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1 Introduction

In the problem of estimating the mean vector of a multivariate normal distribution, Stein (1956)

and James and Stein (1961) showed that the maximum likelihood (ML) estimator is dominated

by the Stein-rule (SR) estimator in terms of mean squared error (MSE). The SR estimator can

be applied in a linear regression model. In the context of linear regression, the SR estimator

dominates the ordinary least squares (OLS) estimator in terms of predictive mean squared error

(PMSE) if the model is specified correctly. Since the findings of Stein (1956), lots of estimators

have been proposed and their sampling properties have been examined. In particular, Baranchik

(1964) showed that the SR estimator is further dominated by the positive-part Stein-rule (PSR)

estimator. Also, Baranchik (1970) proposed a family of estimators which dominate the OLS

estimator in terms of PMSE. These estimators are called the shrinkage estimators since they

are obtained by shrinking the OLS estimator toward the origin. In general, it is expected that

the PMSE of the shrinkage estimator can be improved by using its positive-part variant if the

model is specified correctly. Nickerson (1988) considered a class of estimators and showed that

the estimators are dominated by their positive-part variants.

The shrinkage estimators are biased even when there are no omitted relevant regressors.

However, in most of practical situations, it is hard to determine which regressors should be

included in the model. Thus, the researcher may exclude relevant regressors mistakenly. If there

are omitted relevant regressors, even the OLS estimator is not unbiased. In such situations,

there may be a strong incentive to use the shrinkage estimators from the viewpoint of PMSE.

However, there are few researches on the sampling properties of shrinkage estimators when

relevant regressors are omitted in the specified model. Some exceptions are Mittelhammer

(1984), Ohtani (1993, 1998) and Namba (2000). Mittelhammer (1984) showed that the SR

estimator no longer dominates the OLS estimator when relevant regressors are omitted. Ohtani

(1993) derived the formulae for the PMSE’s of the SR and the PSR estimator of the misspecified

model. In particular, Namba (2000) showed exactly that the PSR estimator dominates the

SR estimator even when the relevant regressors are omitted. Thus, it may be expected that

the shrinkage estimators are dominated by their positive-part variants when there are omitted

relevant regressors.

Thus, in this paper, we consider a general class of shrinkage estimators of regression coeffi-

cients when relevant regressors are omitted. The plan of the paper is as follows. In section 2

the model and the estimators are presented. In section 3 we derive the PMSE of the general
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class of shrinkage estimators. We propose the pre-test shrinkage estimator which dominates

the shrinkage estimator. Moreover, it is shown analytically that the shrinkage estimators are

dominated by their positive-part variants whether there are omitted relevant regressors or not.

In section 4, as an example, our result is applied to the double k-class estimator proposed by

Ullah and Ullah (1978).

2 Model and the Estimators

Consider a linear regression model,

y = X1β1 + X2β2 + ε, ε ∼ N(0, σ2In), (1)

where y is an n× 1 vector of observations on a dependent variable, X1 and X2 are n× k1 and

n × k2 matrices of observations on nonstochastic independent variables, β1 and β2 are k1 × 1

and k2 × 1 vectors of regression coefficients, and ε is an n× 1 vector of normal error terms. We

assume that X1 and [X1, X2] are of full column rank.

Suppose that the matrix of regressors X2 is omitted mistakenly and the model is specified

as

y = X1β1 + η, η = X2β2 + ε. (2)

Then, based on the misspecified model, the ordinary least squares (OLS) estimator of β1 is

b1 = S−1
11 X ′

1y, (3)

where S11 = X ′
1X1.

Also, based on the misspecified model, the Stein-rule estimator proposed by Stein (1956)

and James and Stein (1961) is

bS1 =
(

1− ae′1e1

b′1S11b1

)
b1, (4)

where e1 = y − X1b1, ν1 = n − k1 and a is a constant such that 0 ≤ a ≤ 2(k1 − 2)/(ν1 + 2).

Here, we define the predictive mean squared error (PMSE) as

PMSE[β̄1] = E[(X1β̄1 −Xβ)′(X1β̄1 −Xβ)], (5)

where X = [X1, X2], β′ = [β′1, β′2] and β̄1 is any estimator of β1. The meaning and some

discussions of the PMSE are given in Mittelhammer (1984) and Ohtani (1993). When there are

no omitted relevant regressors (i.e., X = X1), the SR estimator dominates the OLS estimator
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in terms of PMSE for k1 ≥ 3. Also, the PMSE of the SR estimator is minimized when a =

(k1 − 2)/(ν1 + 2) if the model is specified correctly.

Baranchik (1970) proposed a family of estimators:

bB1 =
[
1− r(F )

F

]
b1, (6)

where F = (b′1S11b1)/(e′1e1). If we define F1 = ν1F/k1, F1 is the test statistic for the null

hypothesis H0 : β1 = 0 against the alternative H1 : β1 6= 0 based on the misspecified model.

This estimator dominates the OLS estimator if

(i). r(·) is monotone, nondecreasing,

(ii). 0 ≤ r(·) ≤ 2(k1 − 2)/(ν1 + 2), and

(iii). relevant regressors are not omitted.

Also, as is shown in Baranchik (1964), when there are no omitted regressors, the SR estimator

is further dominated by the positive-part Stein-rule estimator (PSR) defined as

bPS1 = max
[
0, 1− ae′1e1

b′1S11b1

]
b1 (7)

Moreover, Namba (2000) showed that the PSR estimator dominates the SR estimator in terms of

PMSE even when there are omitted relevant regressors. Thus, it is expected that there may be

some conditions such that the shrinkage estimators are dominated by their positive-part variant

even when relevant regressors are omitted.

Thus, in this paper, we consider the following general class of shrinkage estimators:

β̂1 = (1− φ(F ))b1, (8)

and its positive-part variant:

β̂+
1 = max[0, 1− φ(F )]b1, (9)

where φ(F ) is any real value function of F . We assume that the second moments of (8) and

(9) exist since our analysis is based on PMSE. In general, φ(·) is positive and continuous. Here-

after, we call these estimators the shrinkage estimator and the positive-part shrinkage estimator

respectively. Most of the estimators proposed so far are included in (8).

In the next section it is shown that the positive-part shrinkage estimator dominates the

shrinkage estimator in terms of PMSE even when there are omitted relevant regressors.
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3 PMSE of the estimator

In this section, we consider the following pre-test shrinkage estimators:

β̃1 = I(F ≥ c)(1− φ(F ))b1, (10)

where I(A) is an indicator function such that I(A) = 1 if an event A occurs and I(A) = 0

otherwise. The estimator given in (10) includes the SR, PSR and Baranchik’s (1970) estimators

as special cases. Also, (10) reduces to (8) when c = 0.

The PMSE of β̃1 is defined as

PMSE[β̃1] = E[(X1β̃1 −Xβ)′(X1β̃1 −Xβ)]

= E[β̃′1S11β̃1]− 2E[β′X ′X1β̃1] + β′Sβ, (11)

where S = X ′X.

Denoting u1 = b′1S11b1/σ2 and u2 = e′1e1/σ2, (11) reduces to

PMSE[β̃1] = E

[
I

(
u1

u2
≥ c

) (
1− φ

(
u1

u2

))2

u1σ
2

]

−2E

[
I

(
u1

u2
≥ c

) (
1− φ

(
u1

u2

))
β′X ′X1b1

]
+ β′Sβ. (12)

If we define the functions H(p, q; c) and J(p, q; c) as

H(p, q; c) = E

[
I

(
u1

u2
≥ c

) (
1− φ

(
u1

u2

))p

uq
1

]
, (13)

J(p, q; c) = E

[
I

(
u1

u2
≥ c

) (
1− φ

(
u1

u2

))p

uq
1(β

′X ′X1b1/σ2)
]
, (14)

we obtain

PMSE[β̃1]/σ2 = H(2, 1; c)− 2J(1, 0; c) + λ1 + λ2, (15)

where λ1 = β′X ′X1S
−1
11 X ′

1Xβ/σ2, λ2 = β′X ′M1Xβ/σ2, M1 = In − X1S
−1
11 X ′

1 and λ1 + λ2 =

β′Sβ/σ2.

As is shown in Appendix, the explicit formulae of H(p, q; c) and J(p, q; c) are

H(p, q; c) =
∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)Gij(p, q; c), (16)

J(p, q; c) = λ1

∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)Gi+1,j(p, q; c), (17)
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where wi(λ) = exp(−λ/2)(λ/2)i/i! and

Gij(p, q; c) =
2qΓ((k1 + ν1)/2 + q + i + j)

Γ(k1/2 + i)Γ(ν1/2 + j)

×
∫ 1

c∗
tk1/2+q+i−1(1− t)ν1/2+j−1

(
1− φ

(
t

1− t

))p

dt, (18)

where c∗ = c/(1 + c).

Hereafter, we assume that both H(2, 1; c) and J(1, 0; c) are absolutely convergent. For ex-

ample, both H(2, 1; c) and J(1, 0; c) are absolutely convergent if |φ(·)| < ∞. Also, they converge

absolutely for k1 ≥ 3 if |φ( t
1−t)/t| < ∞ on t ∈ (0, 1).

Substituting (16) and (17) in (15), we obtain the explicit formula for the PMSE of β̃1:

PMSE[β̃1]/σ2 =
∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)
2Γ((k1 + ν1)/2 + i + j + 1)

Γ(k1/2 + i)Γ(ν1/2 + j)

×
∫ 1

c∗
tk1/2+i(1− t)ν1/2+j−1

(
1− φ

(
t

1− t

))2

dt

−2λ1

∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)
Γ((k1 + ν1)/2 + i + j + 1)
Γ(k1/2 + i + 1)Γ(ν1/2 + j)

×
∫ 1

c∗
tk1/2+i(1− t)ν1/2+j−1

(
1− φ

(
t

1− t

))
dt + λ1 + λ2. (19)

Supposing that φ(·) is continuous and differentiating (19) with respect to c and performing

some manipulations we obtain

∂PMSE[β̃1]/σ2

∂c
= −

∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)
2Γ((k1 + ν1)/2 + i + j + 1)

Γ(k1/2 + i)Γ(ν1/2 + j)
ck1/2+i

(1 + c)(k1+ν1)/2+i+j

×(1− φ(c))
[
(1− φ(c))− λ1

k1/2 + i

]
. (20)

From (20), the PMSE of β̃1 is monotone decreasing function of c when φ(c) ≥ 1.

Assume that φ(·) is a continuous function such that φ(c) ≥ 1 if c ≤ c∗∗ and φ(c) < 1 if

c > c∗∗. Then, the PMSE of β̃1 is monotonically decreasing on c ∈ [0, c∗∗]. Also, β̃1 reduces to

the shrinkage estimator given in (8) when c = 0 and to the positive-part shrinkage estimator

given in (9) when c = c∗∗. Thus, we obtain the following lemma.

Lemma 1 The pre-test shrinkage estimator with 0 < c ≤ c∗∗given in (10) dominates the shrink-

age estimator given in (8) in terms of PMSE whether there are omitted relevant regressors or

not if

• φ(·) is a continuous function such that φ(c) ≥ 1 if 0 < c ≤ c∗∗ for some c∗∗ and φ(c) < 1

otherwise.
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In particular, the pre-test shrinkage estimator with c∗∗ has the smallest PMSE in the class of

the estimators with 0 ≤ c ≤ c∗∗.

Since the pre-test shrinkage estimator with c = c∗∗ reduces to the positive-part shrinkage esti-

mator given in (9) when the condition in Lemma 1 is satisfied, we obtain the following theorem.

Theorem 1 The positive-part shrinkage estimator given in (9) dominates the shrinkage esti-

mator given in (8) in terms of PMSE whether there are omitted relevant regressors or not if

• φ(·) is a continuous function such that φ(c) ≥ 1 if 0 < c ≤ c∗∗ for some c∗∗ and φ(c) < 1

otherwise.

Next, we extend Theorem 1. From (15), the PMSE of the shrinkage estimator given in (8) is

PMSE[β̂1]/σ2

=
∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)
2Γ((k1 + ν1)/2 + i + j + 1)

Γ(k1/2 + i)Γ(ν1/2 + j)

×
∫ 1

0
tk1/2+i(1− t)ν1/2+j−1

(
1− φ

(
t

1− t

)) [(
1− φ

(
t

1− t

))
− λ1

k1/2 + i

]
dt

+λ1 + λ2

=
∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)
2Γ((k1 + ν1)/2 + i + j + 1)

Γ(k1/2 + i)Γ(ν1/2 + j)

×
(∫

R1

+
∫

R2

)
tk1/2+i(1− t)ν1/2+j−1

(
1− φ

(
t

1− t

)) [(
1− φ

(
t

1− t

))
− λ1

k1/2 + i

]
dt

+λ1 + λ2, (21)

where R1 is the region such that {t|1 − φ( t
1−t) > 0 and 0 ≤ t ≤ 1}, R2 is the region such that

{t|1− φ( t
1−t) ≤ 0 and 0 ≤ t ≤ 1}, and (

∫
R1

+
∫
R2

)f(t)dt denotes
∫
R1

f(t)dt +
∫
R2

f(t)dt.

Also, replacing 1−φ(·) by max[0, 1−φ(·)], we obtain the PMSE of the positive-part shrinkage

estimator given in (9):

PMSE[β̂+
1 ]/σ2

=
∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)
2Γ((k1 + ν1)/2 + i + j + 1)

Γ(k1/2 + i)Γ(ν1/2 + j)

×
∫

R1

tk1/2+i(1− t)ν1/2+j−1
(

1− φ

(
t

1− t

)) [(
1− φ

(
t

1− t

))
− λ1

k1/2 + i

]
dt

+λ1 + λ2. (22)

Subtracting (22) from (21), we obtain

PMSE(β̂1)− PMSE(β̂+
1 )

σ2
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=
∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)
2Γ((k1 + ν1)/2 + i + j + 1)

Γ(k1/2 + i)Γ(ν1/2 + j)

×
∫

R2

tk1/2+i(1− t)ν1/2+j−1
(

1− φ

(
t

1− t

)) [(
1− φ

(
t

1− t

))
− λ1

k1/2 + i

]
dt

≥ 0, (23)

since R2 is the region such that {t|1−φ( t
1−t) ≤ 0 and 0 ≤ t ≤ 1}. Thus, we obtain the following

theorem.

Theorem 2 The positive-part shrinkage estimator given in (9) dominates the shrinkage esti-

mator given in (8) in terms of PMSE whether there are omitted relevant regressors or not if

• 1− φ(F ) < 0 for some region of F ∈ [0,∞).

Theorem 2 implies that using the positive-part shrinkage estimator is preferable to using the

shrinkage estimator in terms of PMSE as long as 1− φ(·) can be negative.

In the next section we apply these theorems to the double k-class estimator proposed by

Ullah and Ullah (1978).

4 Example

In this section, we consider the double k-class (KK) estimator proposed by Ullah and Ullah

(1978):

bKK1 =
(

1− k1de
′
1e1

y′y − k2de
′
1e1

)
b1

=
(

1− k1d

F + (1− k2d)

)
b1

= (1− φKK(F )) b1 (24)

where k1d and k2d are constants chosen appropriately and φKK(F ) = k1d/(F + 1− k2d).

When relevant regressors are not omitted, the double k-class estimator dominates the OLS

estimator when 0 ≤ k1d ≤ 2(k1−2)/(ν1 +2) and 1−k2d > 0 since Baranchik’s (1970) conditions

are satisfied. Also, when k2d < 1 and k1d > 1 − k2d, φKK(F ) ≥ 1 for F ≤ k1d + k2d − 1

and φ(F ) < 1 otherwise. Thus, when 0 ≤ k1d ≤ 2(k1d − 2)/(ν1 + 2) and k2d > 1 − k1d, the

positive-part double k-class (PKK) estimator defined as

bPKK1 = max
[
0, 1− k1de

′
1e1

y′y − k2de
′
1e1

]
b1 (25)

dominates the KK estimator given in (24) in terms of PMSE whether there are relevant regressors

or not. Also, the PKK estimator dominates the OLS estimator if the model is specified correctly.
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To examine the PMSE performance of the KK estimator and the PKK estimator, we ex-

ecuted the numerical evaluation. As is shown in Ohtani (1993), the noncentrality parame-

ters are expressed as λ1 = FβR2
1 and λ2 = Fβ(1 − R2

1), where Fβ = β′Sβ/σ2 and R2
1 =

β′X ′X1S
−1
11 X ′

1Xβ/β′Sβ. Fβ is the noncentrality parameter which appeared in the test for the

null hypothesis that all the regression coefficients are zeros in the correctly specified model. Also,

R2
1 is interpreted as the coefficient of determination in regression of Xβ on X1. Thus, if R2

1 is

close to unity, the magnitude of model misspecification is regarded as small, and vice versa.

The parameter values used in the numerical evaluations were k1 = 3, 5, 8, n = 20, 30, 40,

R2
1 = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 and Fβ = various values. Also, we use k1d = (k1−2)/(ν1 +2) and

k2d = 1 − k1d/2. In this case, the condition 0 ≤ k1d ≤ 2(k1d − 2)/(ν1 + 2) and k2d > 1 − k1d is

satisfied. To compare the PMSE’s of the estimators, we evaluated the values of relative PMSE

defined as PMSE[β̄1]/PMSE[b1], where β̄1 is any estimator of β1. Thus, the estimator β̄1 has

smaller PMSE than the OLS estimator when the value of relative PMSE is smaller than unity.

The numerical evaluations were executed on a personal computer using the FORTRAN code.

In evaluating the integral in Gij(p, q; c) given in (18), we used Simpson’s rule with 200 equal

subdivisions. The double infinite series in H(p, q; c) and J(p, q; c) were judged to converge when

the increment of series got smaller than 10−12. Since the results for the cases of k1 = 5, and

n = 20 are qualitatively typical, we do not show the results for the other cases.

The result for k1 = 5 and n = 20 is shown in Table 1. As is shown in Theorem 1, the PKK

estimator dominates the KK estimator. Though the PMSE of the PKK estimator is slightly

larger than unity for some values of λ1 and λ2, it is much smaller than unity over a wide region

of parameter space. Thus, there is a incentive to use the PKK estimator in terms of PMSE.

5 Appendix

In this Appendix, we derive the formulae for H(p, q; c) and J(p, q; c). First, we derive the

formula for H(p, q; c). The OLS estimator b1 is distributed as N(β1 + S−1
11 S12β2, σ

2S−1
11 ) =

N(S−1
11 X ′

1Xβ, σ2S−1
11 ), where X = [X1, X2], β′ = [β′1, β′2] and S12 = X ′

1X2. Thus, u1 =

b′1S11b1/σ2 is distributed as the non-central chi-square distribution with k1 degrees of free-

dom and noncentrality parameter λ1 = β′X ′X1S
−1
11 X ′

1Xβ/σ2. Also, the residual vector e1 is

distributed as N(M1Xβ, σ2M1), where M1 = (In − X1S
−1
11 X ′

1). Thus, u2 = e′1e1/σ2 is dis-

tributed as the non-central chi-square distribution with ν1 degrees of freedom and noncentrality

parameter λ2 = β′X ′M1Xβ/σ2. Furthermore, u1 and u2 are mutually independent.

8



Using u1 and u2, H(p, q; c) is expressed as

H(p, q; c) =
∞∑

i=0

∞∑

j=0

Kij

∫∫

R
u

k1/2+q+i−1
1 u

ν1/2+j−1
2

(
1− φ

(
u1

u2

))p

× exp[−(u1 + u2)/2]du2 du1, (26)

where

Kij =
wi(λ1)wj(λ2)

2(k1+ν1)/2+i+jΓ(k1/2 + i)Γ(ν1/2 + j)
, (27)

wi(λ) = exp(−λ/2)(λ/2)i/i!, and R is the region such that {u1, u2|u1/u2 ≥ c}.
Making use of the change of variables, v1 = u1/u2 and v2 = u2, (26) reduces to:

∞∑

i=0

∞∑

j=0

Kij

∫ ∞

c

∫ ∞

0
v

k1/2+q+i−1
1 v

(k1+ν1)/2+q+i+j−1
2 (1− φ(v1))p

× exp[−v2(1 + v1)/2]dv2 dv1. (28)

Again, making use of the change of variable, z = (1 + v1)v2/2, (28) reduces to:
∞∑

i=0

∞∑

j=0

Kij2(k1+ν1)/2+q+i+jΓ((k1 + ν1)/2 + q + i + j)

×
∫ ∞

c

v
k1/2+q+i−1
1

(1 + v1)(k1+ν1)/2+q+i+j
(1− φ(v1))pdv1. (29)

Finally, making use of the change of variable, t = v1/(1 + v1), and performing some manip-

ulations, we obtain (16) in the text.

Next, we derive the formula for J(p, q; c). Noting that ∂λ1/∂β1 = 2(S11β1 + S12β2)/σ2 and

∂λ2/∂β1 = 0, and differentiating H(p, q; c) given in (16) with respect to β1, we obtain:

∂H(p, q; c)
∂β1

=
∞∑

i=0

∞∑

j=0

[
∂wi(λ1)

∂β1

]
wj(λ2)Gij(p, q; c)

=
∞∑

i=0

∞∑

j=0

[
S11β1 + S12β2

σ2

]
[−wi(λ1) + wi−1(λ1)]wj(λ2)Gij(p, q; c)

= −
[
S11β1 + S12β2

σ2

]
H(p, q; c)

+
[
S11β1 + S12β2

σ2

] ∞∑

i=0

∞∑

j=0

wi(λ1)wj(λ2)Gi+1,j(p, q; c) (30)

Since u1 = b′1X11b1/σ2 and b1 ∼ N(S−1
11 X ′

1Xβ, σ2S−1
11 ), H(p, q; c) can be expressed as

H(p, q; c) =
∫∫

R

(
1− φ

(
u1

u2

))p

uq
1fN (b1)f2(u2)du2 db1, (31)
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where f2(u2) is the density function of u2 and

fN (b1) =
1

(2π)k1/2|σ2S−1
11 |1/2

exp

[
−(b1 − S−1

11 X ′
1Xβ)′S11(b1 − S−1

11 X ′
1Xβ)

2σ2

]
. (32)

Differentiating (31) with respect to β1, we obtain:

∂H(p, q; c)
∂β1

=
∫∫

R

(
1− φ

(
u1

u2

))p

uq
1fN (b1)f2(u2)

[
S11b1 − S11β1 − S12β2

σ2

]
du2 db1

=
1
σ2

E

[
I

(
u1

u2
≥ c

) (
1− φ

(
u1

u2

))p

uq
1S11b1

]

−
[
S11β1 + S12β2

σ2

]
H(p, q; c). (33)

Equating (30) and (33), and multiplying β′X ′X1S
−1
11 from the left, we obtain (17) in the

text.
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Table 1: Relative PMSE for k1 = 5 and n = 20.

R2
1

Estimator Fβ 0.1 0.3 0.5 0.7 0.9 1.0

PKK .0 .3848 .3848 .3848 .3848 .3848 .3848

1.0 .4724 .4781 .4828 .4867 .4895 .4906

2.0 .5379 .5508 .5609 .5681 .5723 .5732

4.0 .6303 .6568 .6758 .6873 .6910 .6895

6.0 .6930 .7300 .7544 .7672 .7683 .7636

8.0 .7390 .7834 .8102 .8224 .8203 .8126

10.0 .7745 .8239 .8511 .8616 .8564 .8463

15.0 .8366 .8917 .9149 .9197 .9094 .8954

20.0 .8777 .9328 .9497 .9495 .9368 .9211

25.0 .9075 .9600 .9704 .9666 .9530 .9368

30.0 .9302 .9790 .9836 .9773 .9636 .9472

40.0 .9631 1.0032 .9988 .9895 .9763 .9604

50.0 .9861 1.0176 1.0070 .9961 .9835 .9683

100.0 1.0438 1.0435 1.0204 1.0068 .9962 .9841

150.0 1.0692 1.0506 1.0239 1.0095 .9995 .9894

KK .0 .3980 .3980 .3980 .3980 .3980 .3980

1.0 .4857 .4913 .4959 .4995 .5021 .5030

2.0 .5514 .5639 .5735 .5800 .5833 .5838

4.0 .6445 .6697 .6869 .6965 .6985 .6962

6.0 .7081 .7425 .7638 .7740 .7730 .7675

8.0 .7550 .7954 .8181 .8272 .8230 .8147

10.0 .7915 .8353 .8576 .8648 .8580 .8473

15.0 .8560 .9015 .9187 .9209 .9097 .8956

20.0 .8994 .9410 .9518 .9499 .9369 .9212

25.0 .9313 .9668 .9716 .9667 .9530 .9368

30.0 .9559 .9845 .9843 .9773 .9636 .9472

40.0 .9919 1.0067 .9990 .9895 .9763 .9604

50.0 1.0171 1.0198 1.0071 .9961 .9835 .9683

100.0 1.0796 1.0437 1.0204 1.0068 .9962 .9841

150.0 1.1048 1.0506 1.0239 1.0095 .9995 .9894
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