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1. Introduction

In this paper we consider the second order ordinary differential equation

(1.1) u′′ + a(x)f(u) = 0, 0 < x < 1

with the boundary condition

(1.2) u(0) = u(1) = 0.

In equation (1.1) we assume that a satisfies

(1.3) a ∈ C1[0, 1], a(x) > 0 for 0 ≤ x ≤ 1,

and that f satisfies the following conditions (H1)–(H3):

(H1) f ∈ C(R), f(s) > 0 for s > 0, f(−s) = −f(s) for s > 0, and f is locally
Lipschitz continuous on (0,∞);
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(H2) There exist limits f0 and f∞ such that 0 ≤ f0, f∞ ≤ ∞,

f0 = lim
s→+0

f(s)

s
and f∞ = lim

s→∞
f(s)

s
;

(H3) In the case where f0 = ∞ in (H2), f(s) is nondecreasing and f(s)/s is
nonincreasing on (0, s0] for some s0 > 0.

From (H1) we see that f(0) = 0. The case where f(s) = |s|p−1s with p > 0
is a typical case satisfying (H1)–(H3). Thus, f0 = 0 and f∞ = ∞ correspond
to the superlinear case, and f0 = ∞ and f∞ = 0 correspond to the sublinear
case. While, if 0 < f0 < ∞ and 0 < f∞ < ∞, then f is asymptotically linear
at 0 and ∞, respectively.

In this paper we investigate the existence of multiple solutions of the prob-
lem (1.1) and (1.2). This kind of problem has been studied by many authors
with various methods and techniques. We refer for instance to the papers
[1–10, 12–17, 19] and the references cited therein.

In this paper we establish the precise conditions concerning the behavior
of the ratio f(s)/s for the existence and non-existence of the solutions. In par-
ticular, we will show that the problem (1.1) and (1.2) has at least k solutions,
where k represents the number of eigenvalues crossed by the ratio f(s)/s. (See
Theorem 2 below.) For the autonomous case a(t) ≡ const, this result can
be shown by applying a time-mapping method, see, e.g. [10]. However, it
seems that very little is known about the result for the nonautonomous case
a(t) �≡ const. We will obtain here the result for the nonautonomous case by
employing the shooting method together with the Sturm’s comparison theo-
rem. Moreover our results will help us to develop the previous arguments, and
to treat the known results from a unified point of view.

Let λk be the k-th eigenvalue of

(1.4)



ϕ′′ + λa(x)ϕ = 0, 0 < x < 1,

ϕ(0) = ϕ(1) = 0,

and let ϕk be an eigenfunction corresponding to λk. It is known that

0 < λ1 < λ2 < · · · < λk < λk+1 < · · · , lim
k→∞

λk = ∞,

and that ϕk has exactly k − 1 zeros in (0, 1). (See, e.g., [18, Chap. VI, Sec.
27].) For convenience, we put λ0 = 0.
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First we consider the case where the range of f(s)/s contains no eigenvalue
of the problem (1.4).

Theorem 1. Assume that there exists an integer k ∈ N = {1, 2, . . .} such
that

(1.5) λk−1 <
f(s)

s
< λk for s ∈ (0,∞).

Then the problem (1.1) and (1.2) has no solution u ∈ C2[0, 1].

Next we consider the case where the range of f(s)/s contains at least one
eigenvalue of the problem (1.4). Note that if u is a solution of (1.1), so is −u,
because of f(−s) = −f(s). Hence we consider solutions u of the problem (1.1)
and (1.2) with u′(0) > 0 only.

Theorem 2. Assume that either f0 < λk < f∞ or f∞ < λk < f0 for some
k ∈ N. Then the problem (1.1) and (1.2) has a solution uk which have exactly
k − 1 zeros in (0, 1).

Theorem 3. Assume that either the following (i) or (ii) holds for some
k ∈ N:

(i) f0 < λk < λk+1 < f∞; (ii) f∞ < λk < λk+1 < f0.

Then the problem (1.1) and (1.2) has solutions uk and uk+1 such that uk and
uk+1 have exactly k − 1 and k zeros in (0, 1), respectively, and satisfy 0 <
u′k(0) < u′k+1(0) if (i) holds, and u′k(0) > u′k+1(0) > 0 if (ii) holds.

Let us consider the cases where either f is superlinear or sublinear. As a
consequence of Theorem 3 we obtain the following:

Corollary 1. Assume that either the following (i) or (ii) holds:

(i) f0 = 0, f∞ = ∞; (ii) f0 = ∞, f∞ = 0.

Then there exist solutions uk (k = 1, 2, . . .) of the problem (1.1) and (1.2) such
that uk has exactly k − 1 zeros in (0, 1) for each k ∈ N, and that

0 < u′1(0) < u′2(0) < · · · < u′k(0) < u′k+1(0) < · · ·
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if (i) holds, and

u′1(0) > u′2(0) > · · · > u′k(0) > u′k+1(0) > · · · > 0

if (ii) holds.

Remark. (i) For the superlinear and sublinear cases, the existence of
positive solutions of (1.1) and (1.2) has been obtained by Erbe and Wang [7]
by using fixed point techniques.

(ii) The existence of an infinite sequence of solutions of (1.1) and (1.2) has
been studied by Hartman [12] and Hooker [13] for the superlinear case, and
Capietto and Dambrosio [3] for the sublinear case. In [12] and [13], Corollary
1 has been given under a weaker condition on a and f . For the superlinear
and sublinear cases, we refer to [17].

Let us consider the nonlinear eigenvalue problem of the form

(1.6)



u′′ + λa(x)f(u) = 0, 0 < x < 1,

u(0) = u(1) = 0,

where λ > 0 is a real parameter. We assume in (1.6) that a satisfies (1.3)
and f satisfies (H1)–(H3). By virtue of Theorem 2 we obtain the following
corollary, which is motivated by the results of Kolodner [14] and Dinca and
Sanchez [6].

Corollary 2. Assume that either the following (i) or (ii) holds:

(i) f0 = 0, f∞ = 1; (ii) f0 = 1, f∞ = 0.

Assume, in addition, that λk < λ < λk+1 for some k ∈ N, where λk is the k-th
eigenvalue of the problem (1.4). Then the problem (1.6) possesses k solutions
uj (j = 1, 2, . . . , k) such that uj has exactly j − 1 zeros in (0, 1).

By a change of variable, it can be shown that the existence of solution of
the problem (1.1) and (1.2) is equivalent to the existence of radial solutions
of the following Dirichlet problem for semilinear elliptic equations in annular
domains:

(1.7) ∆u+ a(|x|)f(u) = 0 in Ω,
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(1.8) u = 0 on ∂Ω,

where Ω = {x ∈ RN : R1 < |x| < R2}, R1 > 0 and N ≥ 2. We assume in (1.7)
that a ∈ C1[R1, R2], a(r) > 0 for R1 ≤ r ≤ R2, and that f satisfies conditions
(H1)–(H3).

Let µk be the k-th eigenvalue of

(1.9)




(rN−1φ′)′ + µrN−1a(r)φ = 0, R1 ≤ r ≤ R2,

φ(R1) = φ(R2) = 0.

It is known (see, e.g., [18, Chap. IV, Sec. 27]) that

0 = µ0 < µ1 < µ2 < · · · < µk < µk+1 < · · · , lim
k→∞

µk = ∞.

From Theorems 1 and 2 and Corollary 1, we obtain the following result,
which will be proved in Section 3.

Corollary 3. (i) Assume that there exists an integer k ∈ N such that

µk−1 <
f(s)

s
< µk for s ∈ (0,∞).

Then the problem (1.7) and (1.8) has no radial solution u(r) in C2[R1, R2],
where r = |x|.

(ii) Assume that either f0 < µk < f∞ or f∞ < µk < f0 for some k ∈ N.
Then there exists a radial solution uk(r) of the problem (1.7) and (1.8), which
has exactly k−1 zeros in (R1, R2). In particular, if either (i) or (ii) in Corollary
1 holds, then there exist radial solutions uk(r) (k = 1, 2, . . .) of (1.7) and (1.8)
such that uk(r) has exactly k − 1 zeros in (R1, R2) for each k ∈ N.

Remark. (i) The existence of radial positive solutions of (1.7) and (1.8)
has been studied by many authors. For example we refer to [1, 2, 4, 5, 8, 9,
16] for the superlinear case, and to [19] for the sublinear case.

(ii) The existence of solutions with prescribed numbers of zeros is discussed
by Coffman and Marcus [4] for the superlinear case.

(iii) Recently, Ercole and Zumpano [8] have established the existence of ra-
dial positive solutions with no assumptions on the behavior of the nonlinearity
f either at zero or at infinity. They have used the fixed point theorem.
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(iv) In order to treat radial solutions of the Dirichlet problem on a ball, we
need to study the singular boundary value problem. See, e.g., Lemmert and
Walter [15].

Theorem 1 follows immediately from the Sturm–Picone theorem. The
proofs of Theorems 2 and 3 depends on the shooting method combined with
the Sturm’s comparison theorem. Namely we consider the solution u(x;µ) of
(1.1) satisfying the initial condition

u(0) = 0 and u′(0) = µ,

and observe the number of zeros of u(x;µ) in (0, 1] when µ → 0 and µ → ∞,
by using the Sturm’s comparison theorem. Here µ ∈ R is a parameter.

This paper is organized as follows. In Section 2 we give a global existence
and uniqueness of the solution for the initial value problem. In Section 3 we
study the properties of the solution u(x;µ), and then prove Theorems 1–3 by
employing the Prüfer transformation. In Section 4 we prove the lemmas stated
in Section 3.

2. Preliminaries

In this section we consider the solution u of (1.1) with the initial condition

(2.1) u(0) = 0 and u′(0) = µ,

where µ ∈ R is a parameter. We denote by u(x;µ) the solution of the problem
(1.1) and (2.1).

Proposition 2.1. For each µ ∈ R, the solution u(x;µ) exists on [0, 1] and
is unique. Furthermore, the solution u(x;µ) satisfies the following properties
(i) and (ii):

(i) u(x;µ) and u′(x;µ) are continuous functions of (x, µ) ∈ [0, 1] × R;
(ii) For each µ ∈ R\{0}, the number of zeros of u(x;µ) in [0, 1] is finite.

We will prove Proposition 2.1 by using the arguments introduced by Wong
[20] and Coffman and Wong [5]. First we give some lemmas.
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Lemma 2.1. Assume that f(s) is nondecreasing and f(s)/s is nonin-
creasing on (0, s0] for some s0 > 0. If s1, s2, s3 ∈ (0, s0] satisfy s2, s3 ≥ s1 and
s2 �= s3, then

(2.2) 0 ≤ f(s3) − f(s2)

s3 − s2

≤ f(s1)

s1

.

Proof. In view of the monotonicity of f(s), we have (f(s3) − f(s2))/(s3 −
s2) ≥ 0. We may assume that s3 > s2. Since f(s)/s is nonincreasing, we obtain
s2f(s3) ≤ s3f(s2). It follows that s2f(s3)−s2f(s2) ≤ s3f(s2)−s2f(s2), which
implies that

f(s3) − f(s2)

s3 − s2
≤ f(s2)

s2
.

By the monotonicity of f(s)/s, we conclude that (2.2) holds. �

Let u be a solution of (1.1), and let I[u] ⊂ [0, 1] be the maximal interval of
existence for u. We define the energy function E[u] as follows:

(2.3) E[u](x) =
[u′(x)]2

2
+ a(x)F (u(x)) for x ∈ I[u],

where
F (s) =

∫ s

0
f(σ) dσ for s ∈ R.

It is easy to see that F (s) = F (|s|) > 0 for all s ∈ R \ {0}, F (0) = 0, and
F (s) is strictly increasing in s ∈ (0,∞). Thus E[u](x) ≥ 0 on I[u], and we
conclude that E[u](x) = 0 on I[u] if and only if u(x) = 0 on I[u]. Furthermore
we obtain the following properties.

Lemma 2.2. Let x0, x ∈ I[u]. Then

(2.4) E[u](x) ≤ E[u](x0) exp

(∫ x

x0

[a′(t)]+
a(t)

dt

)
for x0 < x,

and

(2.5) E[u](x) ≤ E[u](x0) exp

(∫ x0

x

[a′(t)]−
a(t)

dt

)
for x < x0,

where [s]+ = max{s, 0} and [s]− = max{−s, 0}.
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Proof. In view of (1.1) and (2.3), we find that

d

dx
E[u](x) = a′(x)F (u(x)) ≤ [a′(x)]+

a(x)
E[u](x).

Then, for x0, x ∈ I[u], x0 < x, we have

d

dx

(
E[u](x) exp

(
−
∫ x

x0

[a′(t)]+
a(t)

dt

))
≤ 0.

An integration of the above over [x0, x] gives inequality (2.4). Inequality (2.5)
can be obtained in a similar fashion. �

Let us consider the equation (1.1) with the general initial condition

(2.6) u(x0) = α, u′(x0) = β,

where x0 ∈ [0, 1] and α, β ∈ R are arbitrarily given.

Lemma 2.3. Let x0 ∈ [0, 1], and let α, β ∈ R. Then the initial value
problem (1.1) and (2.6) has a unique local solution.

Proof. The existence of a local solution of (1.1) and (2.6) is guaranteed
by the Peano existence theorem. Then it suffices to show the uniqueness of
a local solution of the problem. If either f0 < ∞ or α �= 0 in (2.6), then
the uniqueness of a local solution of the problem is clear since f satisfies a
Lipschitz condition on [α − δ, α + δ], where δ > 0 is taken sufficiently small.
Then the question is the case where f0 = ∞ and α = 0. In this case we make
a distinction between β �= 0 and β = 0.

The case where f0 = ∞, α = 0 and β �= 0 in (2.6). We may suppose that
β > 0 without loss of generality. Let u1 and u2 be local solutions of (1.1)
satisfying (2.6) with α = 0 and β > 0. Then there exists a number x1 ∈ (x0, 1)
such that

(2.7)
β

2
(x− x0) ≤ ui(x) ≤ s0 for x0 ≤ x ≤ x1, i = 1, 2,

where s0 is the number in (H3). Since u1 and u2 satisfy

ui(x) = β(x− x0) −
∫ x

x0

(x− t)a(t)f(ui(t))dt
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for x0 ≤ x ≤ x1, i = 1, 2, we have

|u1(x) − u2(x)| ≤ (x− x0)
∫ x

x0

a(t)|f(u1(t)) − f(u2(t))|dt

for x0 ≤ x ≤ x1. By (2.7), Lemma 2.1 implies that

|f(u1(x)) − f(u2(x))| ≤ f(β(x− x0)/2)

β(x− x0)/2
|u1(x) − u2(x)|

for x0 ≤ x ≤ x1. Then we obtain

|u1(x) − u2(x)|
x− x0

≤ 2

β

∫ x

x0

a(t)f

(
β

2
(t− x0)

) |u1(t) − u2(t)|
t− x0

dt

for x0 ≤ x ≤ x1. We note here that the function U(x) = |u1(x)−u2(x)|/(x−x0)
has the finite limit as x → x0 + 0, and hence U(x) can be regarded as a con-
tinuous function on the closed interval [x0, x1]. Then by Gronwall’s inequality
we see that U(x) ≡ 0 for x0 ≤ x ≤ x1, which implies that u1(x) ≡ u2(x) for
x0 ≤ x ≤ x1. The uniqueness in a left-neighborhood of x0 is similarly proved.

The case where f0 = ∞, α = 0 and β = 0 in (2.6). In this case we will
show u ≡ 0 by using of the function E[u] defined by (2.3). Suppose that u
is a local solution of (1.1) and (2.6) with α = β = 0 and that it exists on an
interval [x0, x1]. Then, making use of (2.4) and nothing that E[x](x0) = 0, we
see that E[u](x) ≡ 0, which implies the uniqueness on a right-neighborhood of
x0. Similarly, the use of (2.5) yields the uniqueness on a left-neighborhood of
x0. This completes the proof of Lemma 2.3. �

Proof of Proposition 2.1. From Lemma 2.3 the initial value problem (1.1)
and (2.1) has a unique local solution u(x;µ) for each µ ∈ R, and the solution
u(x;µ) is unique as far as the solution exists. Let I[u] be the maximal interval
of existence for u(x;µ). From Lemma 2.2 the function E[u(·, µ)] defined by
(2.3) satisfies

E[u(·, µ)](x) ≤ µ2

2
exp

(∫ 1

0

|a′(t)|
a(t)

dt

)
for x ∈ I[u].

This means that both u(x;µ) and u′(x;µ) are bounded as far as the solution
exists. Thus, by a standard argument, we conclude that u(x;µ) is continuable
on [0, 1], that is, u(x;µ) exists on [0, 1] and is unique.
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It is well known that the scalar equation (1.1) can be written by the system
of the first order differential equation u′ = F (x,u), where

u =

(
u
u′

)
and F (x,u) =

(
u′

−a(x)f(u)

)
.

By a general theory on the continuous dependence of solutions on parameters
and initial conditions (see, for example, [11, Chap. 1, Theorem 2.4]), it follows
that u(x;µ) and u′(x;µ) are continuous in (x, µ) on the set [0, 1] × R. Then
(i) of Proposition 2.1 holds.

By the uniqueness we see that if u(x;µ) has infinitely many zeros in the
finite interval [0, 1] then u(x;µ) ≡ 0 on [0, 1]. Thus, if u(x;µ) �≡ 0 on [0, 1],
then the number of zeros of u(x;µ) in [0, 1] is finite, that is (ii) of Proposition
2.1 holds. The proof is complete. �

3. Proofs of Theorems 1-3

In this section we give proofs of Theorems 1-3.

Proof of Theorem 1. Assume to the contrary that the problem (1.1) and
(1.2) has a solution u ∈ C2[0, 1]. We see that u satisfies u′′ + b(x)u = 0 for
0 < x < 1, where

b(x) = a(x)
f(u(x))

u(x)
.

Note that f0 ≤ λk < ∞ by (1.5), and hence f(s)/s can be regarded as a
continuous function on R. Thus we have b ∈ C[0, 1].

From (1.5) it follows that

λk−1a(x) < b(x) < λka(x) for u(x) �= 0.

First assume k ≥ 2. Recall that an eigenfunction ϕk−1 corresponding to λk−1

has exactly k − 2 zeros in (0, 1). By applying the Sturm–Picone theorem to
ϕk−1 and u (see, e.g., [18, Chap. IV, Sec. 27]), we see that u has at least k− 1
zeros in (0, 1). Now, by applying the Sturm–Picone theorem again to u and
ϕk, we find that ϕk has at least k zeros in (0, 1). This is a contradiction. If
k = 1, then by applying the Sturm–Picone theorem to u and ϕ1, we conclude
that ϕ1 has at least one zero in (0, 1). This contradicts the positivity of ϕ1.
Consequently the problem (1.1) and (1.2) has no solution. �
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To prove Theorems 2 and 3 we employ the Prüfer transformation for the
solution u(x;µ) of the problem (1.1) and (2.1). For the solution u(x;µ) with
µ ∈ R, we define the functions r(x;µ) and θ(x;µ) by




u(x;µ) = r(x;µ) sin θ(x;µ),

u′(x;µ) = r(x;µ) cos θ(x;µ),

where ′ = d/dx. Since u(x;µ) and u′(x;µ) cannot vanish simultaneously,
r(x;µ) and θ(x;µ) are written in the forms

r(x;µ) =
(
[u(x;µ)]2 + [u′(x;µ)]2

)1/2
> 0

and

θ(x;µ) = arctan
u(x;µ)

u′(x;µ)
,

respectively. Therefore r(x;µ) and θ(x;µ) are determined as continuously
differentiable function with respect to x ∈ [0, 1]. By a simple calculation we
see that

θ′(x;µ) = cos2 θ(x;µ) + a(x)
sin θ(x;µ)f(r(x;µ) sin θ(x;µ))

r(x;µ)
> 0

for x ∈ [0, 1], which shows that θ(x;µ) is strictly increasing in x ∈ [0, 1] for each
fixed µ �= 0. From the initial condition (2.1) it follows that r(0;µ) = µ and
θ(0;µ) ≡ 0 (mod 2π). For simplicity we take θ(0;µ) = 0. By (i) of Proposition
2.1, the function θ(x;µ) is continuous in (x, µ) ∈ [0, 1] × R. It is easy to see
that u(x;µ) has exactly k zeros in (0, 1) if and only if

kπ < θ(1;µ) ≤ (k + 1)π.

To show Theorems 2 and 3 we need Lemmas 3.1–3.4 below. Recall that
λk is the k-th eigenvalue of the problem (1.4). Since u(x;−µ) = −u(x;µ) for
x ∈ [0, 1], we consider only the case where µ > 0.

Lemma 3.1. Assume that f0 < λk for some k ∈ N. Then there exists
µ∗ ∈ (0, 1) such that, for each µ ∈ (0, µ∗], the solution u(x;µ) has at most
k − 1 zeros in (0, 1).
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Lemma 3.2. Assume that f0 > λk for some k ∈ N. Then there exists
µ∗ ∈ (0, 1) such that, for each µ ∈ (0, µ∗], the solution u(x;µ) has at least k
zeros in (0, 1).

Lemma 3.3. Assume that f∞ > λk for some k ∈ N. Then there exists
µ∗ > 1 such that, for each µ ≥ µ∗, the solution u(x;µ) has at least k zeros in
(0, 1).

Lemma 3.4. Assume that f∞ < λk for some k ∈ N. Then there exists
µ∗ > 1 such that, for each µ ≥ µ∗, the solution u(x;µ) has at most k− 1 zeros
in (0, 1).

The proofs of Lemmas 3.1–3.4 will be given in Section 4.

Proof of Theorem 2. First we suppose that f0 < λk < f∞. Lemma 3.1
implies that there exists µ∗ ∈ (0, 1) such that u(x;µ) has at most k−1 zeros in
(0, 1) for µ ∈ (0, µ∗], that is, θ(1;µ) ≤ kπ for µ ∈ (0, µ∗]. By Lemma 3.3, there
exists µ∗ > 1 such that θ(1;µ) > kπ for µ ≥ µ∗. Since θ(1;µ) is continuous
in µ ∈ [0,∞), there exists a number µk ∈ [µ∗, µ∗) such that θ(1;µk) = kπ.
This implies that u(x;µk) is a solution of the problem (1.1) and (1.2) and has
exactly k − 1 zeros in (0, 1).

In the same way, from Lemmas 3.2 and 3.4, we can prove Theorem 2 for
the case f∞ < λk < f0. The proof is complete. �

Proof of Theorem 3. Suppose that (i) holds. From the proof of Theorem 2
there exist µk > 0 such that θ(1, µk) = kπ, that is, the problem (1.1) and (1.2)
possesses a solution u(x;µk), which has exactly k−1 zeros in (0, 1) and satisfies
u′(0;µk) = µk. By Lemma 3.3, there exist µ∗ > 1 such that θ(1;µ) > (k+ 1)π
for µ ≥ µ∗. Hence we see that µk < µ∗. By the continuity of θ(1, µ) there
exists µk+1 ∈ (µk, µ

∗) such that θ(1;µk+1) = (k+ 1)π. Thus the problem (1.1)
and (1.2) possesses a solution u(x;µk+1), which has exactly k zeros in (0, 1).
It follows from µk < µk+1 that u′(0;µk) < u′(0;µk+1).

By using Lemmas 3.2 and 3.4, it can be shown Theorem 3 for the case (ii).
This completes the proof of Theorem 3. �

Now we give the proof of Corollary 3.
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Proof of Corollary 3. For a radial solution u(r), equation (1.7) is rewritten
in the form

d2u

dr2
+
N − 1

r

du

dr
+ a(r)f(u) = 0 for R1 < r < R2,

where r = |x|. Let v(t) = u(et) for N = 2, and let v(t) = u(t1/(2−N)) for
N ≥ 3. Then it follows that the problem (1.7) and (1.8) is transformed into
the problem

(3.1) v′′ + b(t)f(v) = 0 for T1 < t < T2,

(3.2) v(T1) = v(T2) = 0,

where ′ = d/dt, and b(t) = e2ta(et), T1 = logR1 and T2 = logR2 for N = 2,
and b(t) = (2 −N)−2t−2(N−1)/(N−2)a(t1/(2−N)), T1 = R2−N

2 and T2 = R2−N
1 for

N ≥ 3.
Similarly, define ψ(t) = φ(et) for N = 2, and ψ(t) = φ(t1/(2−N)) for N ≥ 3.

Then the eigenvalue problem (1.9) is transformed into the problem



ψ′′ + µb(t)ψ = 0, T1 < t < T2,

ψ(T1) = ψ(T2) = 0,

where ′ = d/dt. Thus, by applying Theorems 1 and 2 and Corollary 1 to (3.1)
and (3.2), we have Corollary 3. �

4. Proofs of Lemmas 3.1–3.4

In this section we prove Lemmas 3.1–3.4. The following notation will be
used:

a∗ = min{a(x) : 0 ≤ x ≤ 1}, a∗ = max{a(x) : 0 ≤ x ≤ 1},

A∗ = exp

(
−
∫ 1

0

[a′(t)]−
a(t)

dt

)
, A∗ = exp

(∫ 1

0

[a′(t)]+
a(t)

dt

)
.

First we need the following results.
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Lemma 4.1. (i) Let µ > 0. Then

(4.1)
µ2

2
A∗ ≤ E[u(·; µ)](x) ≤ µ2

2
A∗ for 0 ≤ x ≤ 1,

where E[u(·; µ)] is the function defined by (2.3).
(ii) Let M > 0. If

(4.2) µ2 ≤ 2a∗F (M)

A∗ ,

then |u(x;µ)| ≤M for 0 ≤ x ≤ 1.

Proof. (i) From Lemma 2.2 we have

E[u(·; µ)](x) ≤ E[u(·; µ)](0) exp

(∫ x

0

[a′(t)]+
a(t)

dt

)
for x > 0

and

E[u(·; µ)](0) ≤ E[u(·; µ)](x) exp

(∫ x

0

[a′(t)]−
a(t)

dt

)
for x > 0.

Then

E[u( · ;µ)](x) ≤ µ2

2
exp

(∫ 1

0

[a(t)]+
a(t)

dt

)
for 0 ≤ x ≤ 1

and

E[u( · ;µ)](x) ≥ µ2

2
exp

(
−
∫ 1

0

[a(t)]−
a(t)

dt

)
for 0 ≤ x ≤ 1,

respectively, and hence (4.1) holds.
(ii) In view of (4.1) and (4.2) we obtain

E[u(·; µ)](x) ≤ µ2

2
A∗ ≤ a∗F (M) for 0 ≤ x ≤ 1.

From a∗F (u(x;µ)) ≤ E[u(·; µ)](x), it follows that a∗F (u(x;µ)) ≤ a∗F (M).
Therefore |u(x;µ)| ≤M for 0 ≤ x ≤ 1. �

Proof of Lemma 3.1. By f0 < λk there is a number M > 0 such that

(4.3)
f(s)

s
< λk for |s| ≤ M.
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Take a number µ∗ ∈ (0, 1) so small that (4.2) is satisfied for all µ ∈ (0, µ∗].
Let µ ∈ (0, µ∗]. From (ii) of Lemma 4.1 we obtain |u(x;µ)| ≤M for x ∈ [0, 1].
Now we define the function b(x) by

b(x) = a(x)
f(u(x;µ))

u(x;µ)
, 0 ≤ x ≤ 1.

Since f(s)/s is continuous on R by f0 < ∞, we conclude that b ∈ C[0, 1]. In
view of (4.3) and the fact that |u(x;µ)| ≤M on [0, 1], we have

(4.4) b(x) < λka(x) for 0 ≤ x ≤ 1.

Recall that an eigenfunction ϕk corresponding to λk has exactly k− 1 zeros in
(0, 1). Since u(x;µ) satisfies the equation u′′ + b(x)u = 0 and has a zero x = 0,
by (4.4) and the Sturm–Picone theorem, we see that u(x;µ) has at most k− 1
zeros in (0, 1). This completes the proof. �

Proof of Lemma 3.2. From λk < f0 we have

(4.5) λk <
f(s)

s
for 0 < |s| ≤M

for some M > 0. There is a number µ∗ ∈ (0, 1) so that (4.2) holds for all
µ ∈ (0, µ∗]. Let µ ∈ (0, µ∗]. From (ii) of Lemma 4.1 it follows that |u(x;µ)| ≤
M for x ∈ [0, 1]. Let xi (i = 0, 1, 2, . . . , k) be zeros of an eigenfunction ϕk

corresponding to λk such that

(4.6) 0 = x0 < x1 < x2 < · · · < xk−1 < xk = 1.

Assume that there is an integer i ∈ {1, 2, . . . , k} such that u(x;µ) has no zero in
(xi−1, xi). Without loss of generality we may suppose that u(x) ≡ u(x;µ) > 0
and ϕk(x) > 0 for x ∈ (xi−1, xi). Then we note that ϕ′

k(xi−1) > 0 and
ϕ′

k(xi) < 0. Hence

(4.7) u(xi)ϕ
′
k(xi) − u(xi−1)ϕ

′
k(xi−1) ≤ 0.

On the other hand, by |u(x)| ≤M for 0 ≤ x ≤ 1 and (4.5) we obtain

∫ xi

xi−1

(−u′′ϕk + uϕ′′
k) dx =

∫ xi

xi−1

a(x)

[
f(u)

u
− λk

]
uϕk dx > 0.
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Hence from ϕk(xi−1) = ϕ(xi) = 0 it follows that

−u′ϕk + uϕ′
k

∣∣∣xi

xi−1

= u(xi)ϕ
′
k(xi) − u(xi−1)ϕ

′
k(xi−1) > 0.

This contradicts (4.7). Consequently, u(x;µ) has at least one zero in (xi−1, xi)
for each i ∈ {1, 2, . . . , k}, which means that u(x;µ) has at least k zeros in
(0, 1). The proof is complete. �

To prove Lemmas 3.3 and 3.4 we require the following lemmas.

Lemma 4.2. Let xi (i = 0, 1, 2, . . . , k) be zeros of an eigenfunction ϕk

corresponding to λk satisfying (4.6).
(i) Let λ > λk. Then, for each i ∈ {1, 2, . . . , k}, there is a solution wi of

(4.8) w′′ + λa(x)w = 0,

which has at least two zeros in (xi−1, xi).
(ii) Let λ < λk. Then, for each i ∈ {1, 2, . . . , k}, there is a solution wi of

(4.8) such that wi(x) > 0 on [xi−1, xi].

Proof. (i) Let i ∈ {1, 2, . . . , k} be fixed. Consider the initial condition

(4.9) w(xi−1 + ε) = 0 and w′(xi−1 + ε) = 1

with ε ≥ 0. Since λa(x) > λka(x) on [xi−1, xi] and ϕk(xi−1) = ϕk(xi) = 0, by
the Sturm–Picone theorem, we see that the solution of (4.8) and (4.9) with
ε = 0 has a zero z0 in (xi−1, xi). By the continuous dependence of solutions on
initial conditions, the solution of (4.8) and (4.9) with small ε > 0 has a zero
zε near z0. Hence, if ε > 0 is sufficiently small, the solution of (4.8) and (4.9)
has two zeros xi−1 + ε and zε in (xi−1, xi).

(ii) Fix i ∈ {1, 2, . . . , k}, and consider the initial condition

(4.10) w(xi−1) = ε and w′(xi−1) = 1

with ε ≥ 0. Since λa(x) < λka(x) on [xi−1, xi] and ϕk has no zero in (xi−1, xi),
the Sturm–Picone theorem shows that the solution of (4.8) and (4.10) with
ε = 0 satisfies w(x) > 0 on (xi−1, xi]. By the continuous dependence of
solutions on initial conditions, if ε > 0 is sufficiently small, then the solution
of (4.8) and (4.10) satisfies w(x) > 0 on [xi−1, xi]. �
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Lemma 4.3. Let M > 0. If µ > 0 satisfies

(4.11) µ2 >
2a∗F (M)

A∗
,

then the solution u(x;µ) has the following properties (i)–(iii):
(i) If u′(x0;µ) = 0 for some x0 ∈ (0, 1], then |u(x0;µ)| > M ;
(ii) Assume that u(x;µ) has no zero in (x1, x2) and satisfies |u(x;µ)| ≤ M

on [x1, x2] for some x1, x2 ∈ [0, 1]. Then we have x2 − x1 ≤ δ, where

(4.12) δ =
M√

µ2A∗ − 2a∗F (M)
;

(iii) Define δ > 0 by (4.12). Assume that u(x;µ) has no zero in (α, β)
for some α, β ∈ [0, 1] satisfying β − α > 2δ. Then |u(x;µ)| ≥ M for x ∈
[α + δ, β − δ].

Proof. (i) From u′(x0;µ) = 0 we see that

E[u(·; µ)](x0) = a(x0)F (u(x0;µ)) ≤ a∗F (u(x0;µ)).

In view of (4.1) and (4.11) we have

E[u(·; µ)](x0) ≥ µ2

2
A∗ > a∗F (M).

Then it follows that a∗F (M) < a∗F (u(x0;µ)), which implies thatM < |u(x0;µ)|.
(ii) We may assume that u(x) ≡ u(x;µ) > 0 on (x1, x2). Then we note

that

(4.13) 0 ≤ u(x) ≤M for x ∈ [x1, x2].

Hence we see that

E[u(· ;µ)](x) ≤ |u′(x)|2
2

+ a∗F (M) for x1 ≤ x ≤ x2.

Since E[u(· ;µ)](x) ≥ (µ2/2)A∗ by (4.1), we have

µ2

2
A∗ ≤ |u′(x)|2

2
+ a∗F (M) for x1 ≤ x ≤ x2.
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This implies that

|u′(x)| ≥
√
µ2A∗ − 2a∗F (M) =

M

δ
for x1 ≤ x ≤ x2.

Therefore we obtain either u′(x) ≥ M/δ on [x1, x2] or −u′(x) ≥M/δ on [x1, x2].
Assume to the contrary that x2 − x1 > δ. If u′(x) ≥ M/δ on [x1, x2], then

we have

u(x2) = u(x1) +
∫ x2

x1

u′(x)dx ≥ M

δ
(x2 − x1) > M.

This contradicts (4.13). On the other hand, if −u′(x) ≥M/δ on [x1, x2], then

u(x1) = u(x2) −
∫ x2

x1

u′(x)dx ≥ M

δ
(x2 − x1) > M,

which contradicts (4.13). Hence x2 − x1 ≤ δ.
(iii) It is sufficient to prove that |u(x;µ)| > M for x ∈ (α + δ, β − δ). We

may assume that u(x) ≡ u(x;µ) > 0 on (α, β). In view of (1.1) we see that
u′′(x) < 0 on (α, β), so that u′ is strictly decreasing on [α, β]. Assume to the
contrary that there is a number γ ∈ (α + δ, β − δ) such that u(γ) ≤ M .

First suppose that u′(γ) ≥ 0. Since u′ is nonincreasing on [α, β], we find
that u′(x) > u′(γ) ≥ 0 for x ∈ [α, γ), so that u is strictly increasing on [α, γ].
Then we have 0 ≤ u(x) ≤ u(γ) ≤ M on [α, γ]. By applying (ii) of Lemma 4.3
with x1 = α and x2 = γ, we have γ−α ≤ δ. This contradicts γ ∈ (α+δ, β−δ).

Next we assume that u′(γ) < 0. Since u′ is strictly decreasing on [α, β],
we have u′(x) ≤ u′(γ) < 0 for x ∈ [γ, β]. Then 0 ≤ u(x) ≤ u(γ) ≤ M for
x ∈ [γ, β]. From (ii) of Lemma 4.3 we obtain β−γ ≤ δ. This is a contradiction.
Therefore, |u(x;µ)| ≥M for x ∈ [α + δ, β − δ]. This completes the proof. �

Proof of Lemma 3.3. Let λ > 0 satisfy λk < λ < f∞. Take M > 0 so large
that

(4.14)
f(s)

s
> λ > λk for |s| ≥ M.

Let xi (i = 0, 1, 2, . . . , k) be zeros of an eigenfunction ϕk satisfying (4.6). By
(i) of Lemma 4.2, for each i ∈ {1, 2, . . . , k}, there exists a solution wi of (4.8)
having at least two zeros in (xi−1, xi).

Now fix i ∈ {1, 2, . . . , k}. Let t1 and t2 be zeros of wi such that xi−1 < t1 <
t2 < xi. We can take a number µi > 0 so large that, for all µ ≥ µi, inequality
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(4.11) is satisfied, and that xi −xi−1 > 2δ and [t1, t2] ⊂ [xi−1 + δ, xi − δ], where
δ > 0 is defined by (4.12). Let µ ≥ µi. We will show that u(x;µ) has at least
one zero in (xi−1, xi).

Assume to the contrary that u(x;µ) has no zero in (xi−1, xi). From (iii) of
Lemma 4.3 we obtain |u(x;µ)| ≥ M for x ∈ [xi−1 + δ, xi − δ]. By (4.14) we
have

λa(x) < a(x)
f(u(x;µ))

u(x;µ)
≡ b(x), x ∈ [t1, t2] ⊂ [xi−1 + δ, xi − δ].

Since u(x;µ) satisfies u′′ + b(x)u = 0, the Sturm–Picone theorem shows that
u(x;µ) has at least one zero in (t1, t2). This contradicts the assumption that
u(x;µ) has no zeros in (xi−1, xi). Hence, u(x;µ) has at least one zero in
(xi−1, xi) if µ ≥ µi.

Put µ∗ = max{µi : i = 1, 2, . . . , k}. If µ ≥ µ∗ then, u(x;µ) has at least
one zero in (xi−1, xi) for each i ∈ {1, 2, . . . , k}, which means that u(x;µ) has
at least k zeros in (0, 1). This completes the proof. �

Proof of Lemma 3.4. Choose λ > 0 such that f∞ < λ < λk. Take M > 0
so large that

(4.15)
f(s)

s
< λ < λk for |s| ≥ M.

Let xi (i = 0, 1, 2, . . . , k) be zeros of an eigenfunction ϕk satisfying (4.6). By
(ii) of Lemma 4.2, for every i ∈ {1, 2, . . . , k}, there exists a solution wi of (4.8)
such that wi(x) > 0 on [xi−1, xi]. For each i ∈ {1, 2, . . . , k}, we define Wi by

Wi = max

{ |w′
i(x)|

wi(x)
: x ∈ [xi−1, xi]

}
.

There exists a number µ∗ > 1 so large that if µ ≥ µ∗, then (4.11) holds and

(4.16)

√
µ2A∗ − 2a∗F (M)

M
≥ max{Wi : i = 1, 2, . . . k}.

Let µ ≥ µ∗. We will show that u(x) ≡ u(x;µ) has at most one zero in [xi−1, xi)
for each i ∈ {1, 2, . . . , k}. Suppose that u(x) has at least two zeros in [xi−1, xi)
for some i ∈ {1, 2, . . . , k}. Then there exist numbers α, β ∈ [xi−1, xi) with
α < β such that u(α) = u(β) = 0. We may assume that u(x) > 0 on (α, β).
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Set u = maxx∈[α,β] u(x) > 0 and take γ ∈ (α, β) such that u(γ) = u. By (4.11)
and u′(γ) = 0, (i) of Lemma 4.3 implies u > M . Then there are numbers t1
and t2 such that α < t1 < t2 < β, u(t1) = u(t2) = M and u(x) > M for
x ∈ (t1, t2). We note that u′(t1) > 0 and u′(t2) < 0. By (4.1) we have

µ2

2
A∗ ≤ E[u(·; µ)](tj) ≤ |u′(tj)|2

2
+ a∗F (M) for j = 1, 2,

which implies that |u′(tj)|2 ≥ µ2A∗ − 2a∗F (M) for j = 1, 2. From u(t1) =
u(t2) = M and (4.16), we obtain

(4.17)
|u′(tj)|
u(tj)

≥
√
µ2A∗ − 2a∗F (M)

M
≥Wi for j = 1, 2.

In view of u′(t1) > 0 we have u′(t1)/u(t1) ≥ Wi ≥ w′
i(t1)/wi(t1), that is,

(4.18) u′(t1)wi(t1) − u(t1)w
′
i(t1) ≥ 0.

Using (4.15) and the fact that u(x) ≥M for t1 ≤ x ≤ t2, we see that

∫ t2

t1
(u′′wi − uw′′

i )dx =
∫ t2

t1
a(x)

[
λ− f(u)

u

]
uwi dx > 0,

so that
(u′wi − uw′

i)
∣∣∣t2
t1
> 0.

Therefore (4.18) implies u′(t2)wi(t2) − u(t2)w
′
i(t2) > 0. Then we obtain

u′(t2)
u(t2)

>
w′

i(t2)

wi(t2)
,

and hence |u′(t2)|
u(t2)

=
−u′(t2)
u(t2)

<
−w′

i(t2)

wi(t2)
≤ |w′

i(t2)|
wi(t2)

≤ Wi.

This contradicts (4.17). Consequently u(x;µ) has at most one zero in [xi−1, xi)
for each i ∈ {1, 2, . . . , k}. Note that u(x;µ) has no zero in (x0, x1), since x0 = 0
is a zero of u(x;µ) in [x0, x1). Hence u(x;µ) has at most k − 1 zeros in (0, 1).
This completes the proof. �
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