:1(q1'0j+frVj)(L_l)2j2|(y2|*k2|—1/V|)'
(6.29
Next we turn to(6.4). With the aid of(4.12 and(4.15 the LHS of(6.4) becomes

: 21— 2| — . .
e =L A1) (L 2y L% gy l)Xkr a(y' —L'5_4/q;)

som 2i—1 —1\2j , 2i .onN—2m —1\2m+i , 2m+1
:eZmEi:l{—BZi,lL 2J*l/ql_(l/2)(|_ ) ZiL 2]71/QJ} e_ZWIEiJ:l dl(L ) 2m+|L 2]71/QJ

w @2m L o {(kai — 1+ Bai - 1)Y? ki 1B /Vi—(1/2)Viy2i71y2i}e277iEﬂfdei(Lfl)zgmwzmH

o)
‘ ~1,2i 2l
% 2 Cor g Ue—ZWIZm:l(qui+ri—yi)(L H2 L% 4/a;
01,09, ..., om=—* e
X e277i2m:1(¢1i0i+fi+5ij*Vi)(L_l)2i2|(y2|*k2|—1/V|)_ (6.25

To make this coincide with the RHS ¢6.4) we have a recursive equation

M 2i—1 —1,2j , 2i on—2m —1y2m+i | 2m+|
eZ’T'Zizl{*ﬁzi—lL 2]_1/q]-7(1/2)(L ) ol 2j—1/qj} e72w|2i’|:ldi(L ) om+1L 2j—1/qj

X e_ZWiEmzl(QiUi*’ri_Yi)(L’1)2'2|L2|zj,1/qj Cor d.o=Co ((+1)do- (6-2®
Here (+1) means (;+ §;;). If we define anmx m matrix

m m

Yij => (L71)2i2||-2|2j71/qj:|21 VIL2|2i7711L2|2j71/(quj)v (6.27

=1

it is symmetric as

m
Yii—Yii :Zl (Lzlzf—llVleEj—l_ L2|2i—1V|L2|2f}1)/(Qin): $oi-12-1/(0ig;)=0 (6.28
by virtue of (4.7). Then the solution 0f6.26 is

oM 2i—-1 Sem n—2m —1\2m+i | 2m+|
Cor.d.o=Coo0d 5 € 2ME =P -1t 1T 1A 2R g B 21 (L) oL -0 /G

w @~ 2mT} | _y(gjoi+ (112 - yi)(L71)2i2|L2|2j71rj ;. (6.29

Therefore,(6.24 becomes
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m

Xerd(YhY?, .o ,y”)zexr{Zwi[ 21 [(kzj—1+52j—1)y2jl+ Koj— 1825l vi— %ijzl-flya
n-2m

+HE:1 di(L_l)zzmrrTll( 2m+| 2 Lz, /qj)

m

m
_,Z Bai—1L? 2 L ilaj+ “2:1 YijrirJ'H

ihj=1

0 m
X 2 . CO’O’d’UeXF{ZWiJ‘él (qJO'J‘l‘rJ_'yJ)(L*l)ZJZI

m
X )/2|—|<2|—1/V|_i§1 LZIzi—lfi/Qi”- (6.30

Since U;)%=1 by (3.18, the substitutiorrj—r;+q; must leaveyy 4 invariant. This substitu-
tion gives

< . 1
Xk,(r+q),d(y):eXF{27T|[i_El {(k2i1+ Bai—1)Y? Ko 1Bail vi— EViyz'lYZI]
n—2m m m
+ E di(L™ Y2, ( 2m+|_,321 nglp_lep/qp) —”221 Bai—1L% /g,

n—2m

1 m . m
+§i;1 Yiplilp— E di(L™H2miL g}tll_izl ﬁzi—1'—2'2j—11+i21 Yiiriq;

1 - | &
+§ijq1'qj')] > CO,Od,(fr1)exf{27ﬂ|_z(qi("i"'ri_?’i)Yijqj
01,00 Opm=—% =

,,,,, ].

dij). We used(4.15. Then we have another recursive

m m
+ 2 (qiai+ri—m(L—l)z;l(yz'—km_l/v.—pzl L%%p-1p/lp (6.31

Here (c0—1) is an abbreviation ofd;—
equation

n—2m

- |
Co,od,(r:Co,od,((r1)exl{277|[ Z di(L™H2 L5t — Z Bai—1L% Y

1 m
+i21 Yijriqj+§ijqjqj_i21 (qio'i+ri_7i)Yijqj] . (6.32

Remember thaty;q;Y;; ==, »L% L%, 1 =q;q;Y;; is symmetric. The solution of6.32) is

n—-2m m
Co,ou,o:Co,ou,oeXF{Zﬂ'i{__Zl 21 di(L71)2?$i|L2m+|10j Z Bai— 1|— 10'1
il=1 j=

m m

+ij2:1 Yijrqu'(Tj—ijZ:l ((Y2qgioi+ri— Yi)Yijqj‘UJH- (6.33
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Substituting it into(6.30 and using(4.15, we get

) 1 m
2j—1,,2 .
Xior a(Y) = Coggoe Eimay T YY ) . exl{zm[zijzl Yij(dioi+ri)(gjoj+1))
m m
+j21 ﬂzj—l[YZJ_l_izl LZJzi_—ll(QiUi+fi)/Qi]

+j|2=l (o +rj—y)(L™ { 2 L2 4 q|0'i+ri)/qi]

n—2m m
+ 2 di(L™ 1)2%1[ 2m+|_j21 L22mjt|1(qj0-j+rj)/qj}
m

m
+j21 k2j—l[ yA T By /Vj_lzl L2 (qio+ 1, — 7|)/C1|] ” (6.39

Finally, we are going to solvé.7). Its LHS becomes

2 t2m+|

Xk,r,d

_ 1,2 - 1
™ 212
= Coog€ M= Y > . F{ZTT [5 Yij(dioi+1)(gjo;+r))

M

Il
-

+1_21 ,321'1[ E L2 qlffi‘Hi)/Qi]

m

m m

+jp21(qjoi+f;—7j+i21(L Lzl )(L H3, [ 2p_i21 L5 (gioi+Ti)/a;
m
> (

+ 1)2m+l

eh b_i(aioitr)la;

N

n—

m m
+ > (di+ (LT 1)23’m++'p{ 2"““’—2 3}+‘i(qja]+r)/qjl
Lp

Il
[y

-2

=]
3

m
. 2 (LT L5 o)/

M

+

M= 3

+

1

m
2, (kgj-g+(L" 1>2m+'1>{y2i‘1+321/vj—§1 L2£;_11<qpop+rp—yp>/qp}

VE

=1

m
(Ll)zg;“l[ Bajl vi— p};,l L2t (Qporp+Tp— yp)/qp} ] } (6.35
We setA'ki=(L~ 1)2m+| as before. The changk—d,+ 5p' causes a change of as
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n—2m

A yj= 21 (Lfl)ZrznmﬂlLZmﬂ

:Z (L—l)ZIiTH—lLi ) E (L 1)2m+l Z 2m+|
=o—o—i§1 (L™ L2, (6.36

via (6.13 with (4.11). Moreover, we can see that
m
le L2 Ay, /= E L2t (L™ H20 L% g,
== 2 (LTHZLHLe
i=1

:_Z (L l)2m+l i /V]
—_(L 1)2m+l

Therefore(6.35 becomes

i e2m+|
2t
Xk,r.d

m

i m 2j—1,,2j .
:CO’O’d’Oeimzjzlyjy Ty ]EX[{ZWI’ E (k2j71+Ak2j,l)Ak21/Vj
=1

|

1S
X 2 . eX[{Zﬂ'I[Eijz_l Yll(q|0'|+r|)(qJ0'J+rJ)

m
2 22] |1(B2]/VJ+E I— 2p 17p/qp

+Zl szl[ij—l_Z 2| 1(q|0'|+r)/Q|]

m

+jpE:1 (qjoj+ri—y—Ay)(L H2,

m
y2p_§1 ngi—l(qio'i+ri)IQiJ

i,p=1

n—2m m
EORCEY (e 1>22mr§+'p{ 3 Ll
=1

m m
+121(kzj—1+Ak2j—1)[YZj_l"”,sz/Vj_pz L22 1(dpopt+Trp—vp— A)’p)/qp]H

(6.39

In the course of calculation we used the fag} (L~ 1)2”‘+'Lp =0. With the aid of(4.15),
(6.36 and the definition5.21) we can deduce that
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n—2m
2 | i
]pE_ (L5 yplap=— 2, Z'dh. (6:39
Thus we reach
L2 | om —1,2m+| _
g2t Xira=€ 2mi=alb ) -1ho v Co,od,ocoé(du) )

2m-|

x @2m2Lalka) -1+ MKy DAy 1yt STy (6140

To satisfy(6.7) we meet another recursive equation

1,2
Co,0,d+1),0= € ~2mL L ey "iCo,04,0 (6.41
and we get the solution
n—2m 1y2m+|

CO’O'd'O:e ZWIEJ 12| 1 d|(L ) zj_lﬁzj/VjCO’O’O’O. (642

Substituting it into(6.34) we reach the final result

m n—2m 1 m
Xk,r,d(y)=coyoyoyoexp{27i[ le ; AL H2 Byl - ]z::l ijzjlyzju
1 m
X 2 . eX[{Z’JTi|§ijEl Yij(in'i+ri)(QjO'j+rj)
m m
+21 ,321'1[ yzrl_;l L2J2i11(Qi0'i+ri)/qi]

m m
+j|2:1 (9jojtrj— 7’1)(|—_1)2j2|[y2|_i21 Llei—l(QiUi+fi)/Qi]

n—2m m
+ 2 d( z?nil‘[yzm*'—E ’“*'(q.o.+r)/qJ

kl=1 i=1

m
+j§1k2j [yl L4 Byl vi— EL L(qioi+ri— %)/quH- (6.43

This is the result(6.8) announced previously. The eigenfunctigq, 4 is determined up to a
unique normalization constamng 0. Thus we conclude that the space of twisted periodic func-
tions over the torus is an irreducible representation space of the magnetic algebirally, we
have proved that the set of functiofyg, , 4} is a complete orthonormal set in the space of twisted
periodic functions over the torus as announce¢ba).

VII. EIGENFUNCTIONS OF THE MAGNETIC LAPLACIAN

In this section we will write down explicitly solutions of the eigenvalue problem of the
magnetic Laplaciari2.13 or (5.5), which is expressed in thg-coordinate as

m 2 9 2
2 2] ——— vy ]—27T|ﬁ2] f+ &yzj — i v]y —27Ti,82j) f}
n—2m 2
dJ .
+ kzl (W 217'/32m+k) f. (7.9
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The functionf must satisfy the twisted periodic conditi¢2.5). We will obtain solutions using the
Fourier analysis that is developed in the preceding section.

Here we would like to describe the outline of our method. As mentioned in the preceding
section, the Laplacian commutes with the magnetic shift opergtdisV; ,W,}. Hence the labels
(r,d)=(rq,ro,...,rm,d1,ds,...,dy_»m), Which are defined ii3.22—(3.26), are good quantum
numbers. Moreover, the Laplacian commutes with the longitudinal momentum opdRjprs} .
Hence the corresponding momentum eigenvajlies. } are also good quantum numbers and are
related to the labeld, via (5.17). On the other hand, the Laplacian does not commute with the
transverse momentum operatofB,;_,,P,j}. Hence the transverse momentum eigenvalues
{kzj-1} do not remain good quantum numbers. The Laplacian admits a new set of good quantum
numbers Q,n,,...,n,), which will be introduced later. It will be revealed that eigenfunctions of
the Laplacian are actually matrix elements of a unitary transformation,

o ra(keKs, oo komo1)=(k,r,d|n,r.d), (7.2

which relates the quantum number's to k's. In thek-space it is rather easy to get eigenfunc-
tions by the standard method of a harmonic oscillator. On the other hand, the set of eigenfunctions
of the momenta and magnetic shifts,

Xird(YhLY2 o yM=(ylkr.d), (7.3

plays a role a unitary transformation which bridges between the momentum space and the real
space like the usual Fourier transformation. Hence the Laplacian eigenfunctions are transformed
into they-coordinate representations by

o ra(YhLY? oy =(y|n,r,d)y= f_mdk1 dks - -+ dKom1(Y|k,r,d) (k,r,d|n,r,d). (7.4

This will give the desired result.
Now let us carry out the program outlined above. We define creation and annihilation opera-
tors associated with the transverse momenta as

1 1
+ ) : .
al=——=(Py_1—iPy), a=-—=—=(Py_1+iPy) (j=1,...m). (7.5
j \/FVJ( 2j—1 2j j \/FV] 2j—1 2j (]
It is easily verified thaf a; al]= djk- Then the Laplaciaii5.5 becomes
m n—2m
—Azjgl 4rv, a,-TajJrE + g,l (Pomaii)?. (7.6)

The eigenstat@) for the lowest eigenvalue satisfies

1 .
0=(k|a;|Q)= —l<k|(P2jfl+|P2j

1
VAT, 10)= VA, (

Here we used5.13 and(5.15. The solution is

d
27Tk2]-,1+ v E <k|Q> (7.7
=

(K| Q)= e ™ alkej -0y, (7.9

States for higher eigenvalues are generated by creation operators as
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1
(kln)= ﬁ(kl(abnl“'(a%)”ﬂm
1 m*
S - |2k ’ )nj<k|n>
ko —p—
nyl--npl =1 | VA, A7 T gkgy g
1 m PO I | g \|M m 2
— eﬂTEj:l(kzj,l) /VJ' ( — v ) e—ZWijl(kzj,l) /VJ' 7.9
Jngtng! 11:[1 Vamy, Vakaj-1 79
for ny,n,, ... ,n,=0,1,2,... . We are suppressing other labelgl). In Appendix B we prove

that

d . 2 2 d . 2
—27kélv — TVZ ; —27vz
e =\ve —I1 e
) ( é'z)

ok
= w(i\2mv)"e” ™" H (z\2mv).  (7.10

In the second lingH,,(¢) is thenth Hermite polynomial. Substitutings.43 and(7.9) into (7.4
and applying(7.10 we obtain

Jm dk e2mikz. eﬂrkzlv( —

—

(y|n,r,d>=f dky dks - -+ dkom_1 {y|k,r,d)k,r,d|n,r,d)
m n-—2m
:CEX[{ZWi|_E E d|(|_71)22mjt|lﬂ2]'/1/j
=1 =1

1 - 1 &
- 5. ijZJ—lyZ] 2 exp 2mi —2 Yij(in'i+ri)(QjO'j+rj)
21:1 2|,j:1

01,02,y Tm=

m m
+j§=:1 ,3211{ yZJ*l_Zl L2]2i11(qi0'i+ri)/Qi]

m m
+j|2:1 (qjo'j+rj_7j)(L_1)2j2I[ym_izl L2|2i1(qi0'i+ri)/qi]
n—2m

m
+ kél dk(l-l)zgnn:rfl{yzmﬂ_zl ng?tll(QiO'iJfri)/Qi] H

i \M )

V ]|( ) e~ YA T By 1y~ L (aio - )
ni'\ va
j

m
VZWVi[YZj_lJﬁBZj /Vj_izzl inzi_ll(QiUiHi—?’i)/Qi] )

<]1

=1

><Hnj

. (7.1

This is the main result of this paper. Usiflg17), we can calculate eigenvalues of the Laplacian

(7.6) as
1 m 1 1n72m n—2m 2
_EA‘ﬂn,r,d:LZl 2my; nt+3+35 kzl [ Zl 27T(dl_a2m+l)(|—_1)2r2nn:-il-k] }lﬂn,r‘d-

(7.12
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Eigenvalues depend on quantum numbeysn,, ... ,n,=0,1,2,... andd,,d,, ... ,dy_2,n=0,
*+1,£2,... butnotomr=(rqy,ry,... Iy e qu>< Zq2><~--><qu. Thus each eigenvalue is degen-
erated byq;q, --qp, folds as predicted ir3.28. If a ratio »;/v;(i#]) is rational, degeneracy
happens more. On the other handgif,, ., =0, the eigenvalue for-d, coincides with the one for
d. If aony=1/2, the eigenvalue for<{d,+1) coincides with the one fod,. Moreover, for
specific values o{(Lfl)ngk} we may meet more multifold degeneracy.

Let us discuss physical meanings of the eigenvdii@?. It is energy of an electrically
charged particle moving in the magnetic field in the torug7112 we set the coefficient 1/2 in
front of A to adjust the equation to the conventional Sclmger equation. In the context of
classical mechanics, the particle exhibits a cyclic motion with the frequencyn the
(y?~1,y?)-plane for eachi=1,2,...,m. And it exhibits a uniform straight motion along the
y?™*k_axis. The whole motion is a superposition of those cyclic and straight motions. When we
turn to quantum mechanics, energy of the cyclic motion is quantized and results in the so-called
Landau level Zrv;(n;+1/2). On the other hand, the longitudinal momentemy,,  associated

with the straight motion is quantized to bemRym. =272 2"(d,— apm.) (L~ 12,
=273 (L Y20 — Bomek With integers @;,d,, ... dy_2m) as explained in(5.17.

Along the course of the straight motion the particle flies around the torus and picks up the
so-called Aharonov—Bohm effect. Then the momentum is shifted by the Aharonov—Bohm param-
eters Bom+1, - - - Bn). Accordingly, the kinetic energy of the straight motion is also quantized.
The total energy is then given &8.12).

Moreover, let us examine meanings of other Aharonov—Bohm paramegets (. ,82m)-
These do not affect the enerdy.12 and hence they have a geometric significance rather than a
physical significance. To understand their meaning we rewrite the eigenfuri6tés) as

m

n—-2m m
) N B 1 . )
Xk,r,d(Y):CGXF{ZWI[ 21 le dif(L 1)2r2T}+I,321—1—(|- 1)zg}tllﬁzi}/1’j_§j21 vy~ ly?

m » m
) 1
+j§=:l B2j1y211H 2 - ex;{zm[ii;l Yij(gioi+ri)(qjo;+ry)
m

m
+j|2:1 (gjoj+ri— )’j)(l—_l)zjzl[YZI_B2|—1/V|_;1 Lzlzi—l(QiUi+fi)/Qi]

n—2m

m
+ > dk('—l)zg]rrﬂ(l[yzmﬂ_z Lzrzriml(Qi(TiJrri)/Qi}
K21 =

m m
+121 k2jl{ y2j_1+52j/’/1—21 L2j2i_—11(qi0'i+ri_7i)/qi] H (7.13

To get the above expression we used

n—2m

m
21 LA Y yilgi=— ;l (L= Y2y, (7.14

which is easily derived froni6.36). Thus we can see that the parameteds,( . . ,8,,) induce a
displacement

(YY) (y3 7 By vy Y2 = By 1)) (7.19

of the profile|xk.4(Y)|. This is the geometric significance of the transverse Aharonov—Bohm
parameters.
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VIIl. CONCLUSION

Here we summarize our discussions. As well-knowiJ(d) gauge field replaces the partial
derivative by the covariant derivative and generates a magnetic field. As a natural extension of the
eigenvalue problem of the ordinary Laplacian in tiorus, we formulated the eigenvalue prob-
lem of the magnetic Laplacian. The ordinary Laplacian admits continuous Abelian symmetry and
therefore the usual Fourier analysis is applicable. However, the magnetic Laplacian does not admit
continuous Abelian symmetry and therefore the usual Fourier analysis is not applicable to it.
Hence, we developed an alternative method, which became an extension of the usual Fourier
analysis. We identified symmetry structure of the magnetic Laplacian and defined the magnetic
translation grougMTG), which is discrete and non-Abelian in general. Moreover, we defined the
magnetic algebra by extending the MTG. We proved that the space of functions on which the
magnetic Laplacian acts is an irreducible representation space of the magnetic algebra. By diago-
nalizing the maximal Abelian subalgebra of the magnetic algebra we obtained a complete ortho-
normal set of function§x, , 4(y)} over the magnetic torus; those functions are labeled by a set of
good quantum number ,d). It was rather easy to diagonalize the magnetic Laplacian in the
k-space representation. Applying a unitary transformatiod yay; 4(y)} to the eigenstate of the
magnetic Laplacian, we finally obtained the eigenfunction in yk&pace representation. The
eigenvalues of the magnetic Laplacian were naturally interpreted as sums of energies of cyclic
motions in the transverse directions to the magnetic field and energies of linear motions in the
longitudinal direction to it.

New results of this paper are the definition and representations of the magnetic algebra, the
proof of irreducibility of the space of twisted periodic functions as a representation space of the
magnetic algebra, the complete orthogonal set of functiér®® which provides a basis of the
extended Fourier analysis, the eigenfunctiéndl) of the magnetic Laplacian in explicit forms,
and the eigenvalueg.12.

Before closing this paper we would like to discuss briefly possible directions for further
development. We treated only the Laplace operator in this paper but for application to physics it is
more desirable to treat the Schinger operator

H=—3A+V, (8.2
which has a potential energy teivh The potentiaV is a periodic function; in thé-coordinate it
satisfiesV(t?, ... t'+1,... t"N=V(t}, ... t', ... t") for eachi. It acts on the twisted periodic

function f(t) by multiplication. To take the potential term into account we may introduce new
operatorsx by

XIf)O=e2mf(t) (j=1,2,...,2m), (8.2

which belong to the same family of operatdsof (5.9). Then any periodic potential operator can
be expanded as

= 2 e (XN (XM (T et (TR72M 70 (8.3)

01,02, ..., on=—

We can easily calculate commutatorsXsfs with other operators to get an algebra which is an
extension of the magnetic algebra. The resulted algebra is isomorphic to the so-called honcom-
mutative torué' although we do not yet examine these relation thoroughly.
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Another direction for future development is to solve an eigenvalue problem of the Dirac
operator in then-torus in the background magnetic field. We also construct supersymmetric field
theory, which have both scalar and spinor fields as its constituents to pursue a new mechanism of
supersymmetry breaking.
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APPENDIX A: DISTRIBUTION OF ZEROS

As shown in(4.11) we prove existence of a transformation mattixthat has zeros in the

pattern
2i—1 2i—1 2i—1
L 2p—-1 L 2q L 2m+r * 00
2j 2j 2j
L=( L 2p—1 L 2q L m+r [ = F O 0 (Al)
2m+k 2m+k 2m+k
L 2p—1 L 2q L 2m+r o

with i,j,p,q=1,... mandk,r=1,... h—2m.
In R" we have an antisymmetric bilinear forBn We say that a vectar is longitudinal with
respect taB if it satisfies

B(u,v)=0 (A2)
for arbitraryve R". We call
M%={ueR"|VveR", B(u,v)=0} (A3)
a longitudinal vector subspace. Leét 2, ... t") be the coordinate system that expresBés the
standard form

12 -z . ‘
B=5 > ¢y diOdt =2 q;dt? 10t (A4)
ij=1 =1

as in(3.14. Let (y!,y?, ...,y") be another coordinate system that is relatecttcty, . .. t") by
a linear transformatioy'=2}‘:1L'j t!. The matrixL is not yet specified. Basis vectors generated
by these coordinates are related as

I e W I - 9
WA oy & iy "
a_i at‘a_z L1yi A6
& &t e Ao
Define vector subspacéd ™ andM* of R" as
M~ =R—3@R— R—n AT
=ROAORI3® " OR-om-T, (A7)
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J J
M+=R—Z@RW@---@R (A8)

at otZm
ThenM~ @M "@M°=R". Now let us remember th&®" is equipped with inner product structure.
Then the two-formB:R"x R"—R can be regarded as an antisymmetric opefat®"—R". As a
square of a linear operaté2 is well-defined and becomes a symmetric operator and therefore is
diagonalizable by an orthogonal transformatiBi.has nonpositive eigenvalues. The eigenspace
WP associated with the zero eigenvalueB5 coincides withM°. Of course,

J J J
2L 2mE 2 s (A9)

is a basis oM°%=W?. We take an orthonormal basis

J J J
[ So2mFL oo2mT2r e ,_n) (A10)
ay aay ay

of WP. This implies that

in (A5) and (A6).
Let us step into a difficult part of the proof. Each eigenspace associated with each nonzero
eigenvalue ofB? can be decomposed into two-dimensional subspaces such that each two-

dimensional subspad¥; is irreducible with respect to the action Bf Thus we get an orthogonal
decomposition

R"=W,;.L Wyl - -1 WL WP, (A12)

Next we define vector subspaces
W =w,n(M*&M?), (A13)
W =W,n(M*aM%*", (A14)

then we can show that botlcN+ and W; have one dimension. First, note that dNrT

+dimW; =dimW;=2. If d|mW+ 2, W+ comudes withW; itself. Since the two-formB IS
degenerated onM oMY, it must be degenerated also W‘] W;"C(M*@M?). This contra-
dicts the fact thawy; is irreducible with respect t®. On the other hand, if div; =2, Wy

coincides withW; itself Then we can take an arbitrary one-dimensional subsMaceCW

=W; C(M @MO)L. Since W, is irreducible with respect tB, B is degenerated oM _;
eBM *@MPO. This contradicts the fact thatl " ®M? is a maximal degenerated subspaceBof
Hence we conclude that diW;” =dimW; =1.

We take a normalized vectar gy of W;" . And we take another normalized vectgpy? ~*
of W; such thatv;= B(ﬁ/ﬁy2J ! a/ay21)>0 for eachj= m. Then we obtain a complete
orthonormal basis{d/dy'|i=1,2,...,n} that expressesB in the standard formB

M v dy?~t0dy?.
S|ncea/&y2qu+CM @M?, we can say that

(L™ H%t=0 (A15)

in (A6). By an elementary argument of linear algebra we can say that
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L%, 1=0. (A16)
The proof is over.

APPENDIX B: FOURIER TRANSFORMATION OF THE HERMITE POLYNOMIALS

In our convention the Hermite polynomial is defined as
2 dn _ g2
Ho(§)=(-1)"e* Qg ® & (B1)

The formula(7.10 can be deduced by a partial integration and a change of variables as

a\" * a\"
_) e—zwkZ/V:J' dk e—%k%(_) g2mikz_ gmk?ly

” mikz, amk?v| _
J_mdke2 e ( K

- n
= ewvzzf dk e—ZwKZIV(O’%) ew(k+in)2/V

o H n
_ ewz2f dk e2ﬂ-k2/v( b %) ew(k+ivz)2/1z
— o0 14

2 i d\" (= L2 2
=™ — — f dk e~ m(k—ivz)*lv—2mvz
v 02 —

i 9\"
= em/22< _ ; 5) \/;e—zqwzz. (BZ)
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