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Abstract

In this paper we consider a linear regression model with omitted relevant regressors and multi-
variatet error terms. The explicit formula for the Pitman nearness criterion of the Stein-rule (SR)
estimator relative to the ordinary least squares (OLS) estimator is derived. It is shown numerically
that the dominance of the SR estimator over the OLS estimator under the Pitman nearness criterion
can be extended to the case of the multivariatet error distribution when the specification error is not
severe. It is also shown that the dominance of the SR estimator over the OLS estimator cannot be
extended to the case of the multivariatet error distribution when the specification error is severe.
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1 Introduction

In the context of linear regression, the ordinary least squares (OLS) estimator is known as the best linear

unbiased estimator (BLUE). However, the Stein-rule (SR) estimator for regression coefficients proposed

by Stein (1956) and James and Stein (1961) dominates the OLS estimator in terms of mean squared error

(MSE) of prediction. Since the findings of Stein (1956) and James and Stein (1961), lots of shrinkage

estimators have been proposed, and their sampling properties have been examined.

When shrinkage estimators are compared with the OLS estimator, the MSE has usually been used as a

criterion of comparison. However, there are several studies in which another criterion is used to compare

the sampling performances of these estimators. For example, using the Pitman nearness criterion, Keat-

ing and Czitrom (1989) showed by numerical evaluations that the SR estimator is uniformly preferred to

the OLS estimator. This indicates that the dominance of the SR estimator over the OLS estimator holds

even when the Pitman nearness criterion is used instead of MSE. The Pitman nearness criterion is also

used in many studies. Some examples are Rao, Keating and Mason (1988), Sen, Kubokawa and Saleh

(1989), Srivastava and Srivastava (1993), and Chaturvedi and Bhatti (1998).

Although it is assumed in these studies that the model is specified correctly, the model may be

specified incorrectly. One example of such a specification error is to exclude some relevant independent

variables in the specified model. It is also assumed in these studies that the error terms obey a normal

distribution. However, as is stated in Fama (1965), and Blattberg and Gonedes (1974), many economic

data may be generated by a distribution with fatter tails than a normal distribution. One example of such

a distribution is a multivariatet distribution.

Mittelhammer (1984), Ohtani (1993b), and Namba (2002) examined the MSE performances of the

Stein-rule (SR) estimator and its variants when relevant independent variables are omitted. They showed

that although the SR estimator has smaller MSE than the OLS estimator in a wide region of the parameter

space, the dominance of the SR estimator over the OLS estimator does not hold necessarily when there

are omitted variables. On the other hand, there are many studies on the sampling performances of esti-

mators when error terms in a linear regression model obey a multivariatet distribution. Some examples
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are Zellner (1976), Prucha and Kelejian (1984), Ullah and Zinde-Walsh (1984), Judge et al. (1985), Su-

tradhar and Ali (1986), Sutradhar (1988), Singh (1988, 1991), Giles (1991, 1992), Ohtani (1991, 1993a),

Ohtani and Giles (1993), Ohtani and Hasegawa (1993), Namba (2001), and Namba and Ohtani (2002).

In this paper we consider a linear regression model when relevant independent variables are omit-

ted in the specified model and error terms obey a multivariatet distribution. Using the above model,

we compare the sampling performances of the SR estimator and the OLS estimator under the Pitman

nearness criterion. Thus, our analysis is an extension of Keating and Czitrom (1989) to two directions:

omitted relevant independent variables and multivariatet error terms. In the next section we introduce

a model and estimators. In section 3 we derive the exact formula of the Pitman nearness criterion of

the SR estimator relative to the OLS estimator. In section 4, using this exact formula, we compare the

SR estimator and the OLS estimator numerically. Our numerical results show that the dominance of the

SR estimator over the OLS estimator under the Pitman nearness criterion can be extended to the case of

the multivariatet error distribution when the specification error is not severe. The numerical results also

show that the dominance of the SR estimator over the OLS estimator cannot be extended to the case of

the multivariatet error distribution when the specification error is severe.

2 Model and Estimators

Consider a linear regression model,

y “ X1β1`X2β2`u

“ Xβ`u, (1)

wherey is annˆ 1 vector of observations on a dependent variable,X1 and X2 arenˆ k1 andnˆ k2

matrices of observations on nonstochastic independent variables andX“ rX1,X2s, β1 andβ2 arek1ˆ1

andk2ˆ1 vectors of regression coefficients andβ1 “ rβ11,β
1
2s. We assume thatX1 andX“ rX1,X2s are

of full column rank. Also, in this paper, we assume thatu has a multivariatet distribution with the

probability density function (p.d.f) given by

ppu|ν,σq “
νν{2Γppν`nq{2q
πn{2Γpν{2qσn

1

tν`u1u{σ2upn`νq{2
, (2)
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whereσ is a scale parameter andν is a degrees of freedom parameter. It is easy to show thatErus “ 0 and

Eruu1s “ rνσ2{pν´2qsIn for νą 2. WhenνÑ8, the p.d.f ofu approaches that of a normal distribution

with mean 0 and covariance matrixσ2In. As is shown in Zellner (1976), the multivariatet distribution

can be viewed as a mixture of multivariate normal and inverted gamma distributions:

ppu|ν,σq “
ż 8

0
PNpu|τqPIGpτ|ν,σqdτ, (3)

where

PNpu|τq “ p2πτ2q´n{2expr´u1u{2τ2s, (4)

PIGpτ|ν,σq “
2pνσ2{2qν{2

Γpν{2q
τ´pν`1qexpr´νσ2{2τ2s. (5)

Suppose that the matrix of regressorsX2 is omitted mistakenly and the model is specified as

y“ X1β1`u˚, u˚ “ X2β2`u. (6)

Then, based on the misspecified model, the ordinary least squares (OLS) estimator ofβ1 is

b1“ S´1
11 X11y, (7)

whereS11“X11X1. Also, the Stein-rule (SR) estimator proposed by Stein (1956) and James and Stein (1961)

is defined as

bS R1“
ˆ

1´
ae11e1

b11S11b1

˙
b1, (8)

wheree1 “ y´X1b1, anda is a constant such that 0ő aő 2pk1´2q{pn´ k1`2q. If we use the loss

function

Lpβ̄1q “ pX1β̄1´Xβq1pX1β̄1´Xβq, (9)

whereβ̄1 is any estimator ofβ1, and no relevant regressors are omitted, then Stein (1956) showed that the

SR estimator dominates the OLS estimator. Moreover, as is shown in James and Stein (1961), if there

are no omitted regressors, the MSE of the SR estimator is minimized whena“ pk1´2q{pn´ k1`2q.

Thus, we use this value ofa hereafter. Also, Ohtani (1993a) and Namba (2002) showed by numerical
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evaluations that although the SR estimator has smaller MSE than the OLS estimator in a wide region of

the parameter space, the dominance of the SR estimator over the OLS estimator does not hold necessarily

when there are omitted variables. In the next section, we derive the explicit formula for the Pitman

nearness criterion of the SR estimator relative to the OLS estimator.

3 Pitman Nearness Criterion

Using (9), the Pitman nearness criterion of the SR estimator relative to the OLS estimator is given by

PNpbS R1,b1q “ PrrLpbS R1q ő Lpb1qs, (10)

where Prr¨s denotes the probability andLp¨q is defined in (9). If PNpbS R1,b1q ŕ 1{2, the SR estimator is

preferable to the OLS estimator in the Pitman nearness sense.

If k1 is an even integer, we can derive the explicit formula of PNpbS R1,b1q in a similar way to Keating

and Czitrom (1989). As is shown in appendix, the explicit formula for PNpbS R1,b1q is

PNpbS R1,b1q “ νν{2
8ÿ

i“0

8ÿ
j“0

m`i´1ÿ
r“0

θm`2i´r´1
1 θ

j
2

p2θ1` θ2` νqν{2`m`2i` j´r´1

ˆ
Γpν{2`m`2i` j´ r´1q

Γpν{2qΓpm` i´ rqi! j!
r1´ I a

2`a
pr`1,n{2´m` jqs, (11)

whereθ1 “ β1Sβ{4σ2, θ2 “ β1X1M1Xβ{σ2, M1 “ I ´ X1S´1
11 X11, m“ k1{2, k1 is an even integer and

Ixpa,bq is the incomplete beta function ratio defined as

Ixpa,bq “
1

Bpa,bq

ż x

0
ta´1p1´ tqb´1dt. (12)

Using this formula, we examine the Pitman nearness of the SR estimator relative to the OLS estimator in

the next section.

4 Numerical Analysis

In this section, we compare the SR estimator with the OLS estimator based on the Pitman nearness cri-

terion using (11). The noncentrality parameters are expressed asθ1 “ θ{4 andθ2 “ θp1´R2
1q, where

θ“ β1Sβ{σ2, R2
1“ β1X1X1S´1

11 X11Xβ{β1Sβ andS“ X1X. As is discussed in Ohtani (1993a),θ is the non-

centrality parameter which appeared in the test for the null hypothesis that all the regression coefficients
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are zeros in the correctly specified model. Also,R2
1 is interpreted as the coefficient of determination in

regression ofXβ onX1. Thus, ifR2
1 is close to unity, the magnitude of model misspecification is regarded

as small, and vice versa. Thus, in the numerical evaluations, we use the following parameter values;

θ “ various values,R2
1 “ 0.1, 0.3, 0.5, 0.7, 0.9, 1.0,m“ 2, 3, 4,n“ 20, 30, 40, andν “ 3, 5, 7, 10,

20, 30,8. The numerical evaluations were executed on a personal computer using the FORTRAN code.

The double infinite series in (11) were judged to converge when the increment of the series got smaller

than 10́ 12.

The results form = 2, 4,n = 20, 30, andν = 3, 20 are shown in Tables 1 to 4. We see from Table 1

that the SR estimator is preferred to the OLS estimator for all values ofθ andR2
1 considered here when

m = 2, n = 20, andν = 3. In particular, whenθ is close to 0 andR2
1 is close to 1.0, the SR estimator

is much preferred to the OLS estimator. However, the efficiency gets small asθ gets large andR2
1 gets

small. Whenν increases from 3 to 20, the OLS estimator is preferred to the SR estimator forθ = 50.0

andR2
1 = 0.1. This indicates that as the tails of the error distribution get flat, the preference for the SR

estimator gets strong under the Pitman nearness criterion. We see from Table 2 that asn increases from

20 to 40, the SR estimator is preferred to the OLS estimator for all values ofθ andR2
1 considered here

even whenν = 20, though the performance of efficiency is similar to that forn = 20. We see from Table

3 that the OLS estimator is preferred to the SR estimator for large values ofθ and small values ofR2
1

whenm = 4, n = 20, andν = 3. In particular, whenθ is close to 50.0 andR2
1 is close to 0.1, the OLS

estimator is much preferred to the SR estimator. This indicates that the region ofθ andR2
1 such that the

SR estimator is preferred to the OLS estimator gets much narrow asm increases from 2 to 4. However,

we see from Table 4 that asn increases from 20 to 40, the SR estimator is preferred to the OLS estimator

for all values ofθ andR2
1 considered here, though the performance of efficiency is similar to that form=

2, n = 20 andν = 3 given in Table 1.

From the above results, we see that when the specification error is not severe (R2
1 is close to 1.0),

the SR estimator is preferred to the OLS estimator under the Pitman nearness criterion even when the

error terms obey the multivariatet distribution. Thus, the dominance of the SR estimator over the OLS

estimator under the Pitman nearness criterion can be extended to the case of the multivariatet error

5



distribution when the specification error is not severe. The results also show that whenR2
1 is close to

0.1, the OLS estimator is preferred to the SR estimator for some values ofθ, though the region ofθ and

R2
1 such that the OLS estimator is preferred to the SR estimator gets narrow asn increases. Thus, the

dominance of the SR estimator over the OLS estimator under the Pitman nearness criterion cannot be

extended to the case of the multivariatet error distribution when the specification error is severe.

Appendix

Using (7), (8) and (9), we have

PrrLpbS R1q ő Lpbqs “ Pr

„ˆ
X1b1´

Xβ
2

˙1ˆ
X1b1´

Xβ
2

˙
ŕ
β1Sβ

4
`

ae11e1

2


. (13)

First, we derive the formula for PrrLpbS R1q ő Lpb1q|τs, assuming thatτ is given. If we definev1 “

pX1b1´ Xβ{2q1pX1b1´ Xβ{2q{τ2 and v2 “ e11e1{τ2, thenv1 „ χ12k1
pλ1q and v2 „ χ12n´k1

pλ2q for given

τ, whereχ12f pλq is the noncentral chi-square distribution withf degrees of freedom and noncentrality

parameterλ, λ1“ β1Sβ{4τ2, andλ2“ β1X1M1Xβ{τ2. Thus, usingv1 andv2, we have

PrrLpbS R1q ő Lpb1q|τs “ Pr

„
v1´λ1

v2
ŕ

a
2

ˇ̌
ˇτ

. (14)

Sincev1 andv2 are mutually independent for givenτ, we have

Pr

„
v1´λ1

v2
ŕ

a
2

ˇ̌
ˇτ

“

8ÿ
i“0

8ÿ
j“0

Ki j

żż

R
vk1{2`i´1

1 vpn´k1q{2` j´1
2 exp

„
´

v1`v2

2


dv1dv2, (15)

whereR is the region such thatpv1´λ2q{v2ŕ a{2,

Ki j “
wipλ1qw jpλ2q

2n{2`i` jΓpk1{2` iqΓppn´k1q{2` jq
, (16)

andwipλq “ expp´λ{2qpλ{2qi{i!.

Making use of the change of variables,w“ pv1´λ1q{v2 andz“ v2, the integral in (15) reduces to

ż 8

0

ż 8

a{2
pwz`λ1qk1{2`i´1zpn´k1q{2` j exp

„
´

wz`z`λ1

2


dwdz. (17)

Whenk1“ 2m, wherem is a positive integer, (17) reduces to

m`i´1ÿ
r“0

m`i´1Crλ
m`i´1´r
1 expp´λ1{2q

ż 8

0

ż 8

a{2
wrzn{2`r´m` j exp

„
´
p1`wqz

2


dwdz, (18)
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wherepCm“ p!
m!pp´mq! .

Again, making use of the change of a variable,z1“ p1`wqz{2, the integral in (18) reduces to

2n{2`r´m` j`1Γpn{2` r´m` j`1q
ż 8

a{2

wr

p1`wqn{2`r´m` j`1
dw. (19)

Further, making use of the change of a variable,t “ w{p1`wq, we obtain

Pr

„
v1´λ1

v2
ŕ

a
2

ˇ̌
ˇτ

“

8ÿ
i“0

8ÿ
j“0

m`i´1ÿ
r“0

pλ1{2qm`2i´r´1pλ2{2q j expr´pλ1`λ2{2qs
Γpm` i´ rqi! j!

ˆr1´ I a
2`a
pr`1,n{2´m` jqs. (20)

Utilizing the relation,

PrrLpbS R1q ő Lpbqs “
ż 8

0
PrrLpbS R1q ő Lpbq|τsPIGpτ|ν,σqdτ

“
ż 8

0
Pr

„
v1´λ1

v2
ŕ

a
2

ˇ̌
ˇτ


PIGpτ|ν,σqdτ, (21)

and making use of the change of variable,t1 “ p2η1` η2` νσ2q{2τ2, whereη1 “ β1Sβ{4 andη2 “

β1X1M1Xβ, we obtain (11) in the text.
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Table 1: Results form“ 2 andn“ 20.

R2
1

ν θ 0.1 0.3 0.5 0.7 0.9 1.0

3 0.0 0.9221 0.9221 0.9221 0.9221 0.9221 0.9221

1.0 0.8893 0.8910 0.8926 0.8943 0.8959 0.8967

2.0 0.8600 0.8632 0.8664 0.8695 0.8727 0.8743

4.0 0.8125 0.8182 0.8239 0.8297 0.8354 0.8382

6.0 0.7759 0.7837 0.7914 0.7992 0.8069 0.8108

8.0 0.7466 0.7561 0.7655 0.7750 0.7845 0.7892

10.0 0.7223 0.7333 0.7442 0.7552 0.7662 0.7717

15.0 0.6757 0.6896 0.7037 0.7179 0.7320 0.7391

20.0 0.6412 0.6576 0.6743 0.6910 0.7078 0.7162

25.0 0.6139 0.6325 0.6513 0.6703 0.6894 0.6990

30.0 0.5914 0.6119 0.6326 0.6536 0.6747 0.6853

40.0 0.5556 0.5792 0.6033 0.6278 0.6525 0.6649

50.0 0.5275 0.5538 0.5808 0.6083 0.6362 0.6501

20 0.0 0.9221 0.9221 0.9221 0.9221 0.9221 0.9221

1.0 0.8888 0.8905 0.8921 0.8938 0.8955 0.8963

2.0 0.8572 0.8605 0.8638 0.8671 0.8704 0.8720

4.0 0.8025 0.8087 0.8149 0.8211 0.8273 0.8303

6.0 0.7589 0.7674 0.7760 0.7845 0.7930 0.7972

8.0 0.7239 0.7344 0.7449 0.7554 0.7658 0.7710

10.0 0.6954 0.7075 0.7196 0.7318 0.7439 0.7500

15.0 0.6422 0.6577 0.6732 0.6888 0.7044 0.7122

20.0 0.6047 0.6228 0.6411 0.6595 0.6779 0.6871

25.0 0.5759 0.5964 0.6170 0.6377 0.6586 0.6690

30.0 0.5527 0.5751 0.5979 0.6207 0.6438 0.6553

40.0 0.5164 0.5423 0.5686 0.5953 0.6221 0.6355

50.0 0.4883 0.5172 0.5466 0.5765 0.6066 0.6218

10



Table 2: Results form“ 2 andn“ 40.

R2
1

ν θ 0.1 0.3 0.5 0.7 0.9 1.0

3 0.0 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157

1.0 0.8860 0.8868 0.8876 0.8884 0.8892 0.8896

2.0 0.8601 0.8616 0.8631 0.8646 0.8661 0.8669

4.0 0.8186 0.8213 0.8241 0.8268 0.8295 0.8308

6.0 0.7871 0.7908 0.7945 0.7982 0.8019 0.8037

8.0 0.7621 0.7666 0.7711 0.7757 0.7802 0.7824

10.0 0.7416 0.7469 0.7521 0.7573 0.7625 0.7652

15.0 0.7029 0.7096 0.7163 0.7231 0.7298 0.7332

20.0 0.6748 0.6828 0.6908 0.6987 0.7067 0.7107

25.0 0.6531 0.6621 0.6712 0.6802 0.6893 0.6938

30.0 0.6354 0.6454 0.6554 0.6654 0.6755 0.6805

40.0 0.6079 0.6195 0.6312 0.6430 0.6547 0.6606

50.0 0.5868 0.5999 0.6131 0.6263 0.6395 0.6461

20 0.0 0.9157 0.9157 0.9157 0.9157 0.9157 0.9157

1.0 0.8854 0.8862 0.8870 0.8878 0.8886 0.8890

2.0 0.8573 0.8589 0.8605 0.8620 0.8636 0.8644

4.0 0.8094 0.8124 0.8153 0.8183 0.8212 0.8227

6.0 0.7717 0.7758 0.7798 0.7839 0.7879 0.7899

8.0 0.7417 0.7467 0.7517 0.7567 0.7617 0.7641

10.0 0.7175 0.7233 0.7291 0.7348 0.7406 0.7435

15.0 0.6732 0.6806 0.6880 0.6955 0.7029 0.7066

20.0 0.6427 0.6515 0.6602 0.6689 0.6777 0.6821

25.0 0.6200 0.6298 0.6397 0.6496 0.6595 0.6645

30.0 0.6020 0.6128 0.6237 0.6347 0.6456 0.6511

40.0 0.5746 0.5873 0.6000 0.6127 0.6254 0.6318

50.0 0.5542 0.5684 0.5826 0.5969 0.6112 0.6184
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Table 3: Results form“ 4 andn“ 20.

R2
1

ν θ 0.1 0.3 0.5 0.7 0.9 1.0

3 0.0 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422

1.0 0.9222 0.9251 0.9280 0.9308 0.9335 0.9348

2.0 0.9006 0.9068 0.9129 0.9188 0.9245 0.9273

4.0 0.8571 0.8701 0.8828 0.8951 0.9069 0.9127

6.0 0.8159 0.8352 0.8542 0.8726 0.8904 0.8990

8.0 0.7780 0.8029 0.8276 0.8518 0.8752 0.8865

10.0 0.7433 0.7732 0.8031 0.8326 0.8613 0.8751

15.0 0.6687 0.7085 0.7494 0.7906 0.8310 0.8506

20.0 0.6077 0.6548 0.7044 0.7553 0.8060 0.8306

25.0 0.5568 0.6094 0.6659 0.7250 0.7847 0.8139

30.0 0.5136 0.5702 0.6323 0.6985 0.7664 0.7997

40.0 0.4438 0.5056 0.5760 0.6539 0.7359 0.7766

50.0 0.3898 0.4542 0.5303 0.6173 0.7112 0.7584

20 0.0 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422

1.0 0.9225 0.9254 0.9281 0.9309 0.9336 0.9349

2.0 0.9013 0.9073 0.9132 0.9190 0.9246 0.9273

4.0 0.8566 0.8697 0.8824 0.8946 0.9065 0.9122

6.0 0.8118 0.8320 0.8516 0.8705 0.8886 0.8974

8.0 0.7688 0.7956 0.8218 0.8472 0.8715 0.8832

10.0 0.7283 0.7612 0.7937 0.8252 0.8554 0.8700

15.0 0.6390 0.6848 0.7307 0.7759 0.8197 0.8407

20.0 0.5651 0.6206 0.6773 0.7342 0.7898 0.8166

25.0 0.5035 0.5663 0.6318 0.6986 0.7645 0.7965

30.0 0.4515 0.5197 0.5924 0.6677 0.7429 0.7795

40.0 0.3687 0.4438 0.5273 0.6165 0.7078 0.7525

50.0 0.3057 0.3843 0.4750 0.5753 0.6801 0.7319
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Table 4: Results form“ 4 andn“ 40.

R2
1

ν θ 0.1 0.3 0.5 0.7 0.9 1.0

3 0.0 0.9374 0.9374 0.9374 0.9374 0.9374 0.9374

1.0 0.9234 0.9246 0.9258 0.9269 0.9281 0.9287

2.0 0.9091 0.9116 0.9140 0.9165 0.9189 0.9201

4.0 0.8811 0.8863 0.8915 0.8965 0.9014 0.9038

6.0 0.8552 0.8630 0.8706 0.8781 0.8855 0.8891

8.0 0.8314 0.8416 0.8517 0.8615 0.8711 0.8758

10.0 0.8096 0.8221 0.8344 0.8464 0.8582 0.8639

15.0 0.7625 0.7798 0.7971 0.8140 0.8306 0.8388

20.0 0.7232 0.7448 0.7662 0.7875 0.8083 0.8185

25.0 0.6897 0.7149 0.7401 0.7651 0.7897 0.8018

30.0 0.6606 0.6889 0.7174 0.7458 0.7739 0.7877

40.0 0.6117 0.6452 0.6794 0.7138 0.7480 0.7648

50.0 0.5717 0.6095 0.6485 0.6880 0.7275 0.7469

20 0.0 0.9374 0.9374 0.9374 0.9374 0.9374 0.9374

1.0 0.9235 0.9247 0.9258 0.9270 0.9281 0.9287

2.0 0.9092 0.9116 0.9140 0.9164 0.9188 0.9199

4.0 0.8802 0.8854 0.8905 0.8955 0.9004 0.9028

6.0 0.8519 0.8599 0.8678 0.8754 0.8829 0.8866

8.0 0.8252 0.8358 0.8463 0.8566 0.8666 0.8715

10.0 0.8001 0.8133 0.8263 0.8391 0.8515 0.8576

15.0 0.7448 0.7638 0.7825 0.8009 0.8188 0.8275

20.0 0.6985 0.7225 0.7461 0.7693 0.7921 0.8032

25.0 0.6593 0.6875 0.7154 0.7430 0.7700 0.7832

30.0 0.6255 0.6574 0.6891 0.7206 0.7514 0.7665

40.0 0.5697 0.6077 0.6460 0.6841 0.7217 0.7402

50.0 0.5248 0.5678 0.6115 0.6554 0.6989 0.7203
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