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Abstract

In this paper we consider a regression model with omitted relevant regressors and a
general family of shrinkage estimators of regression coefficients. We derive the formula for
the predictive mean squared error (PMSE) of the estimators. It is shown analytically that
the positive-part shrinkage estimator dominates the ordinary shrinkage estimator even when
there are omitted relevant regressors. Also, as an example, our result is applied to the double
k-class estimator.
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1 Introduction

In the problem of estimating the mean vector of a multivariate normal distribution, Stein (1956)
and James and Stein (1961) showed that the maximum likelihood (ML) estimator is dominated
by the Stein-rule (SR) estimator in terms of mean squared error (MSE). The SR estimator can
be applied in a linear regression model. In the context of linear regression, the SR estimator
dominates the ordinary least squares (OLS) estimator in terms of predictive mean squared error
(PMSE) if the model is specified correctly. Since the findings of Stein (1956), lots of estimators
have been proposed and their sampling properties have been examined. In particular, Baranchik
(1964) showed that the SR estimator is further dominated by the positive-part Stein-rule (PSR)
estimator. Also, Baranchik (1970) proposed a family of estimators which dominate the OLS
estimator in terms of PMSE. These estimators are called the shrinkage estimators since they
are obtained by shrinking the OLS estimator toward the origin. In general, it is expected that
the PMSE of the shrinkage estimator can be improved by using its positive-part variant if the
model is specified correctly. Nickerson (1988) considered a class of estimators and showed that
the estimators are dominated by their positive-part variants.

The shrinkage estimators are biased even when there are no omitted relevant regressors.
However, in most of practical situations, it is hard to determine which regressors should be
included in the model. Thus, the researcher may exclude relevant regressors mistakenly. If there
are omitted relevant regressors, even the OLS estimator is not unbiased. In such situations,
there may be a strong incentive to use the shrinkage estimators from the viewpoint of PMSE.
However, there are few researches on the sampling properties of shrinkage estimators when
relevant regressors are omitted in the specified model. Some exceptions are Mittelhammer
(1984), Ohtani (1993, 1998) and Namba (2000). Mittelhammer (1984) showed that the SR
estimator no longer dominates the OLS estimator when relevant regressors are omitted. Ohtani
(1993) derived the formulae for the PMSE’s of the SR and the PSR estimator of the misspecified
model. In particular, Namba (2000) showed exactly that the PSR estimator dominates the
SR estimator even when the relevant regressors are omitted. Thus, it may be expected that
the shrinkage estimators are dominated by their positive-part variants when there are omitted
relevant regressors.

Thus, in this paper, we consider a general class of shrinkage estimators of regression coeffi-
cients when relevant regressors are omitted. The plan of the paper is as follows. In section 2

the model and the estimators are presented. In section 3 we derive the PMSE of the general



class of shrinkage estimators. We propose the pre-test shrinkage estimator which dominates
the shrinkage estimator. Moreover, it is shown analytically that the shrinkage estimators are
dominated by their positive-part variants whether there are omitted relevant regressors or not.
In section 4, as an example, our result is applied to the double k-class estimator proposed by

Ullah and Ullah (1978).

2 Model and the Estimators
Consider a linear regression model,
y=X101+XoB+e, e~ N(0,0%1,), (1)

where y is an n x 1 vector of observations on a dependent variable, X; and X9 are n x k; and
n X ko matrices of observations on nonstochastic independent variables, 1 and (3 are k; x 1
and ko X 1 vectors of regression coefficients, and € is an n X 1 vector of normal error terms. We
assume that X; and [X1, Xs] are of full column rank.

Suppose that the matrix of regressors X is omitted mistakenly and the model is specified

as
y=Xibi+n, n=2Xb+e (2)
Then, based on the misspecified model, the ordinary least squares (OLS) estimator of (3 is
b = Sy X1y, (3)

where S11 = X1 X;.
Also, based on the misspecified model, the Stein-rule estimator proposed by Stein (1956)
and James and Stein (1961) is

aehe;
bsr = (1 — — b 4
51 ( 5351151> b @

where e; = y — X1b1, 1 = n — ky and a is a constant such that 0 < a < 2(k; — 2)/(11 + 2).

Here, we define the predictive mean squared error (PMSE) as
PMSE[3] = E[(X151 — XB)' (X151 — XB)], (5)

where X = [X1,X5], B = [3],05] and (; is any estimator of ;. The meaning and some
discussions of the PMSE are given in Mittelhammer (1984) and Ohtani (1993). When there are

no omitted relevant regressors (i.e., X = Xj), the SR estimator dominates the OLS estimator



in terms of PMSE for k1 > 3. Also, the PMSE of the SR estimator is minimized when a =
(k1 —2)/(v1 + 2) if the model is specified correctly.
Baranchik (1970) proposed a family of estimators:

T(F):| by,

(6)

bB1_|:1— F

where F' = (V) S11b1)/(eje1). If we define F} = 11 F/ki, Fy is the test statistic for the null
hypothesis Hy : 1 = 0 against the alternative Hy : #; # 0 based on the misspecified model.

This estimator dominates the OLS estimator if
(i). r(-) is monotone, nondecreasing,

(ii). 0 <7r(:) <2(k1 —2)/(v1 +2), and

(iii). relevant regressors are not omitted.

Also, as is shown in Baranchik (1964), when there are no omitted regressors, the SR estimator

is further dominated by the positive-part Stein-rule estimator (PSR) defined as

aele;
bpsi = 0,1 — — ] b 7
pPS1 = max { b’1 51161 1 ( )

Moreover, Namba (2000) showed that the PSR estimator dominates the SR estimator in terms of
PMSE even when there are omitted relevant regressors. Thus, it is expected that there may be
some conditions such that the shrinkage estimators are dominated by their positive-part variant
even when relevant regressors are omitted.

Thus, in this paper, we consider the following general class of shrinkage estimators:
B = (1= ¢(F))br, (8)
and its positive-part variant:
B = max[0,1 - ¢(F)lbi, 9)

where ¢(F') is any real value function of F'. We assume that the second moments of (8) and
(9) exist since our analysis is based on PMSE. In general, ¢(-) is positive and continuous. Here-
after, we call these estimators the shrinkage estimator and the positive-part shrinkage estimator
respectively. Most of the estimators proposed so far are included in (8).

In the next section it is shown that the positive-part shrinkage estimator dominates the

shrinkage estimator in terms of PMSE even when there are omitted relevant regressors.



3 PMSE of the estimator

In this section, we consider the following pre-test shrinkage estimators:

P =1(F > c)(1 = ¢(F))bu,

(10)

where I(A) is an indicator function such that I(A) = 1 if an event A occurs and [(A) = 0

otherwise. The estimator given in (10) includes the SR, PSR and Baranchik’s (1970) estimators

as special cases. Also, (10) reduces to (8) when ¢ = 0.

The PMSE of 3; is defined as
PMSE[3] = E[(X151 — XB3) (X151 — XB)]
= E[31S1/1] — 2E[3 X' X1 1] + B'SB,

where S = X'X.

Denoting u; = b]S11b1/0? and ug = €}e1 /02, (11) reduces to
R 2
PMSE[p)] = E [l <“1 > c> (1 _ (“1>) ul(;?]
ug us

u2 u2

_9E [I (“1 > c> (1 — (“1» ﬁ’X’lel] +3'SB.
)

If we define the functions H(p, ¢;c) and J(p,q;c) as

=229 (-0 (2)) ]

J(p,g;c) = E [I (ul > C> <1 —¢ (?))pug(ﬁ/X/lel/UQ)] ,

Uz 2

we obtain

PMSE[B31]/0? = H(2,1;¢) — 2J(1,0;¢) + A1 + Ag,

(11)

(12)

(13)

(14)

(15)

where \; = /X' X1S' X, XB/02, Ao = B X'MXB/o?, My = I, — X187 X} and A\ + \g =

3'SB/a2.

As is shown in Appendix, the explicit formulae of H(p, q;c) and J(p,q;c) are

H(p,q;c) = i i wi(A)w;(A2)Gij(p, q; ¢),

i=0 j=0

oo o0

J(p,qg;0) = A Y > wilh)wi(A2)Giy,(p, q; ),
i=0 j=0



where w;(\) = exp(—\/2)(A/2)?/i! and

L 29D((k1 4 1) /2 + g+ i+ )
Gij(paQaC) = D(ki/2+)T(v1/2 4 )

" /1 tk1/2+q+i71(1 o t)l/1/2+j71 (1 B ¢) <1 t t>>pdt’ (18)

where ¢* = ¢/(1 + ¢).

Hereafter, we assume that both H(2,1;¢) and J(1,0;¢) are absolutely convergent. For ex-
ample, both H(2,1;¢) and J(1,0;c) are absolutely convergent if |¢(-)| < co. Also, they converge
absolutely for ky > 3 if |¢(14)/t| < oo on t € (0,1).

Substituting (16) and (17) in (15), we obtain the explicit formula for the PMSE of j3:

1 0? - SO v () 2L )24 i+ +1)
PMSE[B]/o ZE)JZ; A (e =R e R )

Voot J2+j—1 t 2
1 1 . V1 — .
X/c*t (=1 (1 ¢<1—t)> dt

S ‘ T((ky+11)/24+i+5+1)
P 2 s T 2 4 )
1 . .
X /C th/24i () — /2=t (1 — ¢ <1 i t)> dt + A1 + Ao (19)

Supposing that ¢(-) is continuous and differentiating (19) with respect to ¢ and performing
some manipulations we obtain

OPMSE|B]/0? kr/2+i

- _iiwi()\l)w]‘(Ag)2r((kl +uv)/2+i+5+1)

Oc =0 j=0 C(k1/24+ )T (n/2+7) (14 c¢)kitn)/2+it)
(1= 9(0) [(1 = 906~ 7 20)

From (20), the PMSE of 3; is monotone decreasing function of ¢ when ¢(c) > 1.

Assume that ¢(-) is a continuous function such that ¢(c) > 1 if ¢ < ¢ and ¢(c) < 1 if
¢ > ¢**. Then, the PMSE of 3; is monotonically decreasing on ¢ € [0, ¢**]. Also, By reduces to
the shrinkage estimator given in (8) when ¢ = 0 and to the positive-part shrinkage estimator

given in (9) when ¢ = ¢**. Thus, we obtain the following lemma.

Lemma 1 The pre-test shrinkage estimator with 0 < ¢ < ¢** given in (10) dominates the shrink-
age estimator given in (8) in terms of PMSE whether there are omitted relevant regressors or

not if

e ¢(-) is a continuous function such that ¢(c) > 1 if 0 < ¢ < ™ for some ¢** and ¢(c) < 1

otherwise.



In particular, the pre-test shrinkage estimator with ¢** has the smallest PMSE in the class of

the estimators with 0 < ¢ < ¢**.

Since the pre-test shrinkage estimator with ¢ = ¢** reduces to the positive-part shrinkage esti-

mator given in (9) when the condition in Lemma 1 is satisfied, we obtain the following theorem.

Theorem 1 The positive-part shrinkage estimator given in (9) dominates the shrinkage esti-

mator given in (8) in terms of PMSE whether there are omitted relevant regressors or not if

o ¢(-) is a continuous function such that ¢(c) > 1 if 0 < ¢ < ™ for some ¢ and ¢(c) < 1

otherwise.

Next, we extend Theorem 1. From (15), the PMSE of the shrinkage estimator given in (8) is

PMSE[B]/o?

__w 00 | | 0((k1+v1)/2+1+75+1)
— Z sz(Al)wy()Q) T'(k1/2 4+ )T(v1/2 + )

i=0 j=0
<ot (-0 () [(1-0(75)) - el @
+A1+ A2
= S w0
(o L)oo i=o (75)) (-0 () - el
+A1 + Ag, (21)

where Ry is the region such that {¢|1 — ¢(77) > 0 and 0 < ¢ < 1}, Ry is the region such that
{tll — ¢(15) <0and 0 <t <1}, and ([, + [5,)f(t)dt denotes [, f(t)dt+ [, f(t)dt.
Also, replacing 1—¢(+) by max[0,1—¢(-)], we obtain the PMSE of the positive-part shrinkage

estimator given in (9):

PMSE|3]/0?

=& 20 (k1) /2404 + 1)
= 2. 2 Wil ) R e R o 2 )

i=0 j=0

S0 (o (15)) (-0 (757)) -] ¢

+A1 + Ao, (22)

Subtracting (22) from (21), we obtain

PMSE(B) — PMSE(B{)
2

(o)



:iiwi(Al)wj(A2)2F((k‘l+V1)/2+i+j+1)

por e I'(k1/2+ )0 (11 /2 + )
<frrerasom (o (75)) (-0 (55)) - )
> 0, (23)

since Ry is the region such that {¢|1 — ¢(75;) < 0and 0 < ¢ < 1}. Thus, we obtain the following

theorem.

Theorem 2 The positive-part shrinkage estimator given in (9) dominates the shrinkage esti-

mator given in (8) in terms of PMSE whether there are omitted relevant regressors or not if
e 1 —¢(F) <0 for some region of F € [0, 00).

Theorem 2 implies that using the positive-part shrinkage estimator is preferable to using the
shrinkage estimator in terms of PMSE as long as 1 — ¢(+) can be negative.

In the next section we apply these theorems to the double k-class estimator proposed by

Ullah and Ullah (1978).

4 Example

In this section, we consider the double k-class (KK) estimator proposed by Ullah and Ullah
(1978):
kiaeier ) by

y'y — kaq€ler

_(y__ ka
_<1 F—i‘(l—kzd))bl
= (1 - ¢rK(F))b (24)

bkk1 = (1 -

where k14 and kog are constants chosen appropriately and ¢x i (F) = kiq/(F + 1 — kog).

When relevant regressors are not omitted, the double k-class estimator dominates the OLS
estimator when 0 < k14 < 2(k1 —2)/(v1+2) and 1 — kog > 0 since Baranchik’s (1970) conditions
are satisfied. Also, when koy < 1 and k1g > 1 — kog, ¢xr(F) > 1 for F < kig + kog — 1
and ¢(F) < 1 otherwise. Thus, when 0 < kjg < 2(k1g — 2)/(v1 + 2) and kog > 1 — k14, the
positive-part double k-class (PKK) estimator defined as

/
kldelel

bPKKl — Imax 0,1 B
Y'y — kaqeren

(25)

dominates the KK estimator given in (24) in terms of PMSE whether there are relevant regressors

or not. Also, the PKK estimator dominates the OLS estimator if the model is specified correctly.



To examine the PMSE performance of the KK estimator and the PKK estimator, we ex-
ecuted the numerical evaluation. As is shown in Ohtani (1993), the noncentrality parame-
ters are expressed as Ay = FzR? and Ay = Fp(1 — R?), where Fy = #'SB/c? and R} =
B'X'X1S;{' X{X3/3'SB. Fjs is the noncentrality parameter which appeared in the test for the
null hypothesis that all the regression coefficients are zeros in the correctly specified model. Also,
R? is interpreted as the coefficient of determination in regression of X3 on Xj. Thus, if R? is
close to unity, the magnitude of model misspecification is regarded as small, and vice versa.

The parameter values used in the numerical evaluations were ki = 3, 5, 8, n = 20, 30, 40,
R} =0.1,0.3, 0.5,0.7, 0.9, 1.0 and F = various values. Also, we use kiq = (k1 —2)/(v1 +2) and
kog = 1 — k14/2. In this case, the condition 0 < k1g < 2(k1g — 2)/(v1 + 2) and kog > 1 — ky4 is
satisfied. To compare the PMSE’s of the estimators, we evaluated the values of relative PMSE
defined as PM SE[3,]/PMSE|b1], where 31 is any estimator of 3;. Thus, the estimator 3; has
smaller PMSE than the OLS estimator when the value of relative PMSE is smaller than unity.
The numerical evaluations were executed on a personal computer using the FORTRAN code.
In evaluating the integral in G;;(p,q;c) given in (18), we used Simpson’s rule with 200 equal
subdivisions. The double infinite series in H (p, g; ¢) and J(p, q; c) were judged to converge when
the increment of series got smaller than 107!2. Since the results for the cases of k1 = 5, and
n = 20 are qualitatively typical, we do not show the results for the other cases.

The result for k1 = 5 and n = 20 is shown in Table 1. As is shown in Theorem 1, the PKK
estimator dominates the KK estimator. Though the PMSE of the PKK estimator is slightly
larger than unity for some values of A\; and Ao, it is much smaller than unity over a wide region

of parameter space. Thus, there is a incentive to use the PKK estimator in terms of PMSE.

5 Appendix

In this Appendix, we derive the formulae for H(p,q;c) and J(p,q;c). First, we derive the
formula for H(p,q;c). The OLS estimator by is distributed as N(8; + Sii'Si262,025!) =
N(S;' X[ XB,0%5"), where X = [X1,X3], 8 = [8;,8] and S12 = X|Xo. Thus, u; =
b S1101 /02 is distributed as the non-central chi-square distribution with % degrees of free-
dom and noncentrality parameter \; = 3'X'X1S;' X X3/0%. Also, the residual vector e; is
distributed as N(M;Xg,0%M), where My = (I, — X1S;' X}). Thus, uy = eje1/o? is dis-
tributed as the non-central chi-square distribution with 17 degrees of freedom and noncentrality

parameter \o = ' X'M; X [3/0?. Furthermore, u; and ug are mutually independent.



Using w1 and ue, H(p, q; c) is expressed as

H(p,q;c ZZKW // N ST e 1< ¢(u1))p

i=0 j=0 U2
X exp[—(u1 + UQ)/2]du2 duq, (26)
where
Ky = w;i(A1)w;(A2) (27)

2k t01)/24iHiT (kg /2 4+ )T (v1 /2 + §)
w;(\) = exp(—A\/2)(A/2)!/i!, and R is the region such that {uq,us|uj/us > c}.

Making use of the change of variables, v; = u;/us and vy = ug, (26) reduces to:

ZZKu/ / k1/2+q+z 1 (k1+V1)/2+Q+Z+] 1( ¢(U1))p

=0 7=0
x exp[—va(1 + v1)/2]dva dvy. (28)

Again, making use of the change of variable, z = (1 + v1)va/2, (28) reduces to:

(o Sl o]
SN K2R )R (k4 01) /2 4+ g + i+ )
i=0 j=0

vk1/2+q+i—1

o 1
< S s - )P, @)

Finally, making use of the change of variable, ¢t = v; /(1 + v1), and performing some manip-

ulations, we obtain (16) in the text.
Next, we derive the formula for J(p, ¢;c). Noting that O\ /081 = 2(S1161 + S1232) /0% and
0A2/0p1 = 0, and differentiating H (p, ¢; ¢) given in (16) with respect to 31, we obtain:
H(p,q; )
35
ow; (A

ZZ[ 95, ] w;j(A2)Gij(p, g; ¢)

0]0

— Z Z {Sllﬂl = 51252] [—wi(A1) + wim1 (A1)]w;(A2)Gij (P, g3 ¢)

=0 7=0
_ [51151 + 51202

o2

} H(p, q;c)

[ B0 S ] §5 P 0y ()Gt 050 (30)

1=0 5=0

Since uy = b; X11b1/02 and by ~ N (S X{ X 3,0257"), H(p, q; ¢) can be expressed as

H(p,g;c // <1— <U1>> ui [ (01) fo(uz)duz dbi, (31)



where fa(us2) is the density function of uy and

B 1 (b1 — 5 X1 XB) S (b — S X1 XB)
Filbr) = (2n)k1/2|o25 112 P l 202 ‘ (82)
Differentiating (31) with respect to (31, we obtain:
0H (p, q; S11b1 — S - S
e / [ (10 (32)) o fatus) | 222202022 g
up \ \?
7E |:I ( > C) (1 — gb < >> ’U,({Subl]
o2 U2 U2
- {W] H(p,q;c). (33)

Equating (30) and (33), and multiplying 8'X’'X;S;;' from the left, we obtain (17) in the

text.
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Table 1: Relative PMSE for k1 = 5 and n = 20.

R}
Estimator Fg 0.1 0.3 0.5 0.7 0.9 1.0
PKK .0 .3848 .3848 .3848 .3848 .3848 .3848

1.0 4724 4781 4828 4867 4895 .4906
2.0 5379 5508 .5609 5681 5723 5732
4.0 .6303 .6568 .6758 6873 .6910 .6895
6.0 .6930 .7300 7544 7672 7683 7636
8.0 7390 7834 .8102 .8224 .8203 .8126
10.0 7745 .8239 .8511 .8616 .8564 .8463
15.0 .8366 8917 9149 9197 .9094 .8954
20.0 8777 9328 9497 .9495 9368 9211
25.0 9075 .9600 9704 .9666 9530 9368
30.0 9302 9790 .9836 9773 .9636 9472
40.0 9631 1.0032 .9988 .9895 9763 .9604
50.0 9861 1.0176 1.0070 9961 9835 9683
100.0 1.0438 1.0435 1.0204 1.0068 .9962 9841
150.0 1.0692 1.0506 1.0239 1.0095 9995 9894

KK .0 .3980 .3980 .3980 .3980 .3980 .3980
1.0 4857 4913 4959 4995 5021 .5030
2.0 .bb14 .5639 5735 .5800 .5833 5838
4.0 .6445 .6697 .6869 .6965 .6985 .6962
6.0 7081 7425 7638 7740 7730 71675
8.0 7550 7954 .8181 8272 .8230 8147

10.0 7915 8353 .8576 .8648 .8580 8473
15.0 .8560 9015 9187 9209 9097 .8956
20.0 .8994 9410 9518 9499 .9369 9212
25.0 9313 9668 9716 9667 9530 9368
30.0 .9559 9845 9843 9773 9636 9472
40.0 9919 1.0067 .9990 9895 9763 9604
50.0 1.0171 1.0198 1.0071 9961 9835 9683
100.0 1.0796 1.0437 1.0204 1.0068 9962 9841
150.0 1.1048 1.0506 1.0239 1.0095 9995 .9894
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