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We solved the Schro¨dinger equation for a particle in a uniform magnetic field in the
n-dimensional torus. We obtained a complete set of solutions for a broad class of
problems; the torusTn5Rn/L is defined as a quotient of the Euclidean spaceRn by
an arbitraryn-dimensional latticeL. The lattice is not necessary either cubic or
rectangular. The magnetic field is also arbitrary. However, we restrict ourselves
within potential-free problems; the Schro¨dinger operator is assumed to be the
Laplace operator defined with the covariant derivative. We defined an algebra that
characterizes the symmetry of the Laplacian and named it the magnetic algebra. We
proved that the space of functions on which the Laplacian acts is an irreducible
representation space of the magnetic algebra. In this sense the magnetic algebra
completely characterizes the quantum mechanics in the magnetic torus. We devel-
oped a new method for Fourier analysis for the magnetic torus and used it to solve
the eigenvalue problem of the Laplacian. All the eigenfunctions are given in ex-
plicit forms. © 2003 American Institute of Physics.@DOI: 10.1063/1.1616203#

I. INTRODUCTION

In this paper we solve the Schro¨dinger equation for a particle in a uniform magnetic field
ann-dimensional torus. The problem looks plain at first sight but actually it turns out to be a
problem, which has not been solved before. Hence we begin this paper by a quick explana
the problem. After that we will describe our strategy to solve it. Subsequently we will br
mention studies by other people and describe our motivation of this study. At the end o
Introduction we will give guides for quick access to main results of this paper.

An n-dimensional torus, orn-torus, is defined asTn5Rn/Zn. In the coordinate a poin
(t1, . . . ,t j11, . . . ,tn) is identified with (t1, . . . ,t j , . . . ,tn) for each j 51, . . . ,n. The eigenvalue
problem of the ordinary Laplacian in the torus is the equation

2D f 52(
j 51

n S ]

]t j D 2

f 5« f ~1.1!

with the periodic boundary condition

f ~ t1, . . . ,t j11, . . . ,tn!5 f ~ t1, . . . ,t j , . . . ,tn!. ~1.2!

The eigenvalue problem can be immediately solved by Fourier expansion. A plane-wave fu
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xk~ t1, . . . ,tn!5e2p i ( j 51
n kj t

j
~1.3!

with quantized momentakjPZ is a solution. The whole set of eigenfunctions$xk u (k1 , . . . ,kn)
PZn% constitutes a complete orthonormal set of the space of periodic functions over the
This is a well-known result.

In this paper we would like to solve an eigenvalue problem of the magnetic Laplacian
magnetic Laplacian is defined by replacing the partial derivative in the ordinary Laplacian
covariant derivative as

D f 5 (
j ,l 51

n

gjl S ]

]t j 22p iA j D S ]

]t l 22p iAl D f . ~1.4!

HereAl is a component of theU(1) gauge field

Al5
1

2 (
j 51

n

f j l t j1a l ~1.5!

with integers$f j l 52f l j % and real numbers$a j%. The gauge fieldA5( l 51
n Al dt l generates a

uniform magnetic fieldB5dA5(1/2)( j ,l 51
n f j l dt j∧dt l . Moreover, we would like to consider

general oblique torusTn5Rn/L; L is ann-dimensional lattice. Edges of the unit cell of the latti
do not necessarily cross at a right angle and they do not necessarily have a same length. H
introduce a metricgjl in the definition of the magnetic Laplacian~1.4! to take inclined and
stretched or shortened unit cells into account. The eigenvalue problem of~1.4! is accompanied by
the condition

f ~ t1, . . . ,t j11, . . . ,tn!5ep i (k51
n f jktkf ~ t1, . . . ,t j , . . . ,tn!, ~1.6!

which we call a twisted periodic condition. Thus the plain problem~1.1! with ~1.2! is generalized
to the magnetic problem~1.4! with ~1.6!. At first glance it looks rather straightforward to gene
alize the problem in this way but it is actually highly nontrivial and difficult to generalize
solution.

Let us see where the difficulty lies. In the case of the ordinary Laplacian, the plane-
solution ~1.3! is a simultaneous eigenfunction of the momentum operators

pj52 i
]

]t j ~ j 51, . . . ,n! ~1.7!

aspjxk52pkjxk . The Laplacian can be expressed in terms of the momentum operators a2D
5( j 51

n (pj )
2 and, of course, it commutes with the momentum operators. Thus inte

(k1 , . . . ,kn) are good quantum numbers. Then the whole set of simultaneous eigenfunction$xk%
forms the complete solutions of the Laplacian problem. This is the way how Fourier an
works. However, when we turn to the magnetic Laplacian, we may seek for a simulta
eigenfunction of magnetic momentum operators

pj52 i S ]

]t j 22p iA j D ~ j 51, . . . ,n!. ~1.8!

But such a simultaneous eigenfunction does not exist because magnetic momenta do not c
with each other and instead exhibit commutators

@ pj ,pl #52p i f j l . ~1.9!
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The magnetic Laplacian can be still expressed in terms of the magnetic momentum opera
2D5( j 51

n (pj )
2 but it does not commute withpj . Hence, the strategy of ordinary Fourier ana

sis does not work well for the magnetic Laplacian.
To solve the problem we developed a new method, which we call Fourier analysis fo

magnetic torus. This is a main subject of this paper. Let us describe our strategy: First, we w
a group of operators that commute with magnetic momentum operators. We call the gr
magnetic translation group. Second, we enlarge a family of operators to define an algebra,
includes magnetic momenta and magnetic translations as its elements. We call the alg
magnetic algebra and construct its representations. Third, we show that the space of
periodic functions over the torus is actually an irreducible representation space of the ma
algebra. By diagonalizing a maximal commutative subalgebra of the magnetic algebra we
a complete orthonormal set of twisted periodic functions. This set of orthogonal functions pro
a kind of unitary transformation as the set of plane-wave functions provides the Fourier tra
mation which bridges between the momentum space and the real space. We note that it is
diagonalize the Laplacian in the momentum space. Finally, we get a whole set of eigenfunct
the real space by applying the unitary transformation. In this procedure the third step is the h
part and is actually accomplished by lengthy cumbersome calculations. However, the stra
clear.

We would like to briefly review studies by other people on spectral analysis in magnetic
Brown1 first examined the symmetry structure of the Schro¨dinger equation for an electron in
lattice in a uniform magnetic field and found that the symmetry is described by a noncommu
discrete translation group. At almost the same time Zak2 also found the same symmetry structu
and named the group a magnetic translation group~MTG!. Zak3 immediately built a representatio
theory of the MTG in the three-dimensional lattice. From the viewpoint of functional anal
Avron, Herbst, and Simon have been studying spectral problems of the Schro¨dinger operators in a
magnetic field in a series of papers.4–6 Dubrovin and Novikov7,8 studied the spectrum of the Pau
operator in a two-dimensional lattice with a periodic magnetic field and intensively analyze
gap structure above the ground state. Florek9,10 constructed tensor product representations of
MTG to analyze a three-particle system in a lattice in a magnetic field. Kuwabara11,12 has been
studying quantum-classical correspondence from the viewpoint of spectral geometry. For ex
he11 proved that if the whole set of level spacings of the quantum spectrum is not denseR,
every trajectory of the corresponding classical particle is a closed orbit. Arai13 found a quantum
plane and quantum group structure in the quantum system in a singular magnetic field. Th
can see that quantum mechanics in a magnetic field has been an active research area. How
do not find a literature in which the quantum mechanics in ann-torus is solved.

Our study on quantum mechanics in magnetic fields originates from studies of e
dimension models of the space–time. In extra-dimension models the space–time is assume
a base space of a fiber bundle with a compact fiber or a noncompact fiber. The history of
dimension models is rather old, but an interest in these models is recently renewed as A
Hamed, Dimopoulos, and Dvali14 pointed out that the extra-dimension model may solve
hierarchy problem of high energy physics. Inspired with extra-dimension models we15 built a
model which has a circleS1 as a fiber over an any-dimensional space–timesRD21. Then we
found that a twisted boundary condition in theS1-direction causes spontaneous breaking of
translational symmetry. Based on this observation, we16 proposed a new mechanism of supersy
metry breaking. Next we17,18built a model which has a two-dimensional sphereS2 as a fiber over
the four-dimensional space–timesR4. We solved dynamics in the sphere in a magnetic monop
background and then found that the monopole induces spontaneous breaking of the ro
symmetry and theCP symmetry. We also built a model which has ann-dimensional torus as a
fiber and tried to analyze dynamics in the torus in a background magnetic field. Howev
analysis was not a straightforward task. Then we studied the symmetry structure of qu
mechanics in the torus in the magnetic field. We19 constructed the MTG in then-torus and
classified irreducible representations of the MTG.

Armed with these tools we are now ready to solve the spectral problem in then-torus Tn
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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5Rn/L. We decide to solve the problem exhaustively; in our treatment the dimensions of the
is taken to be arbitrary, lengths and angles of edges of the unit cell ofL are arbitrary, and an
arbitrary constant magnetic field is applied to the torus. Thus we aim to solve the widest cl
quantum mechanics in then-torus in uniform magnetic fields.

For busy readers here we give guides for quick access to main results. In Sec. II we p
a geometric setting to define the problem. The problem to be solved is the eigenvalue prob
the magnetic Laplacian~2.13! with the twist condition~2.5!. In Sec. III we find a family of
operators that commute with the covariant derivative. Actually they are composition of ord
displacements and gauge transformations as shown at~3.2!. These displacement vectors form
restricted family of vectors as shown at~3.8!. These displacement operators generate the mag
translation group~MTG!, which is noncommutative as shown at~3.12!. Along ~3.16!–~3.28! we
construct irreducible representations of the MTG. In Sec. IV we introduce a coordinate sy
which will be revealed to be useful later. In Sec. V we define the magnetic algebra by a
differential operators~5.2!–~5.4! and multiplicative operators~5.9! to the MTG. Then we construc
and classify irreducible representations of the magnetic algebra. Section VI is devoted to c
tion of simultaneous eigenfunctions~6.8! of a maximal commutative subalgebra of the magne
algebra. Then we obtain a complete orthonormal set of functions over the magnetic torus,
provide an extension of Fourier analysis for the magnetic torus. This is one of the main pro
of this paper. In Sec. VII by applying this method we solve the original problem, the eigen
problem of the magnetic Laplacian. There we obtain a whole set of eigenfunctions~7.11! and
eigenvalues~7.12!. These are the main results of this paper.

II. GAUGE FIELD IN THE TORUS

Let t5(t1, . . . ,tn) denote a coordinate of ann-dimensional torusTn5Rn/Zn. Namely, a point
(t1, . . . ,t j11, . . . ,tn) is identified with (t1, . . . ,t j , . . . ,tn) in Tn. A uniform magnetic field is
generated by the gauge field

A5 (
k51

n

Ak dtk5
1

2 (
j ,k51

n

f jk t j dtk1 (
k51

n

ak dtk. ~2.1!

Here$f jk52fk j% and$a j% are real constants. Then the magnetic field is

B5dA5
1

2 (
j ,k51

n

f jk dt j∧dtk. ~2.2!

Therefore, the numberf jk represents magnetic flux which penetrates the (t j ,tk)-face of the torus.
We call the array of numbers (f jk) a magnetic flux matrix.

Let us introduce a complex scalar fieldf in the torus. The scalar field couples to the gau
field via the covariant derivative

Df 5df 22p iA f . ~2.3!

We put the coefficient 2p i in front of A for later convenience. Topology of the torus impose
boundary condition on the scalar field. The gauge field itself is not a periodic function onRn but
it changes its form as

A~ t1, . . . ,t j11, . . . ,tn!5A~ t1, . . . ,t j , . . . ,tn!1
1

2 (
k51

n

f jk dtk. ~2.4!

Therefore, if we make the gauge transformation
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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f ~ t1, . . . ,t j11, . . . ,tn!5ep i (k51
n f jktkf ~ t1, . . . ,t j , . . . ,tn!, ~2.5!

the covariant derivative~2.3! remains covariant as

Df ~ t1, . . . ,t j11, . . . ,tn!5ep i (k51
n f jktk Df ~ t1, . . . ,t j , . . . ,tn!. ~2.6!

We call the condition~2.5! a twisted periodic condition. There are two ways to bring a po
(t1, . . . ,t j11, . . . ,tk11, . . . ,tn) to (t1, . . . ,t j , . . . ,tk, . . . ,tn). The first way is

f ~ t1, . . . ,t j11, . . . ,tk11, . . . ,tn!5ep i $f jk1( l 51
n f j l t

l % f ~ t1, . . . ,t j , . . . ,tk11, . . . ,tn!

5ep i $f jk1( l 51
n f j l t

l1( l 51
n fklt

l % f ~ t1, . . . ,t j , . . . ,tk, . . . ,tn!.

~2.7!

The other way is

f ~ t1, . . . ,t j11, . . . ,tk11, . . . ,tn!5ep i $fk j1( l 51
n fklt

l % f ~ t1, . . . ,t j11, . . . ,tk, . . . ,tn!

5ep i $fk j1( l 51
n fklt

l1( l 51
n f j l t

l % f ~ t1, . . . ,t j , . . . ,tk, . . . ,tn!.

~2.8!

To make these two expressions coincide we need to have

ep if jk5ep ifk j,

namely,

ep i (f jk2fk j)5e2p if jk51. ~2.9!

Therefore, compatibility of the periodic conditions~2.7! and~2.8! demands thatf jk is an integer.
Hence, the magnetic flux through each face of the torus is quantized. We call the torus wh
magnetic field has been introduced a magnetic torus.

Since two displacementst j°t j11 andtk°tk11 are commutative, we can write the twiste
periodic condition~2.5! in a more general form

f ~ t1m!5ep i ( j ,k51
n f jkmj tkf ~ t! ~2.10!

with an arbitrarym5(m1, . . . ,mn)PZn. An inner product of two twisted periodic functionsf (t)
andg(t) is defined by

^ f ug&5E
0

1

dt1
¯E

0

1

dtn f * ~ t!g~ t!. ~2.11!

Equipped with this inner product the space of twisted periodic functions becomes a Hilbert
To define the Laplacian we need to introduce a metric into the torus. LetL be an

n-dimensional lattice in the Euclidean spaceRn. We equip the torusTn with a Riemannian
structure by identifyingTn with the quotient spaceRn/L. Let $u1 , . . . ,un% be a set of vectors tha
generates the latticeL. Their inner products is denoted by

gjk5^uj ,uk& ~2.12!

and its inverse is denoted bygjk. Then the magnetic Laplacian is defined as
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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D f 5 (
j ,k51

n

gjkS ]

]t j 22p iA j D S ]

]tk 22p iAkD f . ~2.13!

It is also referred to as the Bochner Laplacian in the literature. The purpose of this paper is to
the eigenvalue problem of the magnetic Laplacian accompanied by the twisted periodic con
~2.5!.

III. MAGNETIC TRANSLATION GROUP

Our goal is to find a complete set of eigenvalues and eigenfunctions of the magnetic Lap
~2.13! as announced above. A royal road to solving an eigenvalue problem is to detect sym
In this section we determine a group of operators that commute with the Laplacian and con
irreducible representations of the group.

The vector spaceRn acts on the torus as isometries. However, the gauge field restrict
admissible class of vectors as seen below. An arbitrary vectorvPRn displaces the gauge field~2.1!
as

A~ t!°A~ t2v!5A~ t!2dS 1

2 (
j ,k51

n

f jkv j tkD . ~3.1!

If we perform a gauge transformation of the scalar field simultaneously with the displacem

f ~ t!° f 8~ t!5~U~v! f !~ t!5ep i ( j ,k51
n f jkv j tkf ~ t2v!, ~3.2!

then the covariant derivative is changed covariantly

Df ~ t!°Df 8~ t!5ep i ( j ,k51
n f jkv j tk~Df !~ t2v!. ~3.3!

In other words, the transformationU(v) commutes with the covariant derivative as

~DU~v! f !~ t!5~U~v!Df !~ t!. ~3.4!

Hence it commutes with the magnetic Laplacian, which is defined in terms of the cova
derivative. The operatorU(v) is unitary with respect to the inner product~2.11!.

The displaced function~3.2! also must satisfy the twisted periodic condition. If the origin
function f satisfies the condition~2.10!, the displaced function changes its form as

f 8~ t1m!5e2p i ( j ,k51
n f jkv jmk

ep i ( j ,k51
n f jkmj tkf 8~ t! ~3.5!

for mPZn. Thus the displaced function satisfies the condition~2.10! if and only if

(
j ,k51

n

f jkv jmk ~3.6!

is an integer for an arbitrarymPZn. In other words,

(
j 51

n

f jkv j ~k51, . . . ,n! ~3.7!

must be an integer. We call such a restricted vectorv a magnetic shift. The set of magnetic shif
forms an Abelian group
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Vn5$vPRn u fvPZn%. ~3.8!

There is a sequence of Abelian subgroupsZn,Vn,Rn. In particular, an integer vectormPZn

induces a displacement

~U~m! f !~ t!5ep i ( j ,k51
n f jkmj tkf ~ t2m!.

However, owing to the twisted periodic condition~2.10!, this is reduced to the identity transfo
mation

~U~m! f !~ t!5 f ~ t!. ~3.9!

Thus we conclude that the groupG of effective transformations is generated by

$U~v! u vPVn/Zn%. ~3.10!

We call the groupG the magnetic translation group. A product of transformations is

U~v!U~w!5ep i ( j ,k51
n f jkv jwk

U~v1w!. ~3.11!

Their commutator is

U~v!U~w!U~2v!U~2w!5e2p i ( j ,k51
n f jkv jwk

. ~3.12!

We can say that the MTG is a central extension of the Abelian groupVn/Zn by U(1).
We can express the MTG in a standard form. LetL(n,Z) denote a group of then-dimensional

matrices$S% of integers such that detS561. The matrixSPL(n,Z) acts ontPRn by t°St and
this action induces an automorphism of the torusTn5Rn/Zn. It also induces a transformation o
the magnetic flux matrix as

f jk°f jk8 5 (
l ,p51

n

f lp S j
l S k

p . ~3.13!

The Frobenius lemma20 tells that for any integral antisymmetric matrix there exists a transfor
tion to bring it into a standard form

~f jk!51
0 q1

2q1 0

0 q2

2q2 0

�

0 qm

2qm 0

0

�

0

2 , ~3.14!

where$qi% are positive integers and they constitute a sequenceq1uq2u¯uqm , which implies that
qi dividesqi 11 . For example, we may have a sequence 3u6u12u48. Of course, 2m<n. The vector
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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subspace of the zero eigenvalue of the matrixf has dimensionsn22m and it is called null
directions. In the following we suppose that the flux matrix is in the standard form~3.14!.

Now we can write the magnetic shifts~3.8! in a more explicit form. Let$e1 , . . . ,en% be the
standard basis ofRn in the (t1, . . . ,tn)-coordinate. Then any magnetic shift is uniquely expres
as

v5(
j 51

m S s2 j 21

qj
e2 j 211

s2 j

qj
e2 j D1 (

k51

n22m

u2m1ke2m1k ~3.15!

with integers$s1 , . . . ,s2m% and real numbers$u2m11 , . . . ,un%. Namely, the magnetic shifts ar
generated by$(1/qj )e2 j 21 ,(1/qj )e2 j u j 51, . . . ,m% with integral coefficients and$e2m1k u k
51, . . . ,n22m% with real coefficients. Hence, if the flux matrixf has null directionsn22m
.0, the MTG has a continuous component. Otherwise, the MTG is a completely discrete g

Here we summarize our discussion; the MTG is generated by the unitary operators

U j5US 1

qj
e2 j 21D , Vj5US 1

qj
e2 j D ~ j 51, . . . ,m! ~3.16!

and

Wk~u!5U~ue2m1k! ~k51, . . . ,n22m!. ~3.17!

According to~3.9!, ~3.11!, ~3.12!, and~3.14!, these generators satisfy the following relations:

~U j !
qj5~Vj !

qj51, ~3.18!

U jVjU j
21Vj

215e2p i /qj , ~3.19!

Wk~1!51, ~3.20!

Wk~u!Wk~u8!5Wk~u1u8!, ~3.21!

and other trivial commutators.
To solve the eigenvalue problem of the magnetic Laplacian we need to prepare the wh

of irreducible representations of the MTG. Let$ur 1 , . . . ,r m ;d1 , . . . ,dn22m&% be elements of a
representation space that are labeled by

r jPZ/Zqj
~ j 51, . . . ,m!, ~3.22!

dkPZ ~k51, . . . ,n22m!. ~3.23!

Then the generators~3.16! and ~3.17! are represented by

U j ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&5ur 1 , . . . ,r j11, . . . ,r m ;d1 , . . . ,dn22m&, ~3.24!

Vj ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&5e22p ir j /qj ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&,
~3.25!

Wk~u!ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&5e22p idkuur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&.
~3.26!

Thus
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Hd5 %
r 150

q1

¯ %
r m50

qm

Cur 1 , . . . ,r m ;d1 , . . . ,dn22m& ~3.27!

provides an irreducible representation space of the MTG. Its dimension is

dimHd5q13q23¯3qm . ~3.28!

The labelsr j anddk in ~3.22! and ~3.23! will become good quantum numbers for the Laplaci
~2.13!. The dimension~3.28! will give the degree of degeneracy of each eigenvalue.

IV. DIAGONALIZATION OF THE MAGNETIC FIELD STRENGTH

To solve the eigenvalue problem of the magnetic Laplacian we need to take the metric~2.12!
into account. Remember that the basis$u1 , . . . ,un% generates the latticeL in the Euclidean space
Rn and that the torus is isometric toRn/L. Let x5(x1, . . . ,xn) be an orthonormal coordinate o
Rn. It is related to the normalized coordinatet5(t1, . . . ,tn) via

x5t1u11¯1tnun5Ut. ~4.1!

In these coordinates the magnetic field~2.2! is expressed as

B5
1

2 (
j ,k51

n

Bjk dxj∧dxk5
1

2 (
j ,k,l ,p51

n

Bjk u l
j u p

k dt l∧dtp5
1

2 (
l ,p51

n

f lp dt l∧dtp. ~4.2!

The numberBjk is areal density of magnetic flux which penetrates the (xj ,xk)-plane. If we
perform a coordinate transformation

x5Ry ~4.3!

by an orthogonal transformationRPO(n,R), the components of the field strength is transform
as

B5
1

2 (
j ,k51

n

Bjk dxj∧dxk5
1

2 (
j ,k,l ,p51

n

Bjk R l
j R p

k dyl∧dyp. ~4.4!

By a suitable orthogonal transformation the field strength matrix (Bjk) can be brought into a
standard form

n5 tRB R51
0 n1

2n1 0

0 n2

2n2 0

�

0 nm

2nm 0

0

�

0

2 , ~4.5!
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where$n j% are positive real numbers. The (t1, . . . ,tn)-coordinate system block-diagonalizes t
magnetic flux in the form of~3.14! while (y1, . . . ,yn) block-diagonalizes the magnetic fiel
strength in the form of~4.5!. The transformations~4.1! and ~4.3! are combined into

y5 tRx5 tRUt5Lt. ~4.6!

Then we obtain relations among the matrices

f5 tUBU5 tUR n tRU5 tLnL. ~4.7!

The phase factor in~3.2! is rewritten as

(
j ,k51

n

v jf jktk5 (
j ,k,l ,p51

n

v jL j
l n lpL k

p tk

5 (
j ,l ,p51

n

v jL j
l n lp yp

5(
j 51

n

(
l 51

m

v j~L j
2l 21n l y

2l2L j
2l n l y

2l 21!. ~4.8!

The gauge field~2.1! is expressed in they-coordinate as

A5
1

2 (
j 51

m

n j~y2 j 21 dy2 j2y2 j dy2 j 21!1 (
j ,k51

n

a j~L21! k
j dyk. ~4.9!

We set

bk5(
j 51

n

a j~L21! k
j ~4.10!

for later use.
Actually, we can choose a transformation matrixL that has zeros in this pattern

L5S L 2p21
2i 21 L 2q

2i 21 L 2m1r
2i 21

L 2p21
2 j L 2q

2 j L 2m1r
2 j

L 2p21
2m1k L 2q

2m1k L 2m1r
2m1k

D 5S * 0 0

* * 0

* * *
D ~4.11!

with i , j ,p,q51, . . . ,m andk,r 51, . . . ,n22m. The inverse matrixL21 also has the same patter
of zeros. This distribution of zeros is proved in Appendix A. Then we can rewrite the mag
shift operators~3.16! and ~3.17! with a help of~4.8! in the y-coordinate as

U j f ~yi !5ep i ( l 51
m (1/qj )(L 2j 21

2l 21 n l y
2l2L 2j 21

2l n l y
2l 21) f ~yi2L 2j 21

i ~1/qj !!, ~4.12!

Vj f ~yi !5e2p i ( l 51
m (1/qj )L 2j

2l n l y
2l 21

f ~yi2L 2j
i ~1/qj !!, ~4.13!

Wk~u! f ~yi !5 f ~yi2L 2m1k
i u! ~4.14!

for j 51, . . . ,m andk51, . . . ,n22m. From ~4.11! and ~4.7! we get a formula
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n iL 2j 21
2i 21 5 (

l ,p51

m

n lL 2j 21
2l 21 L 2p

2l ~L21! 2i
2p

5 (
l ,p51

m

~L 2j 21
2l 21 n lL 2p

2l 2L 2j 21
2l n lL 2p

2l 21!~L21! 2i
2p

5 (
p51

m

qj d jp ~L21! 2i
2p 5qj~L21! 2i

2 j , ~4.15!

which will be repeatedly used later.

V. MAGNETIC ALGEBRA

In this section we introduce new operators which act on twisted periodic functions. Thes
operators and the operators in the MTG generate an algebra, which we call a magnetic alge
construct and classify its irreducible representations. In the next section we will prove th
space of twisted periodic functions is actually an irreducible representation of the magnetic
bra. In this sense, the magnetic algebra completely characterizes the quantum mechanic
magnetic torus.

Now we introduce a family of Hermite operators. Expanding the covariant derivative~2.3! in
terms of they-coordinate

D f 5 i(
l 51

n

Pl f dyl , ~5.1!

we define differential operators

P2 j 2152 i S ]

]y2 j 21 1p in j y
2 j22p ib2 j 21D , ~5.2!

P2 j52 i S ]

]y2 j 2p in j y
2 j 2122p ib2 j D ~ j 51, . . . ,m!, ~5.3!

P2m1k52 i S ]

]y2m1k 22p ib2m1kD ~k51, . . . ,n22m!. ~5.4!

These are Hermitian with respect to the inner product~2.11!. Since (y1, . . . ,yn) is an orthonormal
coordinate, the Laplacian~2.13! becomes

2D f 5(
i 51

n

~Pi !
2f . ~5.5!

Nontrivial commutators amongP’s are

@P2 j 21 ,P2 j #52p in j ~ j 51, . . . ,m!. ~5.6!

The other commutators vanish. We call the operators$P2 j 21 ,P2 j% transverse momenta while w
call the operators$P2m1k% longitudinal momenta. Since the covariant derivative commutes w
the magnetic shifts as seen at~3.4!, the momentum operators$Pi% commute with the shift opera
tors $U j ,Vj ,Wk%, which are defined at~3.16! and ~3.17!.
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Next we introduce another family of unitary operators. For this purpose we need an ob
tion; in thet-coordinate that expresses the magnetic flux matrix in the standard form~3.14!, t2m1k

(k51, . . . ,n22m) are genuine cyclic coordinates. That is to say, the twisted periodic func
~2.5! is periodic with respect to these coordinates as

f ~ t1, . . . ,t2m1k11, . . . ,tn!5 f ~ t1, . . . ,t2m1k, . . . ,tn! ~k51, . . . ,n22m! ~5.7!

and the magnetic shift~3.2! is reduced to an ordinary continuous shift

~Wk~u! f !~ t1, . . . ,t2m1k, . . . ,tn!5 f ~ t1, . . . ,t2m1k2u, . . . ,tn!. ~5.8!

Then we define an operatorTk for eachk51, . . . ,n22m which acts onf by multiplication

~Tkf !~ t!5e2p i t 2m1k
f ~ t!5e2p i ( i 51

n (L21) i
2m1k yi

f ~ t!. ~5.9!

Here we used the inverseL21 of the coordinate transformation~4.6!. The operators$Tk% are
unitary operators with respect to the inner product~2.11!. They satisfy

Wk~u!Tk5e22p iu TkWk~u!, ~5.10!

@Pi ,Tk#52p~L21! i
2m1k Tk ~ i 51, . . . ,n; k51, . . . ,n22m! ~5.11!

and commute with the other generators of the MTG.
Combining all the operators introduced above we define an algebraA with the generators

$Pi ,U j ,Vj ,Wk(u),Tk u i 51, . . . ,n; j 51, . . . ,m; k51, . . . ,n22m; uPR% and with the relations
~3.18!–~3.21!, ~5.6!, ~5.10!, ~5.11! and other trivial commutators. We call the algebraA a magnetic
algebra. In the following we will construct all the irreducible representations of the algebraA and
classify their unitary equivalence classes.

A subset of generators$P2 j 21 ,P2m1 l ,Vj ,Wl(u) u j 51, . . . ,m; l 51, . . . ,n22m; uPR% gen-
erates a maximal Abelian subalgebra ofA. Hence these generators are simultaneously diago
izable. Their simultaneous eigenstateuk,r ,d& is labeled byr jPZ/Zqj

of ~3.22! anddlPZ of ~3.23!
with new labels

k2 j 21 ,k2m1 lPR. ~5.12!

The generators$P2 j 21 ,P2m1 l% act on these states as

P2 j 21uk,r ,d&52pk2 j 21uk,r ,d&, ~5.13!

P2m1 l uk,r ,d&52pk2m1 l uk,r ,d&, ~5.14!

and $Vj ,Wl(u)% act as~3.25!, ~3.26!, respectively. The coefficient 2p was set for later conve
nience. Other generators$P2 j ,Tl u j 51, . . . ,m; l 51, . . . ,n22m% act on the states as

^cuP2 j uk,r ,d&5 in j

]

]k2 j 21
^cuk,r ,d&, ~5.15!

Tl uki ,r ,dk&5e2p i $( j 51
m (k2 j 211D l k2 j 21)D l k2 j /n j 1(p51

n22mZlpdp%uki1D lki ,r ,dk1dk
l&, ~5.16!

with D lki5(L21) i
2m1 l . We will determine the (n22m)3(n22m) matrix Zlp later. Hereuc&

represents an arbitrary state. The rests$U j u j 51, . . . ,m% act as~3.24!. Therefore, in an irreducible
representation space the eigenvaluesk2m1 i are linked todl via
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k2m1 i5 (
l 51

n22m

dl~L21! 2m1 i
2m1 l 2b2m1 i5 (

l 51

n22m

~dl2a2m1 l !~L21! 2m1 i
2m1 l ~ i 51, . . . ,n22m!.

~5.17!

Here the real numberb2m1 i coincides with the one that appeared in~5.4!. We also used the
relations~4.10! and ~4.11!.

The matrixZlp is determined by the conditionTl 8Tl5TlTl 8. The action ofTl 8Tl gives

Tl 8Tl uki ,r ,dk&5e2p i $( j 51
m (k2 j 211D l k2 j 21)D l k2 j /n j 1(p51

n22mZlpdp%

3e2p i $( j 51
m (k2 j 211D l k2 j 211D l 8k2 j 21)D l 8k2 j /n j 1(p51

n22mZl 8p(dp1dp
l )%

3uki1D lki1D l 8ki ,r ,dk1dk
l1dk

l 8& ~5.18!

while the action ofTlTl 8 gives

TlTl 8uki ,r ,dk&5e2p i $( j 51
m (k2 j 211D l 8k2 j 21)D l 8k2 j /n j 1(p51

n22mZl 8pdp%

3e2p i $( j 51
m (k2 j 211D l 8k2 j 211D l k2 j 21)D l k2 j /n j 1(p51

n22mZlp(dp1dp
l 8)%

3uki1D l 8ki1D lki ,r ,dk1dk
l 81dk

l&. ~5.19!

To give Tl 8Tl5TlTl 8 the matrixZll 8 must satisfy

(
j 51

m

~D lk2 j 21D l 8k2 j /n j !1Zl 8 l5(
j 51

m

~D l 8k2 j 21D lk2 j /n j !1Zll 8. ~5.20!

A general solution of the above equation is

Zll 85(
j 51

m

~D lk2 j 21D l 8k2 j /n j !1Sll 8. ~5.21!

Here we leave an arbitrary symmetric matrixSll 85Sl 8 l yet undetermined. Actually any choice o
Sll 8 results in an equivalent representation, and therefore we takeSll 850.

A restricted set of vectors$uk,r ,d&% that are labeled by the mutually independent parame

k2 j 21PR, r jPZ/Zqj
, dlPZ ~ j 51, . . . ,m; l 51, . . . ,n22m! ~5.22!

spans a Hilbert spaceHa for each fixed value of (a2m11 ,a2m12 , . . . ,an). Thus we conclude tha
a unitary equivalence class of irreducible representations of the algebraA has one-to-one corre
spondence with the parameter (a2m11 ,a2m12 , . . . ,an)PRn22m/Zn22m.

VI. FOURIER ANALYSIS FOR THE MAGNETIC TORUS

Now let us turn to the space of twisted periodic functions. It is a representation space
magnetic algebra. We will calculate the whole family of eigenfunctions of the maximal Abe
subalgebra of the magnetic algebra. These eigenfunctionsxk,r ,d(t1, . . . ,tn)5^tuk,r ,d& satisfy

P2 j 21 xk,r ,d52 i S ]

]y2 j 21 1p in j y
2 j22p ib2 j 21Dxk,r ,d52pk2 j 21 xk,r ,d , ~6.1!

P2 j xk,r ,d52 i S ]

]y2 j 2p in j y
2 j 2122p ib2 j Dxk,r ,d5 in j

]

]k2 j 21
xk,r ,d , ~6.2!
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



lgebra.
of

ce an

r

5055J. Math. Phys., Vol. 44, No. 11, November 2003 Fourier analysis for the magnetic torus

Downloaded 
P2m1 l xk,r ,d52 i S ]

]y2m1 l 22p ib2m1 l Dxk,r ,d52pS (
i 51

n22m

di~L21! 2m1 l
2m1 i 2b2m1 l D xk,r ,d ,

~6.3!

U j xk,r ,d5ep i t 2 j
xk,r ,dS t2 j 212

1

qj
D5xk,(r 11),d , ~6.4!

Vj xk,r ,d5e2p i t 2 j 21
xk,r ,dS t2 j2

1

qj
D5e22p ir j /qjxk,r ,d , ~6.5!

Wl~u! xk,r ,d5xk,r ,d~ t2m1 l2u!5e22p idluxk,r ,d , ~6.6!

Tl xk,r ,d5e2p i t 2m1 l
xk,r ,d5e2p i $( j 51

m (k2 j 211Dk2 j 21)Dk2 j /n j 1(p51
n22mZlpdp%xk1Dk,r ,(d11) , ~6.7!

for j 51, . . . ,m; l 51, . . . ,n22m, and uPR. Here (r 11) is an abbreviation of (r i1d i j ) and
(d11) is an abbreviation of (dp1dp

l). And Dki5(L21) i
2m1 l as given in~5.16!. Thenxk,r ,d is a

simultaneous eigenfunction of$P2 j 21 ,P2m1 l ,Vj ,Wl(u)%. In the rest of this section we will solve
the set of equations~6.1!–~6.7! to get the solutions

xk,r ,d~y1, . . . ,yn!5c expF2p i H 2(
j 51

m

(
l 51

n22m

dl~L21! 2j 21
2m1 l b2 j /n j2

1

2 (
j 51

m

n j y
2 j 21y2 j J G

3 (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j ,l 51

m

n lL 2i 21
2l 21 L 2j 21

2l ~qis i1r i !~qjs j

1r j !/~qiqj !1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ J G , ~6.8!

wherec is a common normalization constant. The coefficientsg j are given later at~6.13!. The fact
that the eigenfunctions are uniquely determined up to the common coefficientc implies that the
space of twisted periodic function is an irreducible representation space of the magnetic a
Consequently, the eigenfunctions~6.8! constitute a complete orthonormal set of the space
twisted periodic functions over the torus. This is one of the main results of this paper. Hen
arbitrary twisted periodic function over the torus can be expanded as

f ~y1, . . . ,yn!5 (
k,r ,d

lk,r ,d xk,r ,d~y1, . . . ,yn! ~6.9!

with unique coefficientslk,r ,d . Therefore, the complete set$xk,r ,d% provides a new basis fo
Fourier analysis in the magnetic torus.
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In the rest of this section we give detailed lengthy calculations to prove the above state
The reader may skip them to the next section, where we calculate solutions of the eige
problem of the magnetic Laplacian using the main result~6.8!. First, a simultaneous solution o
~6.1! and ~6.3! is

xk,r ,d~y1,y2, . . . ,yn!5e2p i ( j 51
m $(k2 j 211b2 j 21)y2 j 212(1/2)n j y

2 j 21y2 j %e2p i ( j ,l 51
n22mdj (L

21) 2m1 l
2m1 j y2m1 l

3fk,r ,d~y2,y4, . . . ,y2m!, ~6.10!

wherefk,r ,d(y2,y4, . . . ,y2m) is an arbitrary function to be specified later.
Next let us turn to the other equation~6.5!. Using ~4.13! we can rewrite~6.5! as

e2p i ( l 51
m (1/qj )L 2j

2l n l y
2l 21

xk,r ,d~yi2L 2j
i /qj !5e22p ir j /qjxk,r ,d~yi !. ~6.11!

As discussed at~4.11! we have taken the matrixL such thatL 2j
2l 2150. Therefore, when~6.10! is

substituted, the LHS of~6.11! becomes

e2p i ( l 51
m (1/qj )L 2j

2l n l y
2l 21

xk,r ,d~yi2L 2j
i /qj !

5e2p i ( l 51
m $(k2l 211b2l 21)y2l 212(1/2)n l y

2l 21y2l %e2p i (p,l 51
n22mdp(L21) 2m1 l

2m1p y2m1 l

3e22p i (p,l 51
n22mdp(L21) 2m1 l

2m1p L 2j
2m1 l /qjfk,r ,d~y2i2L 2j

2i /qj !. ~6.12!

Hence, if we set

g j5 (
p,l 51

n22m

dp~L21! 2m1 l
2m1p L 2j

2m1 l , ~6.13!

~6.11! implies that

e22p ig j /qjfk,r ,d~y2i2L 2j
2i /qj !5e22p ir j /qjfk,r ,d~y2i !. ~6.14!

If we introduce another coordinate system (z1,z2, . . . ,zm) which is related to (y2,y4, . . . ,y2m) via

y2i5(
j 51

m

L 2j
2i ~zj /qj !, ~6.15!

then ~6.14! is rewritten as

fk,r ,d~z1, . . . ,zj21, . . . ,zm!5e2p i (g j 2r j )/qj fk,r ,d~z1, . . . ,zj , . . . ,zm!. ~6.16!

Moreover, if we set

ck,r ,d~z1, . . . ,zm!5e2p i ( j 51
m (g j 2r j )z

j /qj fk,r ,d~z1, . . . ,zm!, ~6.17!

then ~6.16! implies that

ck,r ,d~z1, . . . ,zj21, . . . ,zm!5ck,r ,d~z1, . . . ,zj , . . . ,zm!. ~6.18!

Henceck,r ,d is a periodic function with the period 1 and can be expanded in a Fourier seri

ck,r ,d~z1, . . . ,zj , . . . ,zm!5 (
s1 ,s2 , . . . ,sm52`

`

ck,r ,d,s e2p i ( j 51
m s j z

j
. ~6.19!

Note that the inverse transformation of~6.15! is given by
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~zj /qj !5(
i 51

m

~L21! 2i
2 j y2i . ~6.20!

Combining the above equations we can write down the eigenfunction~6.10! in a more specific
form as

xk,r ,d~y1,y2, . . . ,yn!5e2p i ( j 51
m $(k2 j 211b2 j 21)y2 j 212(1/2)n j y

2 j 21y2 j %e2p i ( j ,l 51
n22mdj (L

21) 2m1 l
2m1 j y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

`

ck,r ,d,s e2p i ( j ,l 51
m (qjs j 1r j 2g j )(L

21) 2l
2 j y2l

. ~6.21!

Moreover, referring to~4.11! and~4.14!, we can see that~6.21! satisfies~6.6!. Thus we have seen
that xk,r ,d is a simultaneous eigenfunction of$P2 j 21 ,P2m1 l ,Vj ,Wl(u)% as announced above.

The remaining task is to solve~6.2!, ~6.4!, and ~6.7!. Let us begin with~6.2!. The left-hand
side ~LHS! of ~6.2! is

2 i S ]

]y2 j 2p in j y
2 j 2122p ib2 j Dxk,r ,d

5 (
s1 ,s2 , . . . ,sm52`

`

2pS 2
1

2
n j y

2 j 211(
i 51

m

~qis i1r i2g i !~L21! 2j
2i 2

1

2
n j y

2 j 212b2 j D
3e2p i ( i 51

m $(k2i 211b2i 21)y2i 212(1/2)n i y
2i 21y2i %e2p i ( i ,l 51

n22mdi (L
21) 2m1 l

2m1 i y2m1 l
ck,r ,d,s

3e2p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i y2l

.

On the other hand, the right-hand side~RHS! of ~6.2! is

in j

]

]k2 j 21
xk,r ,d5 in j e2p i ( i 51

m $(k2i 211b2i 21)y2i 212(1/2)n i y
2i 21y2i %e2p i ( i ,l 51

n22mdi (L
21) 2m1 l

2m1 i y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

` S ]ck,r ,d,s

]k2 j 21
12p iy2 j 21 ck,r ,d,sD

3e2p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i y2l

.

Therefore, we have an equation

in j

]ck,r ,d,s

]k2 j 21
52pS (

i 51

m

~qis i1r i2g i !~L21! 2j
2i 2b2 j D ck,r ,d,s ~6.22!

and get its solution

ck,r ,d,s5c0,r ,d,s e22p i $( i , j 51
m (qis i1r i2g i )(L

21) 2j
2i k2 j 21 /n j 2( j 51

m b2 j k2 j 21 /n j %. ~6.23!

Thus ~6.21! becomes
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xk,r ,d~y1,y2, . . . ,yn!5e2p i ( j 51
m $(k2 j 211b2 j 21)y2 j 211k2 j 21b2 j /n j 2(1/2)n j y

2 j 21y2 j %

3e2p i ( j ,l 51
n22mdj (L

21) 2m1 l
2m1 j y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

`

c0,r ,d,s e2p i ( j ,l 51
m (qjs j 1r j 2g j )(L

21) 2l
2 j (y2l2k2l 21 /n l ).

~6.24!

Next we turn to~6.4!. With the aid of~4.12! and ~4.15! the LHS of ~6.4! becomes

ep i ( l 51
m (1/qj )(L 2j 21

2l 21 n l y
2l2L 2j 21

2l n l y
2l 21)xk,r ,d~yi2L 2j 21

i /qj !

5e2p i ( i 51
m $2b2i 21L 2j 21

2i 21 /qj 2(1/2)(L21) 2i
2 j L 2j 21

2i /qj % e22p i ( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i L 2j 21

2m1 l /qj

3e2p i ( i 51
m $(k2i 211b2i 21)y2i 211k2i 21b2i /n i2(1/2)n i y

2i 21y2i %e2p i ( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

`

c0,r ,d,s e22p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i L 2j 21

2l /qj

3e2p i ( i ,l 51
m (qis i1r i1d i j 2g i )(L

21) 2l
2i (y2l2k2l 21 /n l ). ~6.25!

To make this coincide with the RHS of~6.4! we have a recursive equation

e2p i ( i 51
m $2b2i 21L 2j 21

2i 21 /qj 2(1/2)(L21) 2i
2 j L 2j 21

2i /qj % e22p i ( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i L 2j 21

2m1 l /qj

3e22p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i L 2j 21

2l /qj c0,r ,d,s5c0,(r 11),d,s . ~6.26!

Here (r 11) means (r i1d i j ). If we define anm3m matrix

Yi j 5(
l 51

m

~L21! 2l
2i L 2j 21

2l /qj5(
l 51

m

n lL 2i 21
2l 21 L 2j 21

2l /~qiqj !, ~6.27!

it is symmetric as

Yi j 2Yji 5(
l 51

m

~L 2i 21
2l 21 n lL 2j 21

2l 2L 2i 21
2l n lL 2j 21

2l 21 !/~qiqj !5f2i 21,2j 21 /~qiqj !50 ~6.28!

by virtue of ~4.7!. Then the solution of~6.26! is

c0,r ,d,s5c0,0,d,s e22p i ( i , j 51
m b2i 21L 2j 21

2i 21 r j /qje22p i ( j 51
m

( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i L 2j 21

2m1 l r j /qj

3e22p i ( i , j ,l 51
m (qis i1(1/2)r i2g i )(L

21) 2l
2i L 2j 21

2l r j /qj . ~6.29!

Therefore,~6.24! becomes
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xk,r ,d~y1,y2, . . . ,yn!5expF2p i H (
j 51

m H ~k2 j 211b2 j 21!y2 j 211k2 j 21b2 j /n j2
1

2
n j y

2 j 21y2 j J
1 (

i ,l 51

n22m

di~L21! 2m1 l
2m1 i S y2m1 l2(

j 51

m

L 2j 21
2m1 l r j /qj D

2 (
i , j 51

m

b2i 21L 2j 21
2i 21 r j /qj1

1

2 (
i , j 51

m

Yi j r i r j J G
3 (

s1 ,s2 , . . . ,sm52`

`

c0,0,d,s expF2p i (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j

3S y2l2k2l 21/n l2(
i 51

m

L 2i 21
2l r i /qi D G . ~6.30!

Since (U j )
qj51 by ~3.18!, the substitutionr j°r j1qj must leavexk,r ,d invariant. This substitu-

tion gives

xk,(r 1q),d~y!5expF2p i H (
i 51

m H ~k2i 211b2i 21!y2i 211k2i 21b2i /n i2
1

2
n i y

2i 21y2i J
1 (

i ,l 51

n22m

di~L21! 2m1 l
2m1 i S y2m1 l2 (

p51

m

L 2p21
2m1 l r p/qpD 2 (

i ,l 51

m

b2i 21L 2l 21
2i 21 r l /ql

1
1

2 (
i ,p51

m

Yipr i r p2 (
i ,l 51

n22m

di~L21! 2m1 l
2m1 i L 2j 21

2m1 l 2(
i 51

m

b2i 21L 2j 21
2i 21 1(

i 51

m

Yi j r iqj

1
1

2
Yj j qjqj D J (

s1 ,s2 , . . . ,sm52`

`

c0,0,d,(s21) expF2p i H 2(
i 51

m

~qis i1r i2g i !Yi j qj

1 (
i ,l 51

m

~qis i1r i2g i !~L21! 2l
2i S y2l2k2l 21 /n l2 (

p51

m

L 2p21
2l r p/qpD J G . ~6.31!

Here (s21) is an abbreviation of (s i2d i j ). We used~4.15!. Then we have another recursiv
equation

c0,0,d,s5c0,0,d,(s21) expF2p i H 2 (
i ,l 51

n22m

di~L21! 2m1 l
2m1 i L 2j 21

2m1 l 2(
i 51

m

b2i 21L 2j 21
2i 21

1(
i 51

m

Yi j r iqj1
1

2
Yj j qjqj2(

i 51

m

~qis i1r i2g i !Yi j qj J G . ~6.32!

Remember thatqiqjYi j 5( l 51
m n lL 2i 21

2l 21 L 2j 21
2l 5qjqiYji is symmetric. The solution of~6.32! is

c0,0,d,s5c0,0,d,0 expF2p i H 2 (
i ,l 51

n22m

(
j 51

m

di~L21! 2m1 l
2m1 i L 2j 21

2m1 l s j2 (
i , j 51

m

b2i 21L 2j 21
2i 21 s j

1 (
i , j 51

m

Yi j r iqjs j2 (
i , j 51

m

~~1/2!qis i1r i2g i !Yi j qjs j J G . ~6.33!
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Substituting it into~6.30! and using~4.15!, we get

xk,r ,d~y!5c0,0,d,0 e2p i ( j 51
m n j y

2 j 21y2 j

(
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
i ,l 51

n22m

di~L21! 2m1 l
2m1 i H y2m1 l2(

j 51

m

L 2j 21
2m1 l ~qjs j1r j !/qj J

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
l 51

m

L 2l 21
2 j 21 ~qls l1r l2g l !/qlJ J G . ~6.34!

Finally, we are going to solve~6.7!. Its LHS becomes

e2p i t 2m1 l
xk,r ,d

5c0,0,d,0 e2p i ( j 51
m n j y

2 j 21y2 j

(
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,p51

m S qjs j1r j2g j1(
i 51

m

~L21! 2i
2m1 lL 2j

2i D ~L21! 2p
2 j H y2p2(

i 51

m

L 2i 21
2p ~qis i1r i !/qiJ

1 (
p,i 51

m

~L21! 2p
2m1 lL 2i 21

2p ~qis i1r i !/qi

1 (
i ,p51

n22m

~di1d i
l !~L21! 2m1p

2m1 i H y2m1p2(
j 51

m

L 2j 21
2m1p~qjs j1r j !/qj J

1 (
p51

n22m

(
j 51

m

~L21! 2m1p
2m1 l L 2j 21

2m1p~qjs j1r j !/qj

1(
j 51

m

~k2 j 211~L21! 2j 21
2m1 l !H y2 j 211b2 j /n j2 (

p51

m

L 2p21
2 j 21 ~qpsp1r p2gp!/qpJ

2(
j 51

m

~L21! 2j 21
2m1 l H b2 j /n j2 (

p51

m

L 2p21
2 j 21 ~qpsp1r p2gp!/qpJ J G . ~6.35!

We setD lki5(L21) i
2m1 l as before. The changedp°dp1dp

l causes a change ofg j as
09 Jul 2007 to 133.30.51.109. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



5061J. Math. Phys., Vol. 44, No. 11, November 2003 Fourier analysis for the magnetic torus

Downloaded 
D lg j5 (
i 51

n22m

~L21! 2m1 i
2m1 l L 2j

2m1 i

5(
i 51

n

~L21! i
2m1 lL 2j

i 2(
i 51

m

~L21! 2i 21
2m1 l L 2j

2i 212(
i 51

m

~L21! 2i
2m1 lL 2j

2i

50202(
i 51

m

~L21! 2i
2m1 lL 2j

2i ~6.36!

via ~6.13! with ~4.11!. Moreover, we can see that

(
p51

m

L 2p21
2 j 21 D lgp /qp52 (

p,i 51

m

L 2p21
2 j 21 ~L21! 2i

2m1 lL 2p
2i /qp

52 (
p,i 51

m

~L21! 2j
2p ~L21! 2i

2m1 lL 2p
2i /n j

52(
i 51

m

~L21! 2i
2m1 ld 2j

2i /n j

52~L21! 2j
2m1 l /n j

52D lk2 j /n j . ~6.37!

Therefore~6.35! becomes

e2p i t 2m1 l
xk,r ,d

5c0,0,d,0 e2p i ( j 51
m n j y

2 j 21y2 j
expF2p i H (

j 51

m

~k2 j 211Dk2 j 21!Dk2 j /n j

2(
j 51

m

~L21! 2j 21
2m1 l S b2 j /n j1 (

p51

m

L 2p21
2 j 21 gp /qpD J G

3 (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,p51

m

~qjs j1r j2g j2Dg j !~L21! 2p
2 j H y2p2(

i 51

m

L 2i 21
2p ~qis i1r i !/qiJ

1 (
i ,p51

n22m

~di1d i
l !~L21! 2m1p

2m1 i H y2m1p2(
j 51

m

L 2j 21
2m1p~qjs j1r j !/qj J

1(
j 51

m

~k2 j 211Dk2 j 21!H y2 j 211b2 j /n j2 (
p51

m

L 2p21
2 j 21 ~qpsp1r p2gp2Dgp!/qpJ J G .

~6.38!

In the course of calculation we used the fact(p51
n (L21) p

2m1 lL 2i 21
p 50. With the aid of~4.15!,

~6.36! and the definition~5.21! we can deduce that
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(
j ,p51

m

~L21! 2j 21
2m1 l L 2p21

2 j 21 gp/qp52 (
i 51

n22m

Zli di . ~6.39!

Thus we reach

e2p i t 2m1 l
xk,r ,d5e22p i ( j 51

m (L21) 2j 21
2m1 l b2 j /n j c0,0,d,0 c0,0,(d11),0

21

3e2p i $( j 51
m (k2 j 211Dk2 j 21)Dk2 j /n j 1( i 51

n22mZli di %xk1Dk,r ,(d11) . ~6.40!

To satisfy~6.7! we meet another recursive equation

c0,0,(d11),05e22p i ( j 51
m (L21) 2j 21

2m1 l b2 j /n jc0,0,d,0 ~6.41!

and we get the solution

c0,0,d,05e22p i ( j 51
m

( l 51
n22mdl (L

21) 2j 21
2m1 l b2 j /n jc0,0,0,0. ~6.42!

Substituting it into~6.34! we reach the final result

xk,r ,d~y!5c0,0,0,0expF2p i H 2(
j 51

m

(
l 51

n22m

dl~L21! 2j 21
2m1 l b2 j /n j2

1

2 (
j 51

m

n j y
2 j 21y2 j J G

3 (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ J G . ~6.43!

This is the result~6.8! announced previously. The eigenfunctionxk,r ,d is determined up to a
unique normalization constantc0,0,0,0. Thus we conclude that the space of twisted periodic fu
tions over the torus is an irreducible representation space of the magnetic algebraA. Finally, we
have proved that the set of functions$xk,r ,d% is a complete orthonormal set in the space of twis
periodic functions over the torus as announced at~6.9!.

VII. EIGENFUNCTIONS OF THE MAGNETIC LAPLACIAN

In this section we will write down explicitly solutions of the eigenvalue problem of
magnetic Laplacian~2.13! or ~5.5!, which is expressed in they-coordinate as

D f 5(
j 51

m F S ]

]y2 j 21 1p in j y
2 j22p ib2 j 21D 2

f 1S ]

]y2 j 2p in j y
2 j 2122p ib2 j D 2

f G
1 (

k51

n22m S ]

]y2m1k 22p ib2m1kD 2

f . ~7.1!
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The functionf must satisfy the twisted periodic condition~2.5!. We will obtain solutions using the
Fourier analysis that is developed in the preceding section.

Here we would like to describe the outline of our method. As mentioned in the prece
section, the Laplacian commutes with the magnetic shift operators,$U j ,Vj ,Wk%. Hence the labels
(r ,d)5(r 1 ,r 2 , . . . ,r m ,d1 ,d2 , . . . ,dn22m), which are defined in~3.22!–~3.26!, are good quantum
numbers. Moreover, the Laplacian commutes with the longitudinal momentum operators$P2m1k%.
Hence the corresponding momentum eigenvalues$k2m1k% are also good quantum numbers and a
related to the labelsdl via ~5.17!. On the other hand, the Laplacian does not commute with
transverse momentum operators$P2 j 21 ,P2 j%. Hence the transverse momentum eigenval
$k2 j 21% do not remain good quantum numbers. The Laplacian admits a new set of good qu
numbers (n1 ,n2 ,...,nm), which will be introduced later. It will be revealed that eigenfunctions
the Laplacian are actually matrix elements of a unitary transformation,

cn,r ,d~k1 ,k3 , . . . ,k2m21!5^k,r ,dun,r ,d&, ~7.2!

which relates the quantum numbersn’s to k’s. In the k-space it is rather easy to get eigenfun
tions by the standard method of a harmonic oscillator. On the other hand, the set of eigenfun
of the momenta and magnetic shifts,

xk,r ,d~y1,y2, . . . ,yn!5^yuk,r ,d&, ~7.3!

plays a role a unitary transformation which bridges between the momentum space and t
space like the usual Fourier transformation. Hence the Laplacian eigenfunctions are trans
into they-coordinate representations by

cn,r ,d~y1,y2, . . . ,yn!5^yun,r ,d&5E
2`

`

dk1 dk3 ¯ dk2m21^yuk,r ,d& ^k,r ,dun,r ,d&. ~7.4!

This will give the desired result.
Now let us carry out the program outlined above. We define creation and annihilation o

tors associated with the transverse momenta as

aj
†5

1

A4pn j

~P2 j 212 iP2 j !, aj5
1

A4pn j

~P2 j 211 iP2 j ! ~ j 51, . . . ,m!. ~7.5!

It is easily verified that@aj ,ak
†#5d jk . Then the Laplacian~5.5! becomes

2D5(
j 51

m

4pn j S aj
†aj1

1

2D1 (
k51

n22m

~P2m1k!
2. ~7.6!

The eigenstateuV& for the lowest eigenvalue satisfies

05^kuaj uV&5
1

A4pn j

^ku~P2 j 211 iP2 j !uV&5
1

A4pn j
S 2pk2 j 211n j

]

]k2 j 21
D ^kuV&. ~7.7!

Here we used~5.13! and ~5.15!. The solution is

^kuV&5e2p( j 51
m (k2 j 21)2/n j . ~7.8!

States for higher eigenvalues are generated by creation operators as
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^kun&5
1

An1!¯nm!
^ku~a1

†!n1
¯~am

† !nmuV&

5
1

An1!¯nm!
)
j 51

m F 1

A4pn j
S 2pk2 j 212n j

]

]k2 j 21
D G nj

^kuV&

5
1

An1!¯nm!
ep( j 51

m (k2 j 21)2/n j )
j 51

m F 1

A4pn j
S 2n j

]

]k2 j 21
D G nj

e22p( j 51
m (k2 j 21)2/n j ~7.9!

for n1 ,n2 , . . . ,nm50,1,2, . . . . We are suppressing other labels (r ,d). In Appendix B we prove
that

E
2`

`

dk e2p ikz
•epk2/nS 2n

]

]kD n

e22pk2/n5An epnz2S 2 i
]

]zD
n

e22pnz2

5An~ iA2pn!ne2pnz2
Hn~zA2pn !. ~7.10!

In the second lineHn(j) is thenth Hermite polynomial. Substituting~6.43! and ~7.9! into ~7.4!
and applying~7.10! we obtain

^yun,r ,d&5E
2`

`

dk1 dk3 ¯ dk2m21 ^yuk,r ,d&^k,r ,dun,r ,d&

5c expF2p i H 2(
j 51

m

(
l 51

n22m

dl~L21! 2j 21
2m1 l b2 j /n j

2
1

2 (
j 51

m

n j y
2 j 21y2 j J G (

s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ J G

3)
j 51

m FA n j

nj !
S i

&
D nj

e2pn j $y2 j 211b2 j /n j 2( i 51
m L 2i 21

2 j 21 (qis i1r i2g i )/qi %
2

3HnjS A2pn j H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ D G . ~7.11!

This is the main result of this paper. Using~5.17!, we can calculate eigenvalues of the Laplac
~7.6! as

2
1

2
Dcn,r ,d5F (

j 51

m

2pn j S nj1
1

2D1
1

2 (
k51

n22m H (
l 51

n22m

2p~dl2a2m1 l !~L21! 2m1k
2m1 l J 2Gcn,r ,d .

~7.12!
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Eigenvalues depend on quantum numbersn1 ,n2 , . . . ,nm50,1,2, . . . andd1 ,d2 , . . . ,dn22m50,
61,62, . . . but not onr 5(r 1 ,r 2 , . . . ,r m)PZq1

3Zq2
3¯3Zqm

. Thus each eigenvalue is dege
erated byq1q2¯qm folds as predicted in~3.28!. If a ratio n i /n j ( iÞ j ) is rational, degeneracy
happens more. On the other hand, ifa2m1 l50, the eigenvalue for2dl coincides with the one for
dl . If a2m1 l51/2, the eigenvalue for (2dl11) coincides with the one fordl . Moreover, for
specific values of$(L21) 2m1k

2m1 l % we may meet more multifold degeneracy.
Let us discuss physical meanings of the eigenvalue~7.12!. It is energy of an electrically

charged particle moving in the magnetic field in the torus. In~7.12! we set the coefficient21/2 in
front of D to adjust the equation to the conventional Schro¨dinger equation. In the context o
classical mechanics, the particle exhibits a cyclic motion with the frequencyn j in the
(y2 j 21,y2 j )-plane for eachj 51,2,. . . ,m. And it exhibits a uniform straight motion along th
y2m1k-axis. The whole motion is a superposition of those cyclic and straight motions. Whe
turn to quantum mechanics, energy of the cyclic motion is quantized and results in the so
Landau level 2pn j (nj11/2). On the other hand, the longitudinal momentumP2m1k associated
with the straight motion is quantized to be 2pk2m1k52p( l 51

n22m(dl2a2m1 l)(L
21) 2m1k

2m1 l

52p( l 51
n22mdl(L

21) 2m1k
2m1 l 2b2m1k with integers (d1 ,d2 , . . . ,dn22m) as explained in~5.17!.

Along the course of the straight motion the particle flies around the torus and picks u
so-called Aharonov–Bohm effect. Then the momentum is shifted by the Aharonov–Bohm p
eters (b2m11 , . . . ,bn). Accordingly, the kinetic energy of the straight motion is also quantiz
The total energy is then given as~7.12!.

Moreover, let us examine meanings of other Aharonov–Bohm parameters (b1 , . . . ,b2m).
These do not affect the energy~7.12! and hence they have a geometric significance rather th
physical significance. To understand their meaning we rewrite the eigenfunction~6.43! as

xk,r ,d~y!5c expF2p i H (
l 51

n22m

(
j 51

m

dl$~L21! 2j
2m1 lb2 j 212~L21! 2j 21

2m1 l b2 j%/n j2
1

2 (
j 51

m

n j y
2 j 21y2 j

1(
j 51

m

b2 j 21y2 j 21J G (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2b2l 21/n l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ J G . ~7.13!

To get the above expression we used

(
i 51

m

L 2i 21
2 j 21 g i /qi52 (

l 51

n22m

dl~L21! 2j
2m1 l /n j , ~7.14!

which is easily derived from~6.36!. Thus we can see that the parameters (b1 , . . . ,b2m) induce a
displacement

~y2 j 21,y2 j !→~y2 j 211b2 j /n j ,y2 j2b2 j 21 /n j ! ~7.15!

of the profile uxk,r ,d(y)u. This is the geometric significance of the transverse Aharonov–B
parameters.
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VIII. CONCLUSION

Here we summarize our discussions. As well-known, aU(1) gauge field replaces the parti
derivative by the covariant derivative and generates a magnetic field. As a natural extension
eigenvalue problem of the ordinary Laplacian in then-torus, we formulated the eigenvalue pro
lem of the magnetic Laplacian. The ordinary Laplacian admits continuous Abelian symmetr
therefore the usual Fourier analysis is applicable. However, the magnetic Laplacian does no
continuous Abelian symmetry and therefore the usual Fourier analysis is not applicable
Hence, we developed an alternative method, which became an extension of the usual
analysis. We identified symmetry structure of the magnetic Laplacian and defined the ma
translation group~MTG!, which is discrete and non-Abelian in general. Moreover, we defined
magnetic algebra by extending the MTG. We proved that the space of functions on whic
magnetic Laplacian acts is an irreducible representation space of the magnetic algebra. By
nalizing the maximal Abelian subalgebra of the magnetic algebra we obtained a complete
normal set of functions$xk,r ,d(y)% over the magnetic torus; those functions are labeled by a s
good quantum numbers (k,r ,d). It was rather easy to diagonalize the magnetic Laplacian in
k-space representation. Applying a unitary transformation by$xk,r ,d(y)% to the eigenstate of the
magnetic Laplacian, we finally obtained the eigenfunction in they-space representation. Th
eigenvalues of the magnetic Laplacian were naturally interpreted as sums of energies of
motions in the transverse directions to the magnetic field and energies of linear motions
longitudinal direction to it.

New results of this paper are the definition and representations of the magnetic algeb
proof of irreducibility of the space of twisted periodic functions as a representation space
magnetic algebra, the complete orthogonal set of functions~6.8! which provides a basis of the
extended Fourier analysis, the eigenfunctions~7.11! of the magnetic Laplacian in explicit forms
and the eigenvalues~7.12!.

Before closing this paper we would like to discuss briefly possible directions for fur
development. We treated only the Laplace operator in this paper but for application to physi
more desirable to treat the Schro¨dinger operator

H52 1
2 D1V, ~8.1!

which has a potential energy termV. The potentialV is a periodic function; in thet-coordinate it
satisfiesV(t1, . . . ,t i11, . . . ,tn)5V(t1, . . . ,t i , . . . ,tn) for eachi . It acts on the twisted periodic
function f (t) by multiplication. To take the potential term into account we may introduce
operatorsXk by

~Xj f !~ t!5e2p i t j
f ~ t! ~ j 51,2,. . . ,2m!, ~8.2!

which belong to the same family of operatorsTk of ~5.9!. Then any periodic potential operator ca
be expanded as

V~ t1, . . . ,tn!5 (
s1 ,s2 , . . . ,sn52`

`

cs e2p i (s1t11¯1sntn)

5 (
s1 ,s2 , . . . ,sn52`

`

cs ~X1!s1
¯~X2m!s2m~T1!s2m11

¯~Tn22m!sn. ~8.3!

We can easily calculate commutators ofX’s with other operators to get an algebra which is
extension of the magnetic algebra. The resulted algebra is isomorphic to the so-called no
mutative torus21 although we do not yet examine these relation thoroughly.
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Another direction for future development is to solve an eigenvalue problem of the D
operator in then-torus in the background magnetic field. We also construct supersymmetric
theory, which have both scalar and spinor fields as its constituents to pursue a new mecha
supersymmetry breaking.
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APPENDIX A: DISTRIBUTION OF ZEROS

As shown in~4.11! we prove existence of a transformation matrixL that has zeros in the
pattern

L5S L 2p21
2i 21 L 2q

2i 21 L 2m1r
2i 21

L 2p21
2 j L 2q

2 j L 2m1r
2 j

L 2p21
2m1k L 2q

2m1k L 2m1r
2m1k

D 5S * 0 0

* * 0

* * *
D ~A1!

with i , j ,p,q51, . . . ,m andk,r 51, . . . ,n22m.
In Rn we have an antisymmetric bilinear formB. We say that a vectoru is longitudinal with

respect toB if it satisfies

B~u,v!50 ~A2!

for arbitraryvPRn. We call

M05$uPRn u ;vPRn, B~u,v!50% ~A3!

a longitudinal vector subspace. Let (t1,t2, . . . ,tn) be the coordinate system that expressesB in the
standard form

B5
1

2 (
i , j 51

n

f i j dt i∧dt j5(
j 51

m

qj dt2 j 21∧dt2 j ~A4!

as in~3.14!. Let (y1,y2, . . . ,yn) be another coordinate system that is related to (t1,t2, . . . ,tn) by
a linear transformationyi5( j 51

n L j
i t j . The matrixL is not yet specified. Basis vectors generat

by these coordinates are related as

]

]t j 5(
i 51

n
]yi

]t j

]

]yi 5(
i 51

n

L j
i ]

]yi , ~A5!

]

]yj 5(
i 51

n
]t i

]yj

]

]t i 5(
i 51

n

~L21! j
i ]

]t i . ~A6!

Define vector subspacesM 2 andM 1 of Rn as

M 25R
]

]t1 % R
]

]t3 %¯% R
]

]t2m21 , ~A7!
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M 15R
]

]t2 % R
]

]t4 %¯% R
]

]t2m . ~A8!

ThenM 2
% M 1

% M05Rn. Now let us remember thatRn is equipped with inner product structure
Then the two-formB:Rn3Rn→R can be regarded as an antisymmetric operatorB̂:Rn→Rn. As a
square of a linear operatorB̂2 is well-defined and becomes a symmetric operator and therefo
diagonalizable by an orthogonal transformation.B̂2 has nonpositive eigenvalues. The eigensp
W0 associated with the zero eigenvalue ofB̂2 coincides withM0. Of course,

H ]

]t2m11 ,
]

]t2m12 , . . . ,
]

]tnJ ~A9!

is a basis ofM05W0. We take an orthonormal basis

H ]

]y2m11 ,
]

]y2m12 , . . . ,
]

]ynJ ~A10!

of W0. This implies that

L 2m1r
2i 21 5L 2m1r

2 j 5~L21! 2m1r
2i 21 5~L21! 2m1r

2 j 50 ~A11!

in ~A5! and ~A6!.
Let us step into a difficult part of the proof. Each eigenspace associated with each no

eigenvalue ofB̂2 can be decomposed into two-dimensional subspaces such that each
dimensional subspaceWj is irreducible with respect to the action ofB̂. Thus we get an orthogona
decomposition

Rn5W1'W2'¯'Wm'W0. ~A12!

Next we define vector subspaces

Wj
15Wjù~M 1

% M0!, ~A13!

Wj
25Wjù~M 1

% M0!', ~A14!

then we can show that bothWj
1 and Wj

2 have one dimension. First, note that dimWj
1

1dimWj
25dimWj52. If dim Wj

152, Wj
1 coincides withWj itself. Since the two-formB is

degenerated on (M 1
% M0), it must be degenerated also onWj5Wj

1,(M 1
% M0). This contra-

dicts the fact thatWj is irreducible with respect toB̂. On the other hand, if dimWj
252, Wj

2

coincides withWj itself. Then we can take an arbitrary one-dimensional subspaceM 21,Wj

5Wj
2,(M 1

% M0)'. Since Wj is irreducible with respect toB̂, B is degenerated onM 21

% M 1
% M0. This contradicts the fact thatM 1

% M0 is a maximal degenerated subspace ofB.
Hence we conclude that dimWj

15dimWj
251.

We take a normalized vector]/]y2 j of Wj
1 . And we take another normalized vector]/]y2 j 21

of Wj
2 such thatn j5B(]/]y2 j 21,]/]y2 j ).0 for eachj 51, . . . ,m. Then we obtain a complete

orthonormal basis $]/]yi u i 51,2,. . . ,n% that expressesB in the standard form B
5( j 51

m n j dy2 j 21∧dy2 j .
Since]/]y2qPWq

1,M 1
% M0, we can say that

~L21! 2q
2i 2150 ~A15!

in ~A6!. By an elementary argument of linear algebra we can say that
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L 2q
2i 2150. ~A16!

The proof is over.

APPENDIX B: FOURIER TRANSFORMATION OF THE HERMITE POLYNOMIALS

In our convention the Hermite polynomial is defined as

Hn~j!5~21!n ej2 dn

djn e2j2
. ~B1!

The formula~7.10! can be deduced by a partial integration and a change of variables as

E
2`

`

dk e2p ikz
•epk2/nS 2

]

]kD n

e22pk2/n5E
2`

`

dk e22pk2/nS ]

]kD n

e2p ikz
•epk2/n

5epnz2E
2`

`

dk e22pk2/nS ]

]kD n

ep(k1 inz)2/n

5epnz2E
2`

`

dk e22pk2/nS 2
i

n

]

]zD
n

ep(k1 inz)2/n

5epnz2S 2
i

n

]

]zD
nE

2`

`

dk e2p(k2 inz)2/n22pnz2

5epnz2S 2
i

n

]

]zD
n

An e22pnz2
. ~B2!
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