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Transverse instability of surface solitary waves

By T. KATAOKA AND M. TSUTAHARA
Graduate School of Science and Technology, Kobe University, Rokkodai, Nada,

Kobe 657-8501, Japan

(Received 8 December 2003 and in revised form 12 April 2004)

The linear stability of finite-amplitude surface solitary waves with respect to long-
wavelength transverse perturbations is examined by asymptotic analysis for small
wavenumbers of perturbations. The sufficient condition for the transverse instability
is explicitly derived, and it is found that there exist transversely unstable surface
solitary waves whose amplitude-to-depth ratio is greater than 0.713. This critical ratio
is well below that for the one-dimensional instability (= 0.781) obtained by Tanaka
(Phys. Fluids, 1986, vol. 29, p. 650).

1. Introduction
We here examine the transverse stability of surface solitary waves analytically.

Transverse stability means a stability to perturbations that depend not only on the
main wave’s travelling direction, but also on its transverse direction. In contrast,
one-dimensional stability is a stability to perturbations that depend only on the main
wave’s travelling direction. In the present study, we reveal the existence of surface
solitary waves that are one-dimensionally stable, but are transversely unstable.

The one-dimensional stability of small-amplitude solitary waves was first examined
by Jeffrey & Kakutani (1970) and later by Benjamin (1972) in the framework of
the celebrated Korteweg–de Vries (KdV) equation. It was then found that these
waves (small-amplitude solitary waves) are one-dimensionally stable. The study of
transverse stability was initiated by Kadomtsev & Petviashvili (1970). They derived
the Kadomtsev–Petviashvili (KP) equation, which is a two-dimensional extension of
the KdV equation, and, on the basis of this equation, made a linear stability analysis of
solitary waves with respect to long-wavelength transverse perturbations. The complete
linear stability analysis with no restriction on the wavelength of perturbations was
later conducted independently by Zakharov (1975), Kuznetsov, Spector & Fal’kovich
(1984), Alexander, Pego & Sachs (1997), and Allen & Rowlands (1997). Then it was
found that, in a medium with negative dispersion where the effects of surface tension
are negligible, small-amplitude solitary waves are stable to transverse perturbations
also.

The stability of finite-amplitude solitary waves was first examined by Tanaka (1986),
who investigated the one-dimensional stability of surface solitary waves numerically.
He found that an exchange of stability occurs at the first stationary point of the
total energy. The critical amplitude-to-depth ratio is 0.781. Tanaka et al. (1987) also
conducted numerical simulation of the time development of perturbed solitary waves,
and the growth rate of sufficiently small perturbations agreed well with that of the
linear stability analysis. The more precise calculation of the eigenvalue problem for
linear perturbations was made by Longuet-Higgins & Tanaka (1997). They found
that, if the amplitude-to-depth ratio is larger than 0.781, or the first stationary point
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of the total energy, the number of growing perturbation modes increases every time
the solitary wave solutions pass through the stationary points of their total energy. In
this way, one-dimensional stability of the surface solitary waves was fully investigated.

In contrast, it is only recently that the study on the transverse stability of finite-
amplitude solitary waves was initiated. Bridges (2001) examined the linear stability of
surface solitary waves to long-wavelength transverse perturbations. According to his
analysis, the surface solitary waves are at the neutral stability to transverse perturb-
ations of small wavenumbers. However, his analysis is based on the leading-order
effects of the small wavenumbers only. The higher-order effects will determine the
stability.

In the present study, these higher-order effects are investigated by the usual
asymptotic analysis. It is revealed that there exist transversely unstable surface solitary
waves. The critical amplitude-to-depth ratio obtained for the transverse stability is
0.713, which is well below that for the one-dimensional stability (= 0.781).

In § 2, we formulate the set of basic equations for linear transverse perturbations,
which is reduced to the eigenvalue problem. In § 3, this eigenvalue problem is solved
under the condition that the transverse wavenumbers of perturbations are small. Then
the sufficient condition for transverse instability is derived, and this gives the critical
amplitude-to-depth ratio of 0.713. Finally in § 4, some concluding remarks are given.

2. Basic equations
Consider the irrotational flow of an incompressible ideal fluid of undisturbed depth

D with free surface under uniform acceleration due to gravity g. The effects of surface
tension are neglected. In what follows, all variables are non-dimensionalized using
g and D. Introducing the Cartesian coordinate x − y − z with z pointed vertically
upward and its origin placed on the undisturbed free surface, we obtain the following
set of non-dimensional governing equations for the flow:

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 [−1 < z < η(x, y, t)], (2.1)

with the boundary conditions:

∂φ

∂z
= 0 at z = −1, (2.2)

∂η

∂t
+

∂φ

∂x

∂η

∂x
+

∂φ

∂y

∂η

∂y
=

∂φ

∂z
at z = η(x, y, t), (2.3)

∂φ

∂t
+

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2
]

+ η = f (t) at z = η(x, y, t), (2.4)

where φ is the velocity potential, η is the vertical displacement of the free surface, t

is the time, and f (t) is the value of terms on the left-hand side of (2.4) evaluated as
x → ∞.

Let us seek a solution of (2.1)–(2.4) in the following form:

φ = −vx + Φs(x, z), (2.5a)

η = ηs(x), (2.5b)

where ∂Φs/∂x, ∂Φs/∂z, and ηs approach zero as x → ±∞, and v is a positive real
parameter. This solution represents a steady propagation of localized wave against a
uniform stream of constant speed v in the negative x-direction. We call this solution
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a solitary wave solution. Existence of such a solitary wave solution has already been
confirmed numerically (Tanaka 1986; Longuet-Higgins & Tanaka 1997). The solution
is known to exist if 1 <v � 1.294, and has the property that ∂Φs/∂x, ∂Φs/∂z and ηs

decay exponentially as x → ±∞.
Now we make a linear stability analysis of the solitary wave solution (2.5a, b) on

the basis of (2.1)–(2.4). The following form is assumed for the solution of (2.1)–(2.4):

φ = −vx + Φs + φ̂(x, z) exp(λt + i εy), (2.6a)

η = ηs + η̂(x) exp(λt + i εy), (2.6b)

where ε is a given real constant and λ is a real or a complex constant which is
determined by solving the set of equations for φ̂ and η̂ derived from (2.1)–(2.4). Note
that the solitary wave solution is unstable if there exists a localized solution whose λ
has a positive real part. In prior studies (Tanaka 1986; Longuet-Higgins & Tanaka
1997), the stability with respect to perturbations that have no dependence on y (the
case of ε = 0), or the one-dimensional stability was examined numerically. According
to their studies, one-dimensionally stable surface solitary waves satisfy

dE

dv
> 0, (2.7)

where E is the total energy of the solitary wave defined by

E =
1

2

∫ ∞

−∞
dx

∫ ηs

−1

[(
∂Φs

∂x

)2

+

(
∂Φs

∂z

)2
]

dz +

∫ ∞

−∞

1
2
η2

s dx. (2.8)

Here we investigate the transverse stability, or the stability with respect to
perturbations that depend not only on the x-direction, but also on the y-direction,
of one-dimensionally stable solitary waves. Substituting (2.6a, b) into (2.1)–(2.4),
linearizing with respect to (φ̂, η̂), and imposing decaying condition as x → ±∞, we
obtain the following set of equations for (φ̂, η̂):

�φ̂ = ε2φ̂, [−1 < z < ηs(x)], (2.9)

with boundary conditions:

∂φ̂

∂z
= 0 at z = −1, (2.10)

L1[φ̂, η̂] = −λη̂ at z = ηs(x), (2.11)

L2[φ̂, η̂] = −λφ̂ at z = ηs(x), (2.12)

φ̂(x, z) → 0, η̂(x) → 0 as x → ±∞, (2.13)

where �, L1, and L2 are the linear operators defined by

� =
∂2

∂x2
+

∂2

∂z2
, (2.14)

L1[φ̂, η̂] =

(
− ∂

∂z
+

dηs

dx

∂

∂x

)
φ̂ +

[
∂2Φs

∂x2
+

∂2Φs

∂x∂z

dηs

dx
+

(
−v +

∂Φs

∂x

)
d

dx

]
η̂, (2.15)

L2[φ̂, η̂] =

[(
−v +

∂Φs

∂x

)
∂

∂x
+

∂Φs

∂z

∂

∂z

]
φ̂ +

[(
−v +

∂Φs

∂x

)
∂2Φs

∂x∂z
+

∂Φs

∂z

∂2Φs

∂z2
+ 1

]
η̂.

(2.16)
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Equations (2.9)–(2.13) constitute the eigenvalue problem for (φ̂, η̂) whose eigenvalue
is λ. In the next section we solve this eigenvalue problem (2.9)–(2.13) for small
ε in order to study the stability of solitary waves to long-wavelength transverse
perturbations.

3. Stability to long-wavelength transverse perturbations
We seek an asymptotic solution of (2.9)–(2.13) for small ε under the condition that

the solitary wave solution (Φs, ηs) satisfies (2.7). At leading order in ε, the term on
the right-hand side of (2.9) can be ignored, and the eigenvalue problem (2.9)–(2.13)
has the following leading-order steady solution:

φ̂ = φ̂C0 ≡ ∂Φs

∂x
, η̂ = η̂C0 ≡ dηs

dx
, λ = 0. (3.1)

Equation (3.1) will be subject to a slow time development if the term on the right-hand
side of (2.9), or the term of O(ε2) is recovered. In what follows, we investigate the
asymptotic behaviour for small ε under the assumption that its slow time development
is described by the two different time scales of O(ε−1) and O(ε−2). So we express λ as

λ = ελ1 + ε2λ2. (3.2)

The validity of this estimate is confirmed if the following analysis is consistent.

3.1. Core solution

First, we look for the solution of (2.9)–(2.12) with an appreciable variation in x and z

of the order of unity (∂φ̂/∂x = O(φ̂), ∂φ̂/∂z = O(φ̂) and dη̂/dx = O(η̂)) in the power
series of ε:

φ̂C = φ̂C0 + εφ̂C1 + ε2φ̂C2 + · · · , (3.3a)

η̂C = η̂C0 + εη̂C1 + ε2η̂C2 + · · · , (3.3b)

where the subscript C is attached to indicate the type of solution (core solution).
Substituting the series (3.2) and (3.3a, b) into (2.9)–(2.12) and arranging the same-

order terms in ε, we obtain a series of equations for (φ̂Cn, η̂Cn) (n = 1, 2, · · ·):

�φ̂Cn = φ̂Cn−2 [−1 < z < ηs(x)], (3.4)

∂φ̂Cn

∂z
= 0 at z = −1, (3.5)

L1[φ̂Cn, η̂Cn] = Gn ≡ −λ1η̂Cn−1 − λ2η̂Cn−2 at z = ηs(x), (3.6)

L2[φ̂Cn, η̂Cn] = Hn ≡ −λ1φ̂Cn−1 − λ2φ̂Cn−2 at z = ηs(x), (3.7)

where �, L1, and L2 are given by (2.14)–(2.16) and φ̂C−1 = η̂C−1 = 0. Now consider
the linear inhomogeneous equations (3.4)–(3.7) whose homogeneous parts have a
non-trivial solution (φ̂C0, η̂C0). The adjoint of the above homogeneous parts, which
are given only by reversing the sign of terms including η̂Cn, have a solution
(φ̂C0, −η̂C0) = (∂Φs/∂x, −dηs/dx) that decays exponentially as x → ±∞. Therefore,
for the inhomogeneous equations (3.4)–(3.7) to have a solution that does not diverge
exponentially as x → ±∞, their inhomogeneous terms on the right-hand sides of
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(3.4)–(3.7) must satisfy the following relation (solvability condition):∫ ∞

−∞
dx

∫ ηs

−1

∂Φs

∂x
φ̂Cn−2 dz +

∫ ∞

−∞

[
∂Φs

∂x
Gn − dηs

dx
Hn

]
z=ηs

dx = 0, (3.8)

where the value in the square bracket with subscript z = ηs (or [ ]z=ηs
) is evaluated at

z = ηs .
At n = 1, we easily find that the solvability condition (3.8) is identically satisfied,

and the solution of (3.4)–(3.7) at n = 1 is obtained as follows:

φ̂C1 = r1

∂Φs

∂x
− λ1

∂Φs

∂v
, η̂C1 = r1

dηs

dx
− λ1

∂ηs

∂v
, (3.9)

where r1 is an arbitrary constant, and ∂Φs/∂v and ∂ηs/∂v represent the derivatives
of Φs and ηs with respect to v for fixed x and z. We can check that the solution (3.9)
satisfies (3.4)–(3.7) at n = 1 by taking the derivative with respect to v of equations
for the solitary wave solution (Φs, ηs). The solution (3.9), however, does not satisfy
the boundary condition (2.13), since ∂Φs/∂v in general does not become zero for
both x → ±∞. This situation continues to the higher orders. The reason for such
inappropriateness is that we are not taking into account the balance between the
terms including λ and those including −v∂/∂x of (2.11) and (2.12). To achieve the
balance of these terms, we need to introduce a shrunk coordinate with respect to
x and seek a solution whose variation occurs slowly in x. This solution will be
called a far-field solution. By matching the core solution (3.3a, b) with the far-field
solution, the solution of (2.9)–(2.12) that satisfies the boundary condition (2.13) can be
constructed. In this subsection we concentrate on obtaining the core solution putting
aside the boundary condition (2.13), while § 3.2 considers the far-field solution.

At n = 2, the solvability condition (3.8) is

λ2
1

v

dE

dv
= −

∫ ∞

−∞
dx

∫ ηs

−1

(
∂Φs

∂x

)2

dz, (3.10)

where E is defined by (2.8). Recalling that we have assumed that the solitary wave
solution satisfies (2.7), we obtain

λ1 = ± i

√
v

dE/dv

∫ ∞

−∞
dx

∫ ηs

−1

(
∂Φs

∂x

)2

dz. (3.11)

This is the first-order criterion derived by Bridges (2001). However, the real part of
λ1 is zero so that the stability of the solitary wave solution is not determined at this
order. To know the stability, we must proceed to the next order.

At n = 3, the solvability condition (3.8) becomes

2λ1λ2

v

dE

dv
= [φ̂C1ûC2]x→−∞ − [φ̂C1ûC2]x→∞, (3.12)

where

ûC2 ≡
∫ ηs

−1

∂φ̂C2

∂x
dz +

(
−v +

∂Φs

∂x

)
η̂C2 (3.13a)

= [ûC2]x→∞ − (r1λ1 + λ2)ηs +

∫ x

∞

(∫ ηs

−1

∂Φs

∂x
dz + λ2

1

∂ηs

∂v

)
dx ′ (3.13b)

and the values in the square bracket with subscript x → ± ∞ (or [ ]x→±∞) are
evaluated as x → ±∞. The key to deriving (3.12) is to note that −λ1∂Φs/∂x and
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−λ1 dηs/dx included in the solvability condition (3.8) at n = 3 are, respectively, equal
to the inhomogeneous terms of (3.6) and (3.7) at n = 1, and replace them with the
corresponding left-hand-side terms, or L1[φ̂C1, η̂C1] and L2[φ̂C1, η̂C1]. Then, using the
integration by parts and integration of (3.4) at n = 2 multiplied by φ̂C1 over the whole
fluid domain, we obtain (3.12). We can derive (3.13b) by integrating (3.4) at n = 2
with respect to x, z, and using (3.5) and (3.6) at n = 2. [φ̂C1]x→−∞ and [ûC2]x→−∞
appearing on the right-hand side of (3.12) are related to the corresponding values as
x → ∞ by

[φ̂C1]x→−∞ = [φ̂C1]x→∞ + λ1

d

dv

(
I − 2T

v

)
, (3.14a)

[ûC2]x→−∞ = [ûC2]x→∞ − I − λ2
1

d

dv

(
I

v

)
, (3.14b)

where I and T are, respectively, the impulse and the kinetic energy of the solitary
wave:

I =

∫ ∞

−∞
dx

∫ ηs

−1

∂Φs

∂x
dz = v

∫ ∞

−∞
ηs dx, (3.15)

T =
1

2

∫ ∞

−∞
dx

∫ ηs

−1

[(
∂Φs

∂x

)2

+

(
∂Φs

∂z

)2
]

dz. (3.16)

The condition (3.12) will generally give the non-zero real part of λ2. Thus, the core
solution is obtained up to the orders that can determine the stability of the solitary
wave. The specific values of [φ̂C1]x→∞ and [ûC2]x→∞ necessary for determining the
value of λ2, are given after matching the core solution with the far-field solution,
which will be shown in § 3.3. In § 3.2, the far-field solution is investigated.

3.2. Far-field solution

We seek a solution considering the balance between the terms with λ and those with
−v∂/∂x of (2.11) and (2.12). To this end, in accordance with the introduction of ελ1

and ε2λ2 in (3.2), we here introduce two shrunk coordinates with respect to x:

X1 = εx, X2 = ε2x. (3.17)

We then look for the solution of (2.9)–(2.12) whose appreciable variation occurs in X1,
X2, and z of the order of unity, (∂ĥ/∂X1 = O(ĥ), ∂ĥ/∂X2 = O(ĥ) and ∂φ̂/∂z = O(φ̂),
where ĥ represents φ̂ and η̂), in the following power series of ε:

φ̂F = εφ̂F1(X1, X2, z) + ε2φ̂F2(X1, X2, z) + · · · , (3.18a)

η̂F = ε2η̂F2(X1, X2) + ε3η̂F3(X1, X2) + · · · , (3.18b)

where the subscript F is attached to show the type of solution (far-field solution).
The series of (3.18a, b) start from O(ε) and O(ε2) for φ̂F and η̂F , respectively, in
accordance with the core solution not being able to satisfy the boundary condition
as x → ±∞ from these orders (see (3.14a, b)).

Substituting (3.17) and (3.18a, b) into (2.9)–(2.12), and arranging the same-order
terms in ε, we obtain a series of equations for φ̂Fn (n = 1, 2, . . .):

∂2φ̂Fn

∂z2
= In ≡ φ̂Fn−2 − ∂2φ̂Fn−2

∂X2
1

− 2
∂2φ̂Fn−3

∂X1∂X2

− ∂2φ̂Fn−4

∂X2
2

, (3.19)
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with the boundary conditions:

∂φ̂Fn

∂z
= 0 at z = −1, (3.20)

∂φ̂Fn

∂z
= Jn ≡ λ1η̂Fn−1 − v

∂η̂Fn−1

∂X1

+ λ2η̂Fn−2 − v
∂η̂Fn−2

∂X2

at z = 0, (3.21)

where φ̂Fm (m � 0) and η̂Fm (m � 1) appearing on the right-hand sides of (3.19) and
(3.21) are zero. η̂Fn (n = 2, 3, . . .) can be obtained by the following equation in terms
of φ̂Fn−1 and φ̂Fn−2:

η̂Fn =

[
−λ1φ̂Fn−1 + v

∂φ̂Fn−1

∂X1

− λ2φ̂Fn−2 + v
∂φ̂Fn−2

∂X2

]
z=0

. (3.22)

Equations (3.19)–(3.21) (with the subsidiary equation (3.22)) constitute the system of
equations for φ̂Fn (n = 1, 2, . . .). At n = 1 and 2, they are homogeneous and have the
following solutions:

φ̂F1 = φ̂F1(X1, X2), φ̂F2 = φ̂F2(X1, X2). (3.23)

At n = 3, 4, . . . , they are inhomogeneous. For these inhomogeneous equations to have
a solution, their inhomogeneous terms In and Jn must satisfy the following relation
(solvability condition): ∫ 0

−1

In dz − Jn = 0. (3.24)

Specifically, at n = 3, the solvability condition (3.24) is

(v2 − 1)
∂2φ̂F1

∂X2
1

− 2vλ1

∂φ̂F1

∂X1

+ (λ2
1 + 1)φ̂F1 = 0. (3.25)

This equation determines the dependence of φ̂F1 on X1 as

φ̂F1 = q1 exp(kX1) + q̄1 exp(k̄X1), (3.26)

where q1 and q̄1 are undetermined functions of X2, and

k =
v + a

v2 − 1
λ1, k̄ =

v − a

v2 − 1
λ1, (3.27)

are both pure imaginary constants with

a =

√
1 +

v2 − 1

|λ1|2 (1 < v � 1.294). (3.28)

At n = 4, the solvability condition (3.24) is

(v2 − 1)
∂2φ̂F2

∂X2
1

− 2vλ1

∂φ̂F2

∂X1

+ (λ2
1 + 1)φ̂F2

= −2

{[
(v2 − 1)

∂

∂X1

− vλ1

]
∂

∂X2

− λ2

(
v

∂

∂X1

− λ1

)}
φ̂F1. (3.29)

For this inhomogeneous equation (3.29) to have a solution that does not diverge with
respect to X1, its inhomogeneous term on the right-hand side must be zero. From
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this condition, the dependence of φ̂F1 on X2, or the functional form of q1 and q̄1 is
determined as

q1 = c1± exp

[
va + 1

(v2 − 1)a
λ2X2

]
, q̄1 = c̄1± exp

[
va − 1

(v2 − 1)a
λ2X2

]
, (3.30)

where c1+ and c̄1+ are undetermined constants for X1, X2 > 0, and c1− and c̄1− are
those for X1, X2 < 0. Thus, we have obtained the leading-order far-field solution
given by (3.26) with (3.30) and (3.22) at n = 2.

3.3. Matching of the core solution and the far-field solution

Here, we carry out the matching of the core solution (φ̂C, η̂C) and the far-field solution
(φ̂F , η̂F ). To this end, the far-field solution (φ̂Fn, η̂Fn) in the core region is reshuffled
by expanding in the power series of X1 (or εx) and X2 (or ε2x):

ĥFn = (ĥFn)0 + εx

(
∂ĥFn

∂X1

)
0

+ ε2

[
x2

2

(
∂2ĥFn

∂X2
1

)
0

+ x

(
∂ĥFn

∂X2

)
0

]
+ · · · , (3.31)

where ĥ represents (φ̂, η̂), and the quantities in the parentheses with subscript 0, or
(· · ·)0, are evaluated at X1 = X2 = 0. Then, we collect the same-order terms in ε and
obtain the reordered form [say, (φ̂∗

Fn, η̂
∗
Fn)] of (φ̂Fn, η̂Fn). After this reordering, we

compare the forms of the two solutions (φ̂Cn, η̂Cn) and (φ̂∗
Fn, η̂

∗
Fn) at each n and carry

out their matching from n=1. The matching is accomplished if the conditions:

φ̂Cn ∼ φ̂∗
Fn, η̂Cn ∼ η̂∗

Fn as x → ±∞, (3.32)

are satisfied with differences being smaller than any inverse power of x.
At order ε, since φ̂∗

F1 = (φ̂F1)0, the matching conditions (3.32) are, from (3.26) with
(3.30),

[φ̂C1]x→±∞ = c1± + c̄1±. (3.33)

At order ε2, since φ̂∗
F2 = (φ̂F2)0 + x(∂φ̂F1/∂X1)0, the matching conditions for φ̂

are composed of two different kinds of terms, i.e. those independent of x and those
proportional to x. The latter relations contribute to the determination of the unknown
constants at this order. It is convenient to represent these relations in terms of ûC2

defined by (3.13a). That is,

ûC2 ∼
∫ 0

−1

∂φ̂∗
F2

∂x
dz − vη̂∗

F2 =

(
∂φ̂F1

∂X1

)
0

− v(η̂F2)0. (3.34)

Substituting (3.22) at n = 2 and (3.26) with (3.30) into (3.34), we obtain

[ûC2]x→±∞ = aλ1(c̄1± − c1±), (3.35)

where a is given by (3.28). The matching conditions for η̂ are automatically satisfied
if (3.33) and (3.35) are satisfied.

Moreover, from the boundary condition (2.13), we obtain, using the fact that the
sign of the exponents in (3.30) is the same as that of λ2,

c1+ = c̄1+ = 0 when Re [λ2] > 0, (3.36a)

c1− = c̄1− = 0 when Re [λ2] < 0. (3.36b)

The six undetermined constants [φ̂C1]x→∞, [ûC2]x→∞, c1+, c̄1+, c1− and c̄1− (note that
[φ̂C1]x→−∞ and [ûC2]x→−∞ are given by (3.14a, b)) are determined by the six equations
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(3.33), (3.35) and (3.36a) or (3.36b). They are easy to solve, and we obtain

[φ̂C1]x→∞ = 0, (3.37a)

[ûC2]x→∞ = 0, (3.37b)

c1+ = c̄1+ = 0, (3.37c)

c1− = 1
2
λ1

d

dv

(
I − 2T

v

)
+

1

2aλ1

[
I + λ1

2 d

dv

(
I

v

)]
, (3.37d)

c̄1− = 1
2
λ1

d

dv

(
I − 2T

v

)
− 1

2aλ1

[
I + λ1

2 d

dv

(
I

v

)]
, (3.37e)

when Re[λ2] > 0, and

[φ̂C1]x→∞ = −λ1

d

dv

(
I − 2T

v

)
, (3.38a)

[ûC2]x→∞ = I + λ2
1

d

dv

(
I

v

)
, (3.38b)

c1+ = − 1
2
λ1

d

dv

(
I − 2T

v

)
− 1

2aλ1

[
I + λ1

2 d

dv

(
I

v

)]
, (3.38c)

c̄1+ = − 1
2
λ1

d

dv

(
I − 2T

v

)
+

1

2aλ1

[
I + λ1

2 d

dv

(
I

v

)]
, (3.38d)

c1− = c̄1− = 0, (3.38e)

when Re[λ2] < 0. Substituting (3.14) with (3.37a, b) or (3.38a, b) into the solvability
condition (3.12), we obtain the following solution for λ2:

λ2 =

{
±Q if Q < 0,

no solution if Q > 0,
(3.39)

where

Q = 1
2
v

[
I + λ2

1

d

dv

(
I

v

)]
d

dE

(
I − 2T

v

)
. (3.40)

The corresponding eigenfunction for the unstable case λ2 = −Q when Q < 0 is given
by (3.3) with (3.1) and (3.9) for the core solution and (3.18) with (3.26), (3.30) and
(3.37c–e) for the far-field solution up to the first order in ε. As for the second-order
solution, we used ûC2 and η̂F2 in order to accomplish matching, and they are given
by (3.13b) with (3.37b) and (3.22) at n= 2, respectively.

Thus, we have a solution of the eigenvalue problem (2.9)–(2.13) whose λ has the
positive real part (or λ2 = −Q > 0) when Q < 0. Now we can say that a sufficient
condition for transverse instability is

Q < 0. (3.41)

Let us apply the criterion (3.41) to the solitary wave solution, which is calculated
by the numerical method described in Tanaka (1986). The function I + λ2

1 d(I/v)/dv

included in Q is always positive. That is, when d(I/v)/dv < 0, it is clearly positive
since I > 0 from (3.15) and λ1

2 < 0 from (3.11), and when d(I/v)/dv > 0, the smaller
function I − 2vT d(I/v)/dE is numerically found to be always positive if dE/dv > 0.
In figure 1, therefore, I − 2T/v is plotted as a function of E. If this function
takes negative gradient for the one-dimensionally stable range of dE/dv > 0, the
corresponding wave is transversely unstable. The circle in the figure represents the
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Figure 1. I − 2T/v as a function of E. The wave speed v increases along the curve up to its
endpoint shown in the figure. The cross represents the point of d(I − 2T/v)/dv = 0, or Q = 0,
and the open circle represents that of dE/dv = 0. The corresponding amplitude-to-depth ratios
zmax are also shown in the figure.

point of dE/dv = 0, or the amplitude-to-depth ratio (hereinafter denoted by zmax ) of
0.781, and the solitary wave is one-dimensionally stable, or dE/dv > 0 for v smaller
than that of the circle (or the upper branch from the circle in figure 1). We see that the
function I −2T/v takes negative gradient from the cross to the circle. Therefore, there
exist solitary waves that are one-dimensionally stable, but are transversely unstable in
this range. The cross in figure 1 represents the critical point for the transverse stability,
and its amplitude-to-depth ratio zmax is 0.713 (v = 1.282), which is well below that
for the one-dimensional stability zmax = 0.781 (v = 1.294).

Thus, an existence of transversely unstable surface solitary waves for 0.713 <

zmax < 0.781 (1.282 < v < 1.294) has been revealed.

4. Concluding remarks
We have examined the linear stability of finite-amplitude surface solitary waves with

respect to long-wavelength transverse perturbations. The criterion for the transverse
instability (3.41) is explicitly derived, and it is found that there exist transversely
unstable surface solitary waves whose amplitude-to-depth ratio is greater than 0.713,
which is well below that for the one-dimensional critical instability 0.781.

The long-term evolution of these unstable waves under the influence of long-
wavelength transverse perturbations is as follows. At the initial stage when the linear
analysis is valid, they evolve according to the linear asymptotic analysis described
in § 3. That is, the wave oscillates periodically both in time and transverse (y)
direction (represented by λ1; see (3.11)), while the amplitude of this oscillation grows
exponentially, but at a fairly slow pace (represented by λ2; see (3.39)). In the later
stage, when nonlinear effects are not negligible, two distinctive forms of evolution are
expected to occur. In one case, the instability leads to the collapse; in the other case,
the continuous radiation of perturbation waves (represented by the far-field solution)
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decreases the energy and the amplitude of the solitary wave significantly so that it
reduces to a stable solitary wave of smaller amplitude (zmax < 0.713). The possible
occurrence of this latter case is due to a fairly small growth rate of perturbations.
Either of these evolutions is expected to take place at the nonlinear stage of instability;
however, this problem needs further investigation.

Finally, we make remarks about the stability to finite-wavelength perturbations.
Kataoka, Tsutahara & Negoro (2000) discovered that there exist KdV-type solitary
wave solutions that are unstable to long-wavelength transverse perturbations in the
framework of the generalized Kadomtsev–Petviashvili (GKP) equation with negative
dispersion. The authors found that there is a short-wavelength cutoff to this transverse
instability (Kataoka & Tsutahara 2004). That is, the solitary wave solutions are more
stable to the shorter-wavelength perturbations in the framework of the GKP equation.
The same tendency is also expected for the present surface-solitary-wave case, since
the instability is of the same type in that perturbations grow fairly slowly while
oscillating periodically. However, this speculation requires numerical examination to
justify it.
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