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Abstract

Consider a linear regression model with some relevant regressors are unobservable. In
such a situation, we estimate the model by using the proxy variables as regressors or by
simply omitting the relevant regressors. In this paper, we derive the explicit formula of the
predictive mean squared error (PMSE) of the Stein-rule (SR) estimator and the positive-
part Stein-rule (PSR) estimator for the regression coefficients when the proxy variables are
used. We examine the effect of using the proxy variables on the risk performances of the
SR and PSR estimators. It is shown analytically that the PSR estimator dominates the SR
estimator even when the proxy variables are used. Also, our numerical results show that
using the proxy variables is preferable to omitting the relevant regressors.
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1 Introduction

In the context of linear regression, it is well known that the ordinary least squares (OLS) es-

timator is the best unbiased estimator (BLUE). However, as shown in Stein (1956) and James

and Stein (1961), the Stein-rule (SR) estimator dominates the OLS estimator in terms of pre-

dictive mean squared error (PMSE) when the model is specified correctly. Moreover, Baranchik

(1970) showed that the SR estimator is further dominated by the positive-part Stein-rule (PSR)

estimator when the specified model is correct.

When the data of some independent variables are not available, a researcher may estimate a

model by omitting unobservable variables. Several authors investigated the sampling properties

of the SR or PSR estimators when relevant regressors are omitted. Some examples are Mittel-

hammer (1984), Ohtani (1993, 1998) and Namba (2000, 2003). Mittelhammer (1984) showed

that the SR estimator no longer dominates the OLS estimator when relevant regressors are

omitted. Ohtani (1993) derived the formulae for the PMSE’s of the SR and PSR estimators of

the misspecified model. Also, Namba (2002) showed exactly that the PSR estimator dominates

the SR estimator even when the relevant regressors are omitted.

Also, if the proxy variables for unobservable variables are available, a researcher may use them

even when the relevant regressors are unobservable. Many authors investigated the sampling

properties of statistics in a regression model when the proxy variables are used. Some exam-

ples are McCallum (1972), Wickens (1972), Frost (1979), Ohtani (1981), Ohtani and Hasegawa

(1993), and Trenkler and Stahlecker (1996).

Therefore, when the proxy variables are available, the question whether we should use the

proxy variables or we should omit the relevant regressors arises naturally. However, such com-

parison about the SR and PSR estimators has not been made so far. Thus, we derive the explicit

formula for the PMSE’s of the SR and PSR estimators when the proxy variables are used, and

examine their sampling properties. In the next section, we introduce the model and estimators.

In section 3, an explicit formula for the PMSE’s of the SR and PSR estimators is derived. Using

this formula, we execute numerical evaluations to investigate the sampling properties of the

estimators in section 4.
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2 Model and estimators

Consider a linear regression model,

y “ X1β1 ` X2β2 ` ε, ε „ Np0, σ2Inq, (1)

where y is an n ˆ 1 vector of observations on a dependent variable, X1 and X2 are n ˆ k1 and

n ˆ k2 matrices of observations on nonstochastic independent variables, β1 and β2 are k1 ˆ 1

and k2 ˆ 1 vectors of regression coefficients, and ε is an n ˆ 1 vector of normal error terms. We

assume that the matrix of the proxy variables X˚
2 is available though X2 is unobservable. Thus,

we can easily specify the following two models. One is the model such that the unobservable

regressors X2 is simply omitted:

y “ X1β1 ` u, u “ X2β2 ` ε, (2)

where u „ NpX2β2, σ
2Inq. And the other is the model with the proxy variable X˚

2 in place of

X2:

y “ X1β1 ` X˚
2 β˚

2 ` u˚, u˚ “ X2β2 ´ X˚
2 β˚

2 ` ε, (3)

where u˚ „ NpX2β2 ´ X˚
2 β˚

2 , σ2Inq. Also, We assume that X1, rX1, X2s and X “ rX1, X
˚
2 s are

of full column rank.

Thus, the ordinary least squares (OLS) estimator for β “ rβ1
1, β

1
2s1 based on (1) is

b “ S´1X 1y, (4)

where S “ X 1X.

In the context of linear regression, the Stein-rule (SR) estimator based on (1) is

bSR “

ˆ

1 ´ a
e1e

b1Sb

˙

b, (5)

where 0 ď a ď 2pk ´ 2q{pν ` 2q, k “ k1 ` k2, ν “ n ´ k1 ´ k2 and e “ y ´ Xb. As shown in

James and Stein (1961), the SR estimator given in (5) dominates the OLS estimator given in

(4) in terms of PMSE when the model is specified correctly. Though the SR estimator given in

(5) dominates the OLS estimator given in (4), Baranchik (1970) showed that the SR estimator

is further dominated by the positive-part Stein-rule (PSR) estimator defined as

bPSR “ max
„

0, 1 ´ a
e1e

b1Sb



b. (6)
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Also, the OLS, SR and PSR estimators for β1 based on (2) are respectively defined as,

bO “ S´1
11 X 1

1y, (7)

bSRO “

ˆ

1 ´ a1
e1
1e1

b1
1S11b1

˙

b1, (8)

bPSRO “ max
„

0, 1 ´ a1
e1
1e1

b1
1S11b1



b1, (9)

where S11 “ X 1
1X1, 0 ď a1 ď 2pk1 ´ 2q{pν1 ` 2q, ν1 “ n ´ k1, and e1 “ y ´ X1b1. Namba (2002)

showed that the PSR estimator given in (9) dominates the SR estimator given in (8) in terms

of PMSE even when the matrix of relevant regressors X2 is omitted in the specified model.

Similarly, we can consider the estimators for β˚ “ rβ1
1, β

˚
2

1s1 based on (3):

b˚ “ S˚´1X˚1y, (10)

bSRP “

ˆ

1 ´ a
e˚1e˚

b˚1S˚b˚

˙

b˚, (11)

bPSRP “ max
„

0, 1 ´ a
e˚1e˚

b˚1S˚b˚



b˚, (12)

where S˚ “ X˚1X˚, X˚ “ rX1, X
˚
2 s, 0 ď a ď 2pk ´ 2q{pν ` 2q and e˚ “ y ´ X˚b˚. However,

the sampling properties of these estimators have not been examined so far. Thus, we derive the

explicit formulae for the PMSE of bSRP and bPSRP in the next section.

3 PMSE of the estimators

To derive the formulae for the PMSE’s of estimators, we consider the following pre-test estimator:

pβ˚pτq “ IpF ˚ ě τq

ˆ

1 ´ a
e˚1e˚

b˚1S˚b˚

˙

b˚, (13)

where IpAq is an indicator function such that IpAq “ 1 if an event A occurs and IpAq “ 0

otherwise, F ˚ “ pb˚1S˚b˚{kq{pe˚1e˚{νq is the test statistic for the null hypothesis H0 : β˚ “ 0

against the alternative H1 : β˚ ‰ 0 based on (3), and τ is the critical value of the pre-test. pβ˚pτq

reduces to bSRP given in (11) when τ “ 0, and it reduces to bPSRP when τ “ aν{k.

The PMSE’s of the SR and PSR estimators given in (8) and (9) are respectively defined as

PMSErbSROs “ ErpX1bSRO ´ Xβq1pX1bSRO ´ Xβqs, (14)

PMSErbPSROs “ ErpX1bPSRO ´ Xβq1pX1bPSRO ´ Xβqs. (15)

Namba (2002) derived the explicit formulae for these PMSE’s.
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Similarly, the PMSE of pβ˚pτq is defined as

PMSErpβ˚pτqs “ ErpX˚
pβ˚pτq ´ Xβq1pX˚

pβ˚pτq ´ Xβqs

“ E

«

IpF ˚ ě τq

ˆ

1 ´ a
e˚1e˚

b˚1Sb˚

˙2

b˚1Sb˚

ff

´2E

„

IpF ˚ ě τq

ˆ

1 ´ a
e˚1e˚

b˚1Sb˚

˙

β1X 1X˚b˚



` β1Sβ

“ ErIpF ˚ ě τqb˚1Sb˚s ´ 2aErIpF ˚ ě τqe˚1e˚s

`a2E

„

IpF ˚ ě τq
pe˚1e˚q2

b˚1Sb˚



´ 2ErIpF ˚ ě τqβ1X 1X˚b˚s

`2aE

„

IpF ˚ ě τq
e˚1e˚

b˚1Sb˚
β1X 1X˚b˚



` β1Sβ (16)

Thus, performing some manipulations, we have

PMSErpβ˚pτqs{σ2 “ Hp1, 0; τq ´ 2aHp0, 1; τq ` a2Hp´1, 2; τq

´2Jp0, 0; τq ` 2aJp´1, 1; τq ` λ˚
1 ` λ˚

2 , (17)

where

Hpp, q; τq “ E

„

I

ˆ

νv1

kv2
ě τ

˙

vp
1v

q
2



, (18)

Jpp, q; τq “ E

„

I

ˆ

νv1

kv2
ě τ

˙

vp
1v

q
2

β1X 1X˚b˚

σ2



, (19)

v1 “ b˚1S˚b˚{σ2, v2 “ e˚1e˚{σ2, λ˚
1 “ β1X 1X˚S˚´1X˚1Xβ{σ2, λ˚

2 “ β1X 1M˚X 1β{σ2, and

M˚ “ I ´ X˚S˚´1X˚1.

As shown in Appendix, the explicit formulae of Hpp, q; τq and Jpp, q; τq are

Hpp, q; τq “ 2p`q
8
ÿ

i“0

8
ÿ

j“0

wipλ
˚
1qwjpλ˚

2qGijpp, q; τq, (20)

Jpp, q; τq “ λ˚
12p`q

8
ÿ

i“0

8
ÿ

j“0

wipλ
˚
1qwjpλ˚

2qGi`1,jpp, q; τq, (21)

where

Gi,jpp, q; τq “
Γpk{2 ` p ` iqΓpν{2 ` q ` jq

Γpk{2 ` iqΓpν{2 ` jq
r1 ´ Iτ˚pk{2 ` p ` i, ν{2 ` q ` jqs, (22)

Ixp¨, ¨q is the incomplete beta function ratio defined as

Ixpa1, a2q “ rBpa1, a2qs´1

ż x

0
ta1´1p1 ´ tqa2´1dt,
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τ˚ “ kτ{pkτ ` νq and wipλq “ expp´λ{2qpλ{2qi{i!. It is easy to show that the infinite series in

(20) and (21) converge absolutely. Substituting (20) and (21) into (17), we obtain the explicit

formula for the PMSE of pβ˚pτq. Letting τ “ 0 and τ “ aν{k, we have the PMSE’s of the SR

and PSR estimators when the proxy variables are used. Though the formulae for the PMSE’s

of the SR and PSR estimators when the proxy variables are used are similar to those obtained

in Namba (2002), they differ in their derivations. (The details are shown in Appendix.)

Differentiating the PMSE of pβ˚pτq with respect to τ , and performing some manipulations,

we obtain

BPMSErpβ˚pτq{σ2s

Bτ
“ ´2

8
ÿ

i“0

8
ÿ

j“0

wipλ
˚
1qwjpλ˚

2q
Γppν ` kq{2 ` i ` j ` 1q

Γpk{2 ` iqΓpν{2 ` jq

ˆ
kk{2`i´1νν{2`jτk{2`i´2

pkτ ` νqpν`kq{2`i`j`1
pkτ ´ aνq

„

pkτ ´ aνq ´ λ˚
1

kτ

k{2 ` i



, (23)

since the infinite series in (20) and (21) are absolutely convergent. Thus, the PMSE of pβ˚pτq is

a monotone decreasing function on τ P r0, aν{ks. Since pβ˚pτq reduces to the SR estimator when

τ “ 0, and reduces to the PSR estimator when τ “ aν{k, we have the following theorem.

Theorem 1 The PSR estimator given in (11) dominates the SR estimator given in (12) in

terms of PMSE even when the proxy variables are used in place of unobservable variables.

Since further theoretical analysis is difficult, we execute numerical evaluations in the next

section.

4 Numerical analysis

In this section, we compare the PMSE’s of the estimators with or without the proxy variables

numerically. As discussed in Ohtani and Hasegawa (1993), we have

λ˚
2 “ Fβ2r1 ´ tβ1

2X
1
2M1X

˚
2 pX˚

2
1M1X

˚
2 q´1X˚

2
1M1X2β2{β1

2X
1
2M1X2β2us, (24)

where Fβ2 “ β2X
1
2M1X2β2{σ2, and M1 “ I ´ X1S

´1
11 X 1

1. Fβ2 may be interpreted as the mag-

nitude of importance of X2, since it is the noncentrality parameter which appears in a test for

null hypothesis H0 : β2 “ 0 when X2 is observed. When Fβ2 is close to zero, using the proxy

variables may be rather irrelevant since X2 is not a significant variables, and vice versa.
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If k2 “ 1, the part in the braces in (24) reduces to

pX 1
2M1X

˚
2 q2{rpX 1

2M1X2qpX˚
2

1M1X
˚
2 qs. (25)

Since this is the partial correlation coefficient between X2 and X˚
2 given X1, the part in the

braces in (24) may be interpreted as the magnitude of richness of proxy variables even when

k2 ě 2. Denoting the part in the braces in (24)as r˚2
22.1, we have

λ˚
2 “ Fβ2p1 ´ r˚2

r22.1q. (26)

When r˚2
22.1 is close to unity, and especially when k2 “ 1, the proxy variable is very rich and vice

versa.

Also, as shown in Namba (2002), the PMSE’s of the estimators given in (8) and (9) depends

on the values of λ1 “ β1X 1X1S
´1
11 X 1

1Xβ{σ2 “ FβR2
1 and λ2 “ β1X 1M1Xβ “ Fβ2 “ Fβp1 ´ R2

1q,

where Fβ “ β1Sβ{σ2 and R2
1 “ β1X 1X1S

´1
11 X 1

1Xβ{β1Sβ. Fβ is the noncentrality parameter

which appeared in the test for the null hypothesis that all the regression coefficients are zeros

in the correctly specified model. Also, R2
1 is interpreted as the coefficient of determination in

regression of Xβ on X1. Thus, if R2
1 is close to unity, the magnitude of model misspecification

is regarded as small, and vice versa. It is easy to show that λ1 ` λ2 “ Fβ , and λ˚
1 ` λ˚

2 “ Fβ .

Thus, in the numerical evaluation, we use the following parameter values: k1 “ 3, 4, 5, 7,

k2 “ 1, n “ 20, 30, 40, λ2{Fβ “ 1´R2
1 “ 0, 0.1, 0.3, 0.5, 0.7, 0,9, λ˚

2{Fβ “ p1´R2
1qp1´r˚2

22.1q “ 0,

0.1 0.3, 0.5, 0.7, 0,9, and Fβ “ various values. When λ2{Fβ “ 1 ´ R2
1 is small, the magnitude

of model misspecification is regarded as small. Also, λ˚
2{Fβ gets much smaller than λ2{Fβ as

r˚2
r22.1 gets closer to unity (i.e., the proxy variable gets richer). To compare the PMSE’s of the

estimators, we evaluated the values of relative PMSE defined as PMSErβ̄s{PMSErb˚s, where

β̄ is any estimator. Thus, the estimator β̄ has smaller PMSE than b˚ when the value of relative

PMSE is smaller than unity. The numerical evaluations were executed on a personal computer

using the FORTRAN code. The double infinite series in Hpp, q; τq and Jpp, q; τq were judged to

converge when the increment of series got smaller than 10´14. As for the PMSE’s of bSRO and

bPSRO, we used the formulae derived by Namba (2002). Since the results for the cases of k “ 6,

8, and n “ 30 are qualitatively typical, we do not show the results for the other cases.

Table 1 shows the PMSE’s of the estimators when the relevant regressor is omitted. As

shown in Namba (2002), we see that the PSR estimator bPSRO dominates the SR estimator bSRO

6



in terms of PMSE. Though the SR and PSR estimators have slightly larger PMSE than the

OLS estimator with the proxy variable (i.e., b˚) for large values of Fβ and λ2{Fβ , the difference

is very small.

From Table 2, as shown in Theorem 1, we actually see that the SR estimator bSRP is dom-

inated by the PSR estimator bPSRP even when the proxy variable is used. As Fβ and λ˚
2{Fβ

get larger, the PMSE’s of the SR and PSR estimators get larger. Similar to Table 1, though

the SR and PSR estimators have larger PMSE than the OLS estimator for large values of Fβ

and λ2{Fβ , the difference is very small. Also, comparing Table 1 with Table 2, we see that the

PMSE of the PSR estimator with the proxy variable (i.e., bPSRP) is slightly larger than that of

the PSR estimator with the omitted regressor (i.e., bPSRO) for Fβ “ 0. However, noting that

λ˚
2 ď λ2, bPSRP has smaller PMSE than bPSRO over a wide region of parameter space. Thus, it

seems that the best choice among the estimators considered in this paper is the PSR estimator

with proxy variables.

Appendix

Here, we derive the explicit formulae for Hpp, q; τq and Jpp, q; τq. First, we derive the for-

mula for Hpp, q; τq. Since b˚ „ NpS˚´1X˚1Xβ, σ2S˚´1q, v1 “ b˚1S˚b˚{σ2 „ χ12
k pλ˚

1q, where

λ˚
1β1X 1X˚S˚´1X˚1Xβ{σ2 and χ12

k pλq is a noncentral chi-square distribution with k degrees

of freedom and noncentrality parameter λ. Also, since e˚ „ NpM˚Xβ, σ2Inq where M˚ “

I ´ X˚S˚´1X˚1, v2 “ e˚1e˚{σ2 „ χ12
ν pλ˚

2q where λ˚
2 “ β1X 1M˚X 1β{σ2. Moreover, v1 and v2 are

mutually independent.

Using v1 and v2, Hpp, q; τq is expressed as,

Hpp, q; τq “

8
ÿ

i“0

8
ÿ

j“0

Kij

żż

νv1{kv2ěτ
v

k{2`p`i´1
1 v

ν{2`q`j´1
2 expr´pv1 ` v2q{2sdv1 dv2, (27)

where

Kij “
wipλ

˚
1qwjpλ˚

2q

2pν`kq{2`i`jΓpk{2 ` iqΓpν{2 ` jq
. (28)

and wipλq “ expp´λ{2qpλ{2qi{i!.

Making use of the change of variables, v3 “ v1{v2 and v2 “ v4, the integral in (28) reduces
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to
ż 8

0

ż 8

kτ{ν
v

k{2`p`i´1
3 v

pν`kq{2`p`q`i`j´1
4 expr´v4pv3 ` 1q{2sdv3 dv4. (29)

Again making use of the change of variable, v5 “ v4pv3 ` 1q{2 (29) reduces to

2pν`kq{2`p`q`i`jΓppν ` kq{2 ` p ` q ` i ` jq

ż 8

kτ{ν

v
k{2`p`i´1
3

pv3 ` 1qpν`kq{2`p`q`i`j
dv3. (30)

Finally, making use of the change of variable, t “ v3{pv3`1q, and performing some manipulations,

we have (20) in the text.

Next, we derive the formula for Jpp, q; τq. Differentiating Hpp, q; τq given in (20) with respect

to β, we have

BHpp, q; τq

Bβ
“ 2p`q

8
ÿ

i“1

8
ÿ

j“0

„

Bwipλ
˚
1q

Bβ
wjpλ˚

2q ` wipλ
˚
1q

Bwjpλ˚
2q

Bβ



Gijpp, q; τq

“ 2p`q
8
ÿ

i“1

8
ÿ

j“0

„"

´
1
2
wipλ

˚
1q `

1
2
wi´1pλ˚

1q

*

wjpλ˚
2q

2X 1X˚S˚´1X˚1Xβ

σ2

`

"

´
1
2
wjpλ˚

2q `
1
2
wj´1pλ˚

2q

*

wipλ
˚
1q

2X 1M˚Xβ

σ2



Gijpp, q; τq

“
X 1X˚S˚´1X˚1Xβ

σ2
2p`q

8
ÿ

i“0

8
ÿ

j“0

wipλ
˚
1qwjpλ˚

2qGi`1,jpp, q; τq

´
X 1X˚S˚´1X˚1Xβ ` X 1M˚Xβ

σ2
Hpp, q; τq

`
X 1M˚Xβ

σ2
2p`q

8
ÿ

i“0

8
ÿ

j“0

wipλ
˚
1qwjpλ˚

2qGi,j`1pp, q; τq, (31)

where we may define w´1pλq “ 0.

Using b˚ and v2, Hpp, q; τq can be expressed as

Hpp, q; τq “

żż

R

ˆ

b˚1S˚b˚

σ2

˙p

vq
2fb˚pb˚qfv2pv2qdb˚ dv2, (32)

where

fb˚pb˚q “
1

p2πqk{2|σ2S˚´1|1{2
exp

„

´
pb˚ ´ S˚´1X˚1XβqS˚pb˚ ´ S˚´1X˚1Xβq1

2σ2



, (33)

fv2pv2q “ exp
ˆ

´
λ˚

2

2

˙ 8
ÿ

j“0

pλ˚
2{2qjv

ν{2`j´1
2 expp´v2{2q

j!2ν{2`jΓpν{2 ` jq
, (34)

and R is the region such that νb˚1S˚b˚{pkv2σ
2q ě τ . Noting that

Bfb˚pb˚q

Bβ
“ fb˚pb˚q

X 1X˚b˚ ´ X 1X˚S˚´1X˚1Xβ

2σ2
. (35)

Bfv2pv2q

Bβ
“

«

´fv2pv2q ` exp
ˆ

´
λ˚

2

2

˙ 8
ÿ

j“0

pλ˚
2{2qjv

ν{2`j
2 expp´v2{2q

j!2ν{2`j`1Γpν{2 ` j ` 1q

ff

X 1M˚Xβ

σ2
, (36)
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and differentiating (34) with respect to β we obtain

BHpp, q; τq

Bβ
“

żż

R

X 1X˚b˚ ´ X 1X˚S˚´1X˚1Xβ

σ2

ˆ

b˚1Sb˚

σ2

˙p

vq
2fb˚pb˚qfv2pv2qdb˚ dv2

´
X 1M˚Xβ

σ2

żż

R

ˆ

b˚1Sb˚

σ2

˙p

vq
2fb˚pb˚qfv2pv2qdb˚ dv2

`
X 1M˚Xβ

σ2

żż

R

ˆ

b˚1Sb˚

σ2

˙p

vq
2fb˚pb˚q

ˆ exp
ˆ

´
λ˚

2

2

˙ 8
ÿ

j“0

pλ˚
2{2qjv

ν{2`j
2 expp´v2{2q

j!2ν{2`j`1Γpν{2 ` j ` 1q
db˚ dv2

“ E

„

IpF ˚ ě τqvp
1v

q
2

X 1X˚b˚

σ2



´
X 1X˚S˚´1X˚1Xβ ` X 1M˚Xβ

σ2
Hpp, q; τq

`
X 1M˚Xβ

σ2
Ki,j`1

żż

R
v

k{2`i´1
1 v

ν{2`q`j
2 exp

„

´
v1 ` v2

2



dv1 dv2

“ E

„

IpF ˚ ě τqvp
1v

q
2

X 1X˚b˚

σ2



´
X 1X˚S˚´1X˚1Xβ ` X 1M˚Xβ

σ2
Hpp, q; τq

`
X 1M˚Xβ

σ2
2p`q

8
ÿ

i“0

8
ÿ

j“0

wipλ
˚
1qwjpλ˚

2qGi,j`1pp, q; τq, (37)

where the last equality is obtained by the calculations similar to the ones used to derive Hpp, q; τq.

Equating (31) and (37), and multiplying β1 from the left, we obtain Jpp, q; τq given in (21) in the

text. Note that we differentiate Hpp, q; τq with respect to β in (31) and p37q in order to obtain

the formula for Jpp, q; τq. When the relevant regressors are omitted, Namba (2002) differentiated

a similar term with respect to β1 in order to obtain the formulae for the PMSE’s of the SR and

PSR estimators since Bλ2{Bβ1 “ 0, where λ2 “ β1X 1M1Xβ. However, mathematical derivation

differs a great deal when the proxy variables are used. We can not obtain the formulae for

them by such calculations since Bλ˚
2{Bβ1 ‰ 0. Thus, (31) and p37q have some additional terms

compared to the similar equations in Namba (2002).

Acknowledgement

The authors are grateful to an anonymous referee for his comments and suggestions.

References

Baranchik, A. J. (1970) A family of minimax estimators of the mean of a multivariate normal
distribution. The Annals of Mathematical Statistics 41, 642–645.

Frost, P. A. (1979) Proxy variables and specification bias. The Review of Economics and Statis-
tics 61, 323–325.

9



James, W. & C. Stein (1961) Estimation with quadratic loss. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1, pp. 361–379.
University of California Press, Berkeley.

McCallum, B. T. (1972) Relative asymptotic bias from errors of omission and measurement.
Econometrica 40, 757–758.

Mittelhammer, R. C. (1984) Restricted least squares, pre-test, Ols and Stein rule estimators:
Risk comparisons under model misspecification. Journal of Econometrics 25, 151–164.

Namba, A. (2002) PMSE performance of the biased estimators in a linear regression model when
relevant regressors are omitted. Econometric Theory 18, 1086–1098.

Namba, A. (2003) Dominance of the positive-part shrinkage estimator in a regression model
when relevant regressors are omitted. Statistics & Probability Letters 63, 375–385.

Ohtani, K. (1981) On the use of a proxy variable in prediction: An MSE comparison. The Review
of Economics and Statistics 63, 627–629.

Ohtani, K. (1993) A comparison of the Stein-rule and positive-part Stein-rule estimators in a
misspecified linear regression model. Econometric Theory 9, 668–679.

Ohtani, K. (1998) MSE performance of the minimum mean squared error estimators in a linear
regression model when relevant regressors are omitted. Journal of Statistical Computation
and Simulation 61, 61–75.

Ohtani, K. & H. Hasegawa (1993) On small sample properties of R2 in a linear regression model
with multivariate t errors and proxy variables. Econometric Theory 9, 504–515.

Stein, C. (1956) Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1, pp. 197–206. University of California Press, Berkeley.

Trenkler, G. & P. Stahlecker (1996) Dropping variables versus use of proxy variables in linear
regression. Journal of Statistical Planning and Inference 50, 65–75.

Wickens, M. R. (1972) A note on the use of proxy variables. Econometrica 40, 759–761.

10



Table 1: PMSE’s for k “ 6 and n “ 30 when the relevant regressor is omitted.

λ2{Fβ

Estimator Fβ 0.0 0.1 0.3 0.5 0.7 0.9

bSRO 0.0 0.3704 0.3704 0.3846 0.3704 0.3704 0.3704

1.0 0.4511 0.4531 0.4768 0.4588 0.4603 0.4609

2.0 0.5126 0.5176 0.5514 0.5300 0.5319 0.5312

4.0 0.5972 0.6095 0.6624 0.6358 0.6380 0.6335

6.0 0.6505 0.6700 0.7389 0.7091 0.7119 0.7049

8.0 0.6859 0.7119 0.7933 0.7617 0.7657 0.7578

10.0 0.7105 0.7424 0.8330 0.8006 0.8061 0.7988

15.0 0.7475 0.7913 0.8949 0.8627 0.8723 0.8702

20.0 0.7676 0.8209 0.9290 0.8983 0.9111 0.9166

25.0 0.7801 0.8412 0.9496 0.9207 0.9358 0.9494

30.0 0.7886 0.8564 0.9631 0.9360 0.9526 0.9737

40.0 0.7995 0.8780 0.9791 0.9554 0.9736 1.0072

50.0 0.8061 0.8932 0.9879 0.9670 0.9858 1.0290

100.0 0.8196 0.9326 1.0025 0.9900 1.0089 1.0740

150.0 0.8241 0.9504 1.0061 0.9976 1.0160 1.0879

bPSRO 0.0 0.2714 0.2714 0.2714 0.2714 0.2714 0.2714

1.0 0.3712 0.3718 0.3721 0.3713 0.3697 0.3670

2.0 0.4497 0.4521 0.4542 0.4529 0.4484 0.4410

4.0 0.5602 0.5687 0.5773 0.5762 0.5663 0.5483

6.0 0.6297 0.6456 0.6624 0.6631 0.6497 0.6226

8.0 0.6746 0.6977 0.7226 0.7262 0.7113 0.6774

10.0 0.7045 0.7342 0.7663 0.7733 0.7584 0.7196

15.0 0.7463 0.7894 0.8341 0.8485 0.8373 0.7926

20.0 0.7674 0.8205 0.8715 0.8908 0.8851 0.8396

25.0 0.7801 0.8411 0.8949 0.9168 0.9163 0.8728

30.0 0.7886 0.8563 0.9110 0.9339 0.9379 0.8976

40.0 0.7995 0.8780 0.9319 0.9548 0.9650 0.9324

50.0 0.8061 0.8932 0.9450 0.9668 0.9807 0.9559

100.0 0.8196 0.9326 0.9733 0.9900 1.0084 1.0119

150.0 0.8241 0.9504 0.9835 0.9976 1.0159 1.0348
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Table 2: PMSE’s for k “ 6 and n “ 30 when the proxy variable is used.

λ˚
2{Fβ

Estimator Fβ 0.0 0.1 0.3 0.5 0.7 0.9

bSRP 0.0 0.3846 0.3846 0.3846 0.3846 0.3846 0.3846

1.0 0.4755 0.4761 0.4768 0.4767 0.4759 0.4744

2.0 0.5472 0.5492 0.5514 0.5512 0.5488 0.5444

4.0 0.6507 0.6563 0.6624 0.6626 0.6575 0.6473

6.0 0.7197 0.7289 0.7389 0.7401 0.7337 0.7199

8.0 0.7678 0.7801 0.7933 0.7958 0.7896 0.7746

10.0 0.8027 0.8174 0.8330 0.8369 0.8318 0.8174

15.0 0.8578 0.8762 0.8949 0.9018 0.9013 0.8940

20.0 0.8892 0.9094 0.9290 0.9379 0.9423 0.9456

25.0 0.9094 0.9303 0.9496 0.9598 0.9684 0.9832

30.0 0.9234 0.9445 0.9631 0.9740 0.9861 1.0121

40.0 0.9415 0.9622 0.9791 0.9908 1.0077 1.0537

50.0 0.9527 0.9726 0.9879 1.0000 1.0200 1.0823

100.0 0.9759 0.9916 1.0025 1.0152 1.0414 1.1477

150.0 0.9838 0.9967 1.0061 1.0190 1.0471 1.1707

bPSRP 0.0 0.2753 0.2753 0.2753 0.2753 0.2753 0.2753

1.0 0.3663 0.3674 0.3690 0.3694 0.3689 0.3675

2.0 0.4361 0.4398 0.4446 0.4458 0.4439 0.4389

4.0 0.5306 0.5420 0.5562 0.5604 0.5557 0.5426

6.0 0.5863 0.6066 0.6316 0.6403 0.6345 0.6146

8.0 0.6196 0.6484 0.6839 0.6976 0.6925 0.6679

10.0 0.6400 0.6766 0.7210 0.7398 0.7366 0.7090

15.0 0.6644 0.7169 0.7768 0.8058 0.8099 0.7806

20.0 0.6742 0.7389 0.8067 0.8417 0.8537 0.8270

25.0 0.6792 0.7539 0.8251 0.8631 0.8819 0.8600

30.0 0.6823 0.7656 0.8379 0.8768 0.9011 0.8848

40.0 0.6860 0.7834 0.8549 0.8931 0.9245 0.9200

50.0 0.6880 0.7969 0.8661 0.9022 0.9376 0.9439

100.0 0.6918 0.8362 0.8918 0.9200 0.9584 1.0021

150.0 0.6930 0.8559 0.9017 0.9259 0.9631 1.0266
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