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Abstract

In this paper we consider to test the hypothesis using the empirical likelihood. To calculate

the critical value of the test, two bootstrap methods are applied. Our simulation results

indicate that the bootstrap methods improve the small sample property of the test.

1 Introduction

Likelihood methods are very important in parametric models since they are very effective.

However, we suppose that the distribution of data has a known form when parametric

likelihood methods are used. Empirical likelihood is a nonparametric method of statistical

inference which has lots of similarities to parametric likelihood methods.

As shown by Owen (1988, 1990), Qin and Lawless (1994), El Barmi (1996), we can

test hypotheses or construct confidence regions using the empirical likelihood ratio. These

inferences are asymptotically valid and have coverage error or size distortion in small sample

size. Several authors proposed ways to improve the accuracy of inference based on the

empirical likelihood ratio. Some examples are DiCiccio and Romano (1989), Hall (1990),

DiCiccio et al. (1991) and Tsao (2001). Owen (1988, 2001) proposed to use the bootstrap

method in calculating the critical value of the empirical likelihood ratio. Also, Hall and

Presnell (1999), Brown and Newey (2001) proposed to utilize the probabilities obtained

by the empirical likelihood in the bootstrap resampling. However, the validity of these
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procedure have not been examined except for some simulations in Owen (1988), Hall and

Presnell (1999), and Brown and Newey (2001). Though they examined the size of the test

or the coverage probability of the confidence region, the power of the test has not been

examined yet.

Thus, in this paper we apply two bootstrap methods to obtain the critical values of the

empirical likelihood ratio. The first is the usual bootstrap method where the resampling is

executed based on the empirical distribution function. And the second is the method where

the resampling is executed by utilizing the probabilities obtained by empirical likelihood. In

sections 2 and 3, we briefly explain the empirical likelihood and the bootstrap methods. In

section 4, we execute the Monte Carlo simulations to examine the validity of the procedure.

2 Empirical Likelihood

Let X1, X2, . . . , Xn be d× 1 independent random vectors with the common distribution F0.

Suppose that we have a set of estimating equations

E[g(X, θ)] = 0, (1)

where θ is a l × 1 vector of unknown parameters, g(X, θ) is a s × 1 vector-valued function,

and X is a d× 1 random vector distributed as F0. Then the empirical likelihood ratio for θ

is defined as

R(θ) = max

{
n∏

i=1

npi

∣∣∣
n∑

i=1

pig(Xi, θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
. (2)

Assume that E[g(X, θ0)] = 0, and Var[g(X, θ0)] is finite and has rank q > 0. Then, as shown

by Qin and Lawless (1994) and Owen (2001), −2 logR(θ0) → χ2
q in distribution as n →∞.

Using this fact, we can test the hypotheses about θ or construct confidence regions for θ.

However, these inferences are valid only asymptotically, and the test has size distortion if the

critical value is calculated from the chi-square distribution. Several authors proposed ways

to improve the accuracy of inference based on the empirical likelihood ratio. Some examples

are DiCiccio and Romano (1989), Hall (1990), DiCiccio et al. (1991) and Tsao (2001). In
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particular, Owen (1988, 2001) suggested to apply the bootstrap method. In the next section,

we introduce the way to apply the bootstrap methods to the empirical likelihood ratio.

3 Bootstrap Method

Though the empirical likelihood ratio given in (2) is distributed as chi-square distribution as

n →∞ under the null hypothesis H0 : E[g(X, θ0)] = 0, its distribution is unknown in small

sample size. When the distribution of a statistic is unknown, the bootstrap method proposed

by Efron (1979) is often valid. Owen (1988) used the bootstrap method to construct a

confidence interval based on empirical likelihood ratio, and executed some simulations. Also,

Hall and Presnell (1999), and Brown and Newey (2001) proposed to use the probabilities

obtained by the empirical likelihood as the resampling probabilities of the bootstrap. We

call this method the EL bootstrap hereafter. In this section, we briefly summarize the usual

bootstrap and the EL bootstrap.

In order to obtain the critical value of the test for H0 : E[g(X, θ0)] = 0, the bootstrap

methods are applied to the empirical likelihood ratio in the following way.

1. I. In the case of usual bootstrap, draw a random sample of size n, X∗
1 , X

∗
2 , . . . , X∗

n

from the original sample X1, X2, . . . , Xn with replacement. This is equivalent to

drawing n i.i.d. observations from the distribution with P (X = Xi) = 1/n.

II. In the case of EL bootstrap, draw a random sample of size n, X∗
1 , X

∗
2 , . . . , X∗

n from

the distribution with P (X = Xi) = p̂i, where p̂i is obtained by maximizing the

empirical likelihood ratio given in (2) under the null hypothesis H0 : E[g(X, θ0)] =

0.

2. Using X∗
1 , X

∗
2 , . . . , X

∗
n, calculate

Rb(θ0) = max

{
n∏

i=1

np∗i
∣∣∣

n∑

i=1

p∗i g
∗(X∗

i , θ0) = 0, p∗i ≥ 0,
n∑

i=1

p∗i = 1

}

where g∗(X, θ) is defined as follows.
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I. In the case usual bootstrap, as discussed by Hall and Horowitz (1996), recentering

is required since
1

n

n∑

i=1

g(Xi, θ0) 6= 0 in general. Thus, recentering g(X, θ), we

define g∗(X, θ) = g(X, θ)− 1

n

n∑

i=1

g(Xi, θ).

II. In the case of EL bootstrap, we define g∗(X, θ) = g(X, θ). Since
n∑

i=1

p̂ig(Xi, θ0) =

0, recentering is not required in the EL bootstrap.

3. Repeating steps 1–2 B times, we obtain B values of Rb(θ0). Sorting −2 logRb(θ0) into

the ascending numerical order, and letting −2 logRα be the B × (1 − α)th value, we

obtain the 100×α% critical value of −2 logR(θ0) as −2 logRα. We call −2 logRα the

bootstrap critical value.

The differences between the usual and the EL bootstrap methods are steps 1 and 2. In step 1,

while Xi is drawn with probability 1/n in the usual bootstrap, it is drawn with probability

p̂i in the EL bootstrap. Also, in step 2, though the usual bootstrap requires the recentering,

it is not needed in the EL bootstrap.

To examine the validity of these procedures, we execute some simulations in the next

section.

4 Monte Carlo Results

In this section, we examine the efficiency of the procedures introduced in the previous section

by Monte Carlo simulations. For simplicity, we assume d = l = s = 1 and let g(X, θ) = X−θ.

In this setup, we can test the hypothesis about the mean θ of a random scalar X. In the

following simulations, we consider to test H0 : θ = θ0 = 0 against H1 : θ = θ1. In the usual

bootstrap, g∗(X, θ1) = X −X.1

1Efron and Tibshirani (1993) stated that for the test for the mean H0 : θ = θ0, Z∗i = X∗
i −X + θ0 should

be used in place of X∗
i . If Z∗i is used in place of Xi, g(Z∗i , θ) = X∗

i −X. Thus, in this case, recentering and

the method proposed by Efron and Tibshirani (1993) yield the same results. Also, if we consider g(X, θ)

as a random vector, and test for H0 : E[g(X, θ0)] = 0, recentering and the method of Efron and Tibshirani
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The design of the simulation is as follows.

1. Draw a random sample of size n, X1, X2, . . . , Xn, from the

I. normal distribution

II. uniform distribution

III. chi-square distribution with 2 degrees of freedom

IV. t-distribution with 3 degrees of freedom

where n = 20, 50, 100, 200. Each sample is transformed so as to have mean θ1 and

variance 1, where θ1 = 0, 0.1, 0.2, 0.4.

2. Using the bootstrap methods explained in the previous section, calculate the 100×α%

critical values, where α = 0.1, 0.05, 0.01 and the number of iteration B = 10000.

3. Calculate the value of R(0). If −2 logR(0) is larger than the critical values obtained

in step 2, H0 : θ = 0 is rejected. In a similar way, we can test H0 using the critical

values of the chi-square distribution.

4. Repeating steps 1–3 10000 times, and calculating the rate such that H0 : θ = 0 is

rejected, we obtain the empirical power of the test p̂. To examine the validity of the

procedures, we also test the null hypothesis using the critical values of the chi-square

distribution.

Empirical powers obtained by the simulations are shown in Table 1. Let p the true

power of the test. When θ1 = 0, we test H0 : p = α against H1 : p 6= α using the normal

approximation of a binomial distribution. In Table 1, ∗, † and ‡ represent that H0 : p = α is

rejected at 10%, 5%, and 1% significance levels respectively.

When the sample is drawn from the normal distribution, H0 : p = α can not be rejected

even for n = 20 if the bootstrap critical values are used. On the other hand, if the critical

(1993) mean the same thing. The author is grateful to an anonymous referee for indicating the discussion

of Efron and Tibshirani (1993).
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values of the chi-square distribution are used, H0 : p = α is rejected even for n = 50. When

the sample is drawn from the uniform distribution, the empirical sizes obtained from the

usual bootstrap critical values and critical values of the chi-square distribution are almost

comparable. The EL bootstrap yields the preferable results than the other two methods.

When the sample is distributed as the chi-square distribution and n = 20 and 50, H0 : p = α

is rejected at 1% significance level for all critical values. However, the usual bootstrap critical

values yield empirical sizes closer to α. Also, when n = 200, both usual and EL bootstrap

critical values yield the preferable results. When the sample has the t distribution, H0 : p = α

is rejected at 1% significance level even for n = 200 if the critical values of the chi-square

distribution are used. However, H0 : p = α can not be rejected even when n = 20, if

the usual bootstrap critical values are used. As a whole, we see that the bootstrap critical

values yield the preferable empirical sizes compared with those of the chi-square distribution.

Also, critical values obtained by the usual and EL bootstrap methods are almost comparable

though the usual bootstrap yields the preferable results in some cases.

In most cases, the powers of the test are slightly smaller when the bootstrap critical values

are used than when those of the chi-square distribution are used. However, the differences

of powers are very small and the critical values of the chi-square distribution yield large size

distortions. Also, large powers obtained by the critical values of chi-square distribution are

caused by these size distortions.

Thus, our simulation results show that the test based on the empirical likelihood ratio is

improved by the bootstrap methods introduced in this paper.
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Table 1: Empirical sizes obtained by Monte Carlo simulations.

χ2 Usual bootstrap EL bootstrap
n Dist θ1 10% 5% 1% 10% 5% 1% 10% 5% 1%

20

I

0.00 0.1179‡ 0.0648‡ 0.0192‡ 0.1000 0.0495 0.0092 0.1011 0.0504 0.0095
0.10 0.1565 0.0966 0.0313 0.1351 0.0745 0.0168 0.1377 0.0777 0.0187
0.20 0.2536 0.1675 0.0640 0.2226 0.1344 0.0393 0.2284 0.1405 0.0401
0.40 0.5688 0.4416 0.2440 0.5257 0.3903 0.1636 0.5343 0.4007 0.1727

II

0.00 0.1076† 0.0545† 0.0128‡ 0.0959 0.0444† 0.0064‡ 0.1000 0.0475 0.0095
0.10 0.1390 0.0789 0.0211 0.1247 0.0646 0.0113 0.1273 0.0678 0.0157
0.20 0.2347 0.1492 0.0486 0.2188 0.1307 0.0295 0.2201 0.1338 0.0350
0.40 0.5702 0.4528 0.2298 0.5503 0.4289 0.1762 0.5475 0.4224 0.1723

III

0.00 0.1616‡ 0.1040‡ 0.0461‡ 0.1176‡ 00665‡ 0.0217‡ 0.1328‡ 0.0832‡ 0.0386‡

0.10 0.1783 0.1107 0.0356 0.1287 0.0667 0.0128 0.1190 0.0575 0.0154
0.20 0.3098 0.2138 0.0814 0.2330 0.1282 0.0258 0.1947 0.0874 0.0088
0.40 0.8211 0.7464 0.5453 0.7176 0.5749 0.2482 0.6537 0.4299 0.0757

IV

0.00 0.1500‡ 0.0900‡ 0.0308‡ 0.1017 0.497 0.0098 0.1111‡ 0.0589‡ 0.0117∗

0.10 0.2023 0.1333 0.0544 0.1493 0.0826 0.0194 0.1622 0.0943 0.0243
0.20 0.3377 0.2461 0.1235 0.2690 0.1701 0.0550 0.2951 0.1975 0.0723
0.40 0.6599 0.5595 0.3786 0.5819 0.4569 0.2266 0.6259 0.5137 0.2963

50

I

0.00 0.1073† 0.0552† 0.0116 0.1015 0.0498 0.0101 0.1029 0.0500 0.0098
0.10 0.1949 0.1141 0.0350 0.1872 0.1081 0.0303 0.1872 0.1075 0.0318
0.20 0.4187 0.2991 0.1272 0.4087 0.2831 0.1154 0.4091 0.2848 0.1162
0.40 0.8806 0.8059 0.5942 0.8750 0.7953 0.5674 0.8758 0.7960 0.5707

II

0.00 0.1053∗ 0.0537∗ 0.0120† 0.1018 0.515 0.0106 0.1020 0.0520 0.0112
0.10 0.1888 0.1136 0.0350 0.1847 0.1095 0.0330 0.1839 0.1105 0.0337
0.20 0.4236 0.3019 0.1279 0.4178 0.2955 0.1212 0.4182 0.2946 0.1221
0.40 0.8891 0.8210 0.6226 0.8868 0.8159 0.6119 0.8859 0.8154 0.6082

III

0.00 0.1302‡ 0.0741‡ 0.0246‡ 0.1132‡ 00610‡ 0.0146‡ 0.1165‡ 0.0639‡ 0.0184‡

0.10 0.2111 0.1303 0.0405 0.1833 0.1038 0.0209 0.1769 0.0946 0.0159
0.20 0.5121 0.3933 0.1982 0.4693 0.3376 0.1305 0.4530 0.3150 0.0987
0.40 0.9906 0.9779 0.9331 0.9847 0.9636 0.8591 0.9834 0.9594 0.8115

IV

0.00 0.1270‡ 0.0689‡ 0.0192‡ 0.0999 0.480 0.0097 0.1081‡ 0.0554† 0.0125†

0.10 0.2347 0.1542 0.0590 0.2021 0.1237 0.0367 0.2130 0.1352 0.0450
0.20 0.4890 0.3748 0.1967 0.4497 0.3255 0.1454 0.4645 0.3478 0.1686
0.40 0.8716 0.8068 0.6360 0.8434 0.7604 0.5549 0.8625 0.7907 0.6078
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Table 1 (continued)

χ2 Usual bootstrap EL bootstrap
n Dist θ1 10% 5% 1% 10% 5% 1% 10% 5% 1%

100

I

0.00 0.1035 0.0537∗ 0.0113 0.1003 0.0514 0.0107 0.1014 0.0512 0.0104
0.10 0.2662 0.1736 0.0609 0.2610 0.1709 0.0585 0.2609 0.1707 0.0585
0.20 0.6363 0.5120 0.2791 0.6316 0.5060 0.2727 0.6319 0.5075 0.2721
0.40 0.9915 0.9786 0.9174 0.9907 0.9768 0.9131 0.9908 0.9773 0.9140

II

0.00 0.1045 0.0507 0.0117∗ 0.1029 0.0501 0.0115 0.1037 0.0501 0.0113
0.10 0.2700 0.1781 0.0618 0.2676 0.1765 0.0602 0.2668 0.1764 0.0605
0.20 0.6511 0.5297 0.2915 0.6500 0.5264 0.2862 0.6491 0.5268 0.2878
0.40 0.9932 0.9818 0.9337 0.9932 0.9815 0.9325 0.9928 0.9813 0.9316

III

0.00 0.1161‡ 0.0619‡ 0.0143‡ 0.1081‡ 0.0545† 0.0114 0.1080‡ 0.0561‡ 0.0125†

0.10 0.2941 0.1978 0.0726 0.2773 0.1803 0.0589 0.2726 0.1733 0.0535
0.20 0.7538 0.6545 0.4316 0.7357 0.6242 0.3784 0.7312 0.6157 0.3596
0.40 0.9998 0.9998 0.9986 0.9998 0.9995 0.9973 0.9998 0.9994 0.9963

IV

0.00 0.1169‡ 0.0608‡ 0.0133‡ 0.0989 0.0476 0.0083∗ 0.1041 0.0535 0.0102
0.10 0.3008 0.2065 0.0816 0.2791 0.1809 0.0630 0.2859 0.1910 0.0725
0.20 0.6643 0.5557 0.3390 0.6421 0.5238 0.2948 0.6504 0.5359 0.3173
0.40 0.9679 0.9438 0.8604 0.9553 0.9230 0.8210 0.9652 0.9389 0.8477

200

I

0.00 0.1075† 0.0511 0.0095 0.1066† 0.0507 0.0093 0.1060† 0.0507 0.0096
0.10 0.4102 0.2940 0.1309 0.4074 0.2916 0.1292 0.4069 0.2915 0.1293
0.20 0.8737 0.7993 0.5898 0.8725 0.7962 0.5877 0.8721 0.7972 0.5863
0.40 0.9999 0.9998 0.9991 0.9999 0.9997 0.9990 0.9999 0.9998 0.9989

II

0.00 0.1005 0.0521 0.0118∗ 0.1004 0.0512 0.0118∗ 0.0996 0.0511 0.0116
0.10 0.4062 0.2901 0.1254 0.4046 0.2885 0.1243 0.4051 0.2887 0.1247
0.20 0.8870 0.8151 0.6062 0.8863 0.8142 0.6054 0.8859 0.8148 0.6027
0.40 1.0000 1.0000 0.9997 1.0000 1.0000 0.9996 1.0000 1.0000 0.9997

III

0.00 0.1055∗ 0.0553† 0.0122† 0.1010 0.0512 0.0111 0.1009 0.0517 0.0105
0.10 0.4585 0.3351 0.1654 0.4480 0.3257 0.1516 0.4450 0.3242 0.1477
0.20 0.9481 0.9119 0.7862 0.9459 0.9060 0.7685 0.9459 0.9044 0.7598
0.40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

IV

0.00 0.1127‡ 0.0584‡ 0.0150‡ 0.1015 0.0508 0.0107 0.1050∗ 0.0535 0.0122†

0.10 0.4462 0.3330 0.1566 0.4280 0.3112 0.1381 0.4345 0.3201 0.1456
0.20 0.8724 0.8019 0.6079 0.8594 0.7813 0.5715 0.8643 0.7903 0.5923
0.40 0.9941 0.9900 0.9700 0.9887 0.9807 0.9541 0.9938 0.9885 0.9672
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