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Abstract

In this paper we consider the double k-class estimator which incorporates the Stein vari-
ance estimator. This estimator is called the SVKK estimator. We derive the explicit formula
for the MSE of the SVKK estimator for each individual regression coefficient. It is shown
analytically that the MSE performance of the Stein-rule estimator for each individual regres-
sion coefficient can be improved by utilizing the Stein variance estimator. Also, MSE’s of
several estimators included in a family of the SVKK estimators are compared by numerical
evaluations.
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1 Introduction

In the context of a linear regression model, the Stein-rule (SR) estimator proposed by Stein

(1956) and James and Stein (1961) dominates the ordinary least squares (OLS) estimator in

terms of predictive mean squared error (PMSE) if the number of the regression coefficient is

larger than or equal to three. Following George’s (1990) suggestion, Berry (1994) proved that

the modified Stein-rule estimator can be improved by incorporating the Stein variance estimator

proposed by Stein (1964). Also, Ohtani (1996a) showed that Berry’s estimator is a kind of pre-

test estimator, and its PMSE performance can be further improved if an appropriate critical

value of the pre-test is used.

As an improved estimator, Theil (1971) proposed the minimum mean squared error (MMSE)

estimator. However, Theil’s (1971) MMSE estimator is not operational since it includes unknown

parameters. Thus, Farebrother (1975) suggested the operational variant of the MMSE estimator

which can be obtained by replacing the unknown parameters in Theil’s (1971) MMSE estimator

by the OLS estimators. Hereafter, we call the operational variant of the MMSE estimator the

MMSE estimator simply. The MMSE estimator dominates the OLS estimator in terms of PMSE

since it satisfies Baranchik’s (1970) condition. As an extension of the MMSE estimator, Ohtani

(1996b) considered the adjusted minimum mean squared error (AMMSE) estimator which is

obtained by adjusting the degrees of freedom of the MMSE estimator.

Ullah and Ullah (1978) considered the double k-class (KK) estimator. The KK estimator

includes the SR, MMSE and AMMSE estimators as special cases. Several authors have investi-

gated the sampling performance and the choice of the parameters of the KK estimator. Some

examples are Vinod (1980), Carter (1981), Menjoge (1984), Carter et al. (1993), and Vinod and

Srivastava (1995).

Though most of the studies on the properties of the SR estimator and its variants have

assumed that all the regression coefficients are estimated simultaneously, there are several studies

which examined the properties of estimators for each individual regression coefficient. Some

examples are Ullah (1974), Rao and Shinozaki (1978), Ohtani and Kozumi (1996), and Ohtani
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(1997). The estimation of each individual regression coefficient is important, for example, in the

following case. Suppose that we estimate an import demand equation expressed as

yt = β0 + x1tβ1 + x2tβ2 + εt,

where yt is the quantity of imports of a country at time t, x1t is the real income (real GNP),

and x2t is the ratio of the import price to the domestic price (relative price). [See, for example,

Houthakker and Magee (1969) and Goldstein and Khan (1985) for specification of import demand

equations.] If our concern is to predict the quantity of imports which may lead to a surplus or

deficit of the trade balance when the real income changes (ceteris paribus), then it is important

to estimate β1 as accurately as possible since the change in the quantity of imports depends on

only the change in the real income (under the assumption of “ceteris paribus”).

Recently, Ohtani and Wan (1999) suggested the Stein variance double k-class (SVKK) es-

timator and examined its PMSE performance. However, the MSE performance of the SVKK

estimator for each individual regression coefficient have not been examined. Thus, in this paper

we examined the MSE performance of the SVKK estimator for the each individual regression

coefficient. In Section 2 we present the model and the estimators. We derive the MSE of the

SVKK estimator for each individual regression coefficient in Section 3. Also, we show that the

SR estimator for each individual regression coefficient can be improved by incorporating the

Stein variance estimator. In Section 4 we compare the MSE’s of several estimators included in

a family of SVKK estimators by numerical evaluations.

2 Model and the estimators

Consider a linear regression model,

y = Xβ + ε, ε ∼ N(0, σ2In), (1)

where y is an n × 1 vector of observations on a dependent variable, X is an n × k matrix of

full column rank of observations on nonstochastic independent variables, β is a k × 1 vector of

regression coefficients, and ε is an n× 1 vector of normal error terms.
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Following Judge and Yancey (1986, p. 11), we reparameterize the model (1) and work with

the following orthonormal counterpart:

y = Zγ + ε, (2)

where Z = XS−1/2, γ = S1/2β and S1/2 is the symmetric matrix such that S−1/2SS−1/2 = Ik,

where S = X ′X.

Then the ordinary least squares (OLS) estimator is

γ̂ = Z ′y. (3)

In the context of reparameterized model, the Stein-rule (SR) estimator proposed by Stein (1956)

is defined as

γ̂SR =
(

1− k − 2
ν + 2

e′e

γ̂′γ̂

)
γ̂, (4)

where e = y−Zγ̂, ν = n− k and e′e/(ν +2) is an estimator of σ2. The SR estimator dominates

the OLS estimator under predictive mean squared error (PMSE) for k ≥ 3.

The minimum mean squared error (MMSE) estimator proposed by Farebrother (1975) is

γ̂M =
(

γ̂′γ̂

γ̂′γ̂ + e′e/(ν + 2)

)
γ̂. (5)

As an extension of the MMSE estimator, Ohtani (1996b) considered the adjusted minimum

mean squared error (AMMSE) estimator which is obtained by the degrees of freedom of γ̂′γ̂

(i.e., k):

γ̂AM =
(

γ̂′γ̂/k

γ̂′γ̂/k + e′e/(ν + 2)

)
γ̂. (6)

Also, Ullah and Ullah (1978) proposed the double k-class (KK) estimator:

γ̂KK =
(

1− k1e
′e

y′y − k2e′e

)
γ̂

=
(

γ̂′γ̂ + α1e
′e

γ̂′γ̂ + α2e′e

)
γ̂, (7)

where k1 and k2 are constants chosen appropriately, α1 = 1 − k1 − k2 and α2 = 1 − k2. The

double k-class estimator includes the SR, MMSE and AMMSE estimators as special cases.
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The Stein variance estimator is defined as

σ̂2
s = min[y′y/(n + 2), e′e/(ν + 2)]. (8)

The Stein variance estimator can be regarded as the following pre-test estimator:

σ̂2
s = I(F ≥ c1)

e′e

ν + 2
+ I(F < c1)

y′y

n + 2
, (9)

where c1 = ν/(ν + 2), F = (γ̂′γ̂/k)/(e′e/ν) is the test statistic for testing the null hypothesis

H0 : γ = 0 against the alternative H1 : γ 6= 0, and I(A) is an indicator function such that

I(A) = 1 if an event A occurs and I(A) = 0 otherwise. Thus, as to the Stein variance estimator,

the error variance is estimated by y′y/(n + 2) if the null hypothesis is not rejected, and it is

estimated by e′e/(ν +2) if the null hypothesis is rejected. Utilizing the Stein variance estimator,

Berry (1994) and Ohtani (1996a) considered the following Stein variance Stein-rule (SVSR)

estimator:

γ̂SR(c) = I(F ≥ c)
(

1− k − 2
ν + 2

e′e

γ̂′γ̂

)
γ̂ + I(F < c)

(
1− k − 2

n + 2
y′y

γ̂′γ̂

)
γ̂. (10)

Berry (1994) showed that the SVSR estimator dominates the SR estimator in terms of PMSE

when c0 = k/(ν + 2) is used as the critical value of the pre-test. Ohtani (1996a) showed that

the PMSE performance of the SVSR estimator can be further improved if c2 = (k − 2)ν(2n −

k + 4)/[k(ν + 2)(2n− k + 6)] is used instead of c0.

Recently, Ohtani and Wan (1999) proposed the Stein variance double k-class (SVKK) esti-

mator:

γ̂KK(c) = I(F ≥ c)
(

γ̂′γ̂ + α1e
′e

γ̂′γ̂ + α2e′e

)
γ̂ + I(F < c)

(
γ̂′γ̂ + α3y

′y

γ̂′γ̂ + α4y′y

)
γ̂. (11)

The SVKK estimator reduces to the SVSR estimator when α1 = −(k − 2)/(ν + 2), α2 = 0,

α3 = −(k − 2)/(n + 2) and α4 = 0. When α1 = α3 = 0, α2 = 1/(ν + 2) and α4 = 1/(n + 2),

the SVKK estimator reduces to SVMMSE estimator. Also, when α1 = α3 = 0, α2 = k/(ν + 2)

and α4 = k/(n + 2), SVKK estimator reduces to the SVAMMSE estimator. Ohtani and Wan

(1999) examined the PMSE performances of a family of SVKK estimators. However, the MSE

performance of the SVKK estimator for each individual regression coefficient has not been
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examined so far. Thus, we derive the explicit formula for the MSE of the SVKK estimator for

each individual regression coefficient and examine its performance in the next section.

3 MSE

Let h be a k× 1 vector with known elements. If h′ is the ith row vector of S−1/2, the estimator

h′γ̂KK(c) is the ith element of the SVKK estimator for β in the original model. Since the

elements of h are known, we assume that h′h = 1 without loss of generality. Then the MSE of

h′γ̂ is

MSE[h′γ̂KK(c)] = E[(h′γ̂KK(c)− h′γ)2]

= E

[
I(F ≥ c)

(
γ̂′γ̂ + α1e

′e

γ̂′γ̂ + α2e′e

)2

(h′γ̂)2
]

+E

[
I(F < c)

(
(1 + α3)γ̂′γ̂ + α3e

′e

(1 + α4)γ̂′γ̂ + α4e′e

)2

(h′γ̂)2
]

−2h′γE

[
I(F ≥ c)

(
γ̂′γ̂ + α1e

′e

γ̂′γ̂ + α2e′e

)
h′γ̂

]
−2h′γE

[
I(F < c)

(
(1 + α3)γ̂′γ̂ + α3e

′e

(1 + α4)γ̂′γ̂ + α4e′e

)
h′γ̂

]
+ (h′γ)2, (12)

since y′y = γ̂′γ̂ + e′e.

We define the functions, H(p, q; a1, a2, a3, a4; c) and J(p, q; a1, a2, a3, a4; c), as

H(p, q; a1, a2, a3, a4; c) = E

[
I(F ≥ c)

(
a1γ̂

′γ̂ + a2e
′e

a3γ̂′γ̂ + a4e′e

)p

(h′γ̂)2q

]
, (13)

J(p, q; a1, a2, a3, a4; c) = E

[
I(F ≥ c)

(
a1γ̂

′γ̂ + a2e
′e

a3γ̂′γ̂ + a4e′e

)p

(h′γ̂)2q(h′γ̂)

]
. (14)

Then, the MSE of h′γ̂KK(c) is written as

MSE[h′γ̂KK(c)]

= H(2, 1; 1, α1, 1, α2; c)

+H(2, 1; 1 + α3, α3, 1 + α4, α4; 0)−H(2, 1; 1 + α3, α3, 1 + α4, α4; c)

−2h′γJ(1, 0; 1, α1, 1, α2; c)

−2h′γJ(1, 0; 1 + α3, α3, 1 + α4, α4; 0) + 2h′γJ(1, 0; 1 + α3, α3, 1 + α4, α4; c)

+(h′γ)2. (15)
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As shown in Appendix, the explicit formulae of H(p, q; a1, a2, a3, a4; c) and J(p, q; a1, a2, a3, a4; c)

are

H(p, q; a1, a2, a3, a4; c) = (2σ2)q
∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)Gij(p, q; a1, a2, a3, a4; c), (16)

J(p, q; a1, a2, a3, a4; c) = h′γ(2σ2)q
∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)Gi+1,j(p, q; a1, a2, a3, a4; c), (17)

where

Gij(p, q; a1, a2, a3, a4; c) =
Γ((ν + k)/2 + q + i + j)Γ(1/2 + q + i)
Γ(k/2 + q + i + j)Γ(1/2 + i)Γ(ν/2)

×
∫ 1

c∗

(
a2 + (a1 − a2)t
a4 + (a3 − a4)t

)p

tk/2+q+i+j−1(1− t)ν/2−1dt, (18)

wi(λ) = exp(−λ/2)(λ/2)i/i!, λ1 = (h′γ)2/σ2, λ2 = γ′(Ik − hh′)γ/σ2 and c∗ = kc/(ν + kc).

Differentiating (18) with respect to c, we have:

∂Gij(p, q; a1, a2, a3, a4; c)
∂c

= −Γ((ν + k)/2 + q + i + j)Γ(1/2 + q + i)
Γ(k/2 + q + i + j)Γ(1/2 + i)Γ(ν/2)

(
a2ν + a1kc

a4ν + a3kc

)p

×kk/2+q+i+jνν/2ck/2+q+i+j−1

(ν + kc)(ν+k)/2+q+i+j
. (19)

Using (19) and performing some manipulations, we obtain:

1
2σ2

∂MSE[h′γ̂KK(c)]
∂c

=
∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)
Γ((ν + k)/2 + i + j + 1)Γ(1/2 + 1 + i)
Γ(k/2 + i + j + 1)Γ(1/2 + i)Γ(ν/2)

×kk/2+i+j+1νν/2ck/2+i+j

(ν + kc)(ν+k)/2+i+j+1
D1(c)

(
D2(c)−

λ1

1/2 + i

)
, (20)

where

D1(c) =
α3ν + (1 + α3)kc

α4ν + (1 + α4)kc
− α1ν + kc

α2ν + kc
, (21)

D2(c) =
α3ν + (1 + α3)kc

α4ν + (1 + α4)kc
+

α1ν + kc

α2ν + kc
. (22)
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If we consider the case of the SVSR estimator (i.e., α1 = −(k−2)/(ν+2), α3 = −(k−2)/(n+2)

and α2 = α4 = 0), then, we have:

D1(c) =
(k − 2)[ν − (ν + 2)c]

c(ν + 2)(n + 2)
, (23)

D2(c) =
−(k − 2)(2n− k + 4)ν + (ν + 2)(2n− k + 6)kc

kc(n + 2)(ν + 2)
. (24)

Thus, D1(c) ≥ 0 when 0 < c ≤ ν/(ν + 2) = c1, and D2(c) ≤ 0 when 0 < c ≤ [(k − 2)(2n − k +

4)ν]/[k(ν +2)(2n−k+6)] = c2. Since c1 > c2, the MSE of the SVSR estimator is monotonically

decreasing on c ∈ [0, c2]. Since the SVSR estimator reduces to the SR estimator when c = 0, we

obtain the following theorem.

Theorem 1 The SVSR estimator with 0 < c ≤ c2 dominates the SR estimator in terms of MSE

even when each individual regression coefficient is estimated. Particularly, the SVSR estimator

with c = c2 has the smallest MSE among the class of the SVSR estimators with 0 ≤ c ≤ c2.

Since further theoretical analysis is difficult, we examine the MSE performances of a family

of the SVKK estimators numerically in the next section.

4 Numerical analysis

In this section we compare the MSE performances of a family of the SVKK estimators for each

individual regression coefficient by numerical evaluations. The parameter values used in the

numerical evaluations are: k = 3, 4, 5, 6, 8, n = 20, 30, 40, λ1 + λ2 = various values, and

λ1 = w(λ1 + λ2), where w = 0, 0.1, 0.2, · · ·, 1.0. To compare the MSE’s of the estimators, we

evaluate the values of relative MSE defined as MSE[h′γ̄]/MSE[h′γ̂], where γ̄ is any estimator of

γ. Thus, the estimator h′γ̄ has smaller MSE than the OLS estimator when the value of relative

MSE is smaller than unity.

The numerical evaluations were executed on a personal computer using the FORTRAN code.

In evaluating the integral in Gij(p, q; a1, a2, a3, a4; c), we used Simpson’s rule with 200 equal
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subdivisions. The double infinite series in H(p, q; a1, a2, a3, a4; c) and J(p, q; a1, a2, a3, a4; c) were

judged to converge when the increment of the series got smaller than 10−12.

As to the SVSR estimator, we used the critical value of the pre-test c = c2 since Theorem 1

ensures that the SVSR estimator with c = c2 has the smallest MSE in the class of the SVSR

estimators with 0 ≤ c ≤ c2. However, no such critical values for the SVMMSE and SVAMMSE

estimators could be obtained. Since some preliminary numerical results seem to show that the

use of c = 0 yields better MSE performance than the use of c > 0, we use c = 0 for the SVMMSE

and SVAMMSE estimators (i.e., the SVMMSE estimator and the SVAMMSE estimator reduce

to the MMSE estimator and the AMMSE estimator respectively). Since the results for k = 5, 8

and n = 30 are qualitatively typical, we do not show the results for the other cases.

The results for k = 5 and n = 20 are shown in Table 1. We can make sure of Theorem 1

from Tables 1 and 2. We can see from Table 1 that the AMMSE estimator has the smallest

MSE over a wide region of the parameter space when k = 5 (i.e. λ1 ≤ 2.4). Also, the SVSR

estimator has the second smallest MSE when λ1 is small (i.e., λ1 ≤ 1.2). Though the maximum

of the MSE of the AMMSE estimator is larger than unity, the minimum is much smaller than

unity. This indicates that the gain in MSE of using the AMMSE estimator instead of the OLS

estimator is larger than loss. Also, the loss in MSE of using the MMSE estimator is very small

though the gain is not so large.

Table 2 shows the results for k = 8 and n = 20. We see from Table 2 that the SVSR estimator

has the smallest MSE when λ1 is small. When λ is moderate, the MSE of the AMMSE estimator

is smallest. Also, the loss in MSE of using the MMSE estimator is smaller than the loss of using

the other estimators.

Appendix

In this appendix, we derive the formulae for H(p, q; a1, a2, a3, a4; c) and J(p, q; a1, a2, a3, a4; c).

First, we derive the formula for H(p, q; a1, a2, a3, a4; c). Let u1 = (h′γ̂)2/σ2, u2 = γ̂′(Ik −

hh′)γ̂/σ2 and u3 = e′e/σ2. Then, u1 ∼ χ′21 (λ1) and u2 ∼ χ′2k−1(λ2), where χ′2f (λ) is the noncentral
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chi-square distribution with f degrees of freedom and noncentrality parameter λ, λ1 = (h′γ)2/σ2

and λ2 = γ′(Ik−hh′)γ/σ2. Further, u3 is distributed as the chi-square distribution with ν = n−k

degrees of freedom, and u1, u2 and u3 are mutually independent.

Using u1, u2 and u3, H(p, q; a1, a2, a3, a4; c) is expressed as

H(p, q; a1, a2, a3, a4; c)

= (σ2)q
∞∑
i=0

∞∑
j=0

Kij

∫∫∫
R

(
a1(u1 + u2) + a2u3

a3(u1 + u2) + a4u3

)q

×u
1/2+q+i−1
1 u

(k−1)/2+j−1
2 u

ν/2−1
3 exp[−(u1 + u2 + u3)/2]du1 du2 du3, (25)

where

Kij =
wi(λ1)wj(λ2)

2(ν+k)/2+i+jΓ(1/2 + i)Γ((k − 1)/2 + j)Γ(ν/2)
, (26)

wi(λ) = exp(−λ/2)(λ/2)i/i!, and R is the region such that (u1 + u2)/u3 ≥ kc/ν = c∗∗.

Making use of the change of variables, v1 = (u1 + u2)/u3, v2 = u1u3/(u1 + u2) and v3 = u3,

(25) reduces to

(σ2)q
∞∑
i=0

∞∑
j=0

Kij

∫ ∞

0

∫ v3

0

∫ ∞

c∗∗

(
a1v1 + a2

a3v1 + a4

)p

v
k/2+q+i+j−1
1 v

1/2+q+i−1
2 v

ν/2
3

× (v3 − v2)(k−1)/2+j−1 exp[−v3(v1 + 1)/2]dv1 dv2 dv3. (27)

Again, making use of the change of variable, z1 = v2/v3, (27) reduces to

(σ2)q
∞∑
i=0

∞∑
j=0

Kij
Γ(1/2 + q + i)Γ((k − 1)/2 + j)

Γ(k/2 + q + i + j)

×
∫ ∞

0

∫ ∞

c∗∗

(
a1v1 + a2

a3v1 + a4

)p

v
k/2+q+i+j−1
1 v

(ν+k)/2+q+i+j−1
3 exp[−v3(v1 + 1)/2]dv1 dv3. (28)

Further, making use of the change of variable, z2 = v3(v1 + 1)/2, (28) reduces to

(σ2)q
∞∑
i=0

∞∑
j=0

Kij2(ν+k)/2+q+i+j Γ(1/2 + q + i)Γ((k − 1)/2 + j)Γ((ν + k)/2 + q + i + j)
Γ(k/2 + q + i + j)

×
∫ ∞

c∗∗

(
a1v1 + a2

a3v1 + a4

)p

v
k/2+q+i+j−1
1

(
1

1 + v1

)(ν+k)/2+q+i+j

dv1. (29)

Finally, making use of the change of variable, t = v1/(1 + v1). we obtain (16) in the text.
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Next, we derive the formula for J(p, q; a1, a2, a3, a4; c). Differentiating H(p, q; a1, a2, a3, a4; c)

given if (16) with respect to γ, we have

∂H(p, q; a1, a2, a3, a4; c)
∂γ

= (2σ2)q
∞∑
i=0

∞∑
j=0

[
∂wi(λ1)

∂γ
wj(λ2) + wi(λ1)

∂wj(λ2)
∂γ

]
Gij(p, q; a1, a2, a3, a4; c)

= −hh′γ

σ2
(2σ2)q

∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)Gij(p, q; a1, a2, a3, a4; c)

+
hh′γ

σ2
(2σ2)q

∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)Gi+1,j(p, q; a1, a2, a3, a4; c)

−(Ik − hh′)γ
σ2

(2σ2)q
∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)Gij(p, q; a1, a2, a3, a4; c)

+
(Ik − hh′)γ

σ2
(2σ2)q

∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)Gi,j+1(p, q; a1, a2, a3, a4; c), (30)

where we define w−1(λ1) = w−1(λ2) = 0. Since h′h = 1, we obtain

h′
∂H(p, q; a1, a2, a3, a4; c)

∂γ

= −h′γ

σ2
H(p, q; a1, a2, a3, a4; c)

+
h′γ

σ2
(2σ2)q

∞∑
i=0

∞∑
j=0

wi(λ1)wj(λ2)Gi+1,j(p, q; a1, a2, a3, a4; c). (31)

Expressing H(p, q; a1, a2, a3, a4; c) by γ̂ and e′e, we have

H(p, q; a1, a2, a3, a4; c)

=
∫∫

F≥c

(
a1γ̂

′γ̂ + a2e
′e

a3γ̂′γ̂ + a4e′e

)p

(h′γ̂)2qfN (γ̂)fe(e′e)dγ̂ d(e′e), (32)

where F = (γ̂′γ̂/k)/(e′e/ν), f(e′e) is the density function of e′e, and

fN (γ̂) =
1

(2π)k/2σk
exp

[
−(γ̂ − γ)′(γ̂ − γ)

2σ2

]
, (33)

is the density function of γ̂.

Differentiating H(p, q; a1, a2, a3, a4; c) given in (32) with respect to γ, and multiplying h′

from the left, we obtain

h′
∂H(p, q; a1, a2, a3, a4; c)

∂γ
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= −h′γ

σ2
H(p, q; a1, a2, a3, a4; c)

+
1
σ2

E

[
I(F ≥ c)

(
a1γ̂

′γ̂ + a2e
′e

a3γ̂′γ̂ + a4e′e

)p

(h′γ̂)2qh′γ̂

]
. (34)

Equating (31) and (34), we obtain (17) in the text.
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Table 1: Relative MSE’s for k = 5 and n = 30.

λ1 + λ2 λ1 SR SVSR MMSE AMMSE
.5 .00 .4465 .4139 .7509 .3642

.05 .4714 .4372 .7547 .3773

.10 .4962 .4606 .7585 .3903

.15 .5211 .4839 .7623 .4034

.20 .5460 .5073 .7661 .4164

.25 .5709 .5306 .7699 .4295

.30 .5958 .5540 .7737 .4425

.35 .6207 .5773 .7775 .4556

.40 .6456 .6007 .7813 .4687

.45 .6705 .6240 .7851 .4817

.50 .6954 .6474 .7889 .4948
3.0 .00 .4922 .4810 .8031 .4419

.30 .5821 .5673 .8181 .5005

.60 .6720 .6536 .8331 .5592

.90 .7619 .7398 .8480 .6179
1.20 .8518 .8261 .8630 .6765
1.50 .9417 .9124 .8780 .7352
1.80 1.0316 .9986 .8929 .7938
2.10 1.1215 1.0849 .9079 .8525
2.40 1.2114 1.1712 .9229 .9112
2.70 1.3013 1.2575 .9378 .9698
3.00 1.3912 1.3437 .9528 1.0285

10.0 .00 .6542 .6536 .8810 .5916
1.00 .7534 .7519 .9003 .6902
2.00 .8526 .8503 .9196 .7889
3.00 .9518 .9487 .9390 .8876
4.00 1.0511 1.0471 .9583 .9862
5.00 1.1503 1.1454 .9776 1.0849
6.00 1.2495 1.2438 .9969 1.1835
7.00 1.3488 1.3422 1.0162 1.2822
8.00 1.4480 1.4405 1.0355 1.3809
9.00 1.5472 1.5389 1.0548 1.4795

10.00 1.6465 1.6373 1.0741 1.5782
50.0 .00 .8986 .8986 .9662 .8487

5.00 .9330 .9330 .9740 .9087
10.00 .9673 .9673 .9819 .9688
15.00 1.0017 1.0017 .9897 1.0288
20.00 1.0361 1.0361 .9975 1.0888
25.00 1.0704 1.0704 1.0054 1.1488
30.00 1.1048 1.1048 1.0132 1.2088
35.00 1.1392 1.1392 1.0211 1.2689
40.00 1.1735 1.1735 1.0289 1.3289
45.00 1.2079 1.2079 1.0368 1.3889
50.00 1.2423 1.2423 1.0446 1.4489
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Table 2: Relative MSE’s for k = 8 and n = 30.

λ1 + λ2 λ1 SR SVSR MMSE AMMSE
.50 .00 .3138 .2738 .8217 .3421

.05 .3455 .3024 .8238 .3546

.10 .3772 .3310 .8258 .3672

.15 .4088 .3596 .8278 .3797

.20 .4405 .3882 .8298 .3922

.25 .4721 .4168 .8318 .4047

.30 .5038 .4454 .8338 .4172

.35 .5354 .4740 .8358 .4298

.40 .5671 .5026 .8378 .4423

.45 .5988 .5312 .8398 .4548

.50 .6304 .5598 .8418 .4673
3.0 .00 .3470 .3306 .8520 .3993

.30 .4765 .4515 .8605 .4599

.60 .6059 .5724 .8691 .5206

.90 .7354 .6934 .8777 .5813
1.20 .8648 .8143 .8862 .6420
1.50 .9942 .9352 .8948 .7027
1.80 1.1237 1.0561 .9034 .7633
2.10 1.2531 1.1771 .9119 .8240
2.40 1.3826 1.2980 .9205 .8847
2.70 1.5120 1.4189 .9290 .9454
3.00 1.6415 1.5398 .9376 1.0060

10.0 .00 .4922 .4908 .9020 .5211
1.00 .6742 .6696 .9150 .6414
2.00 .8562 .8483 .9281 .7617
3.00 1.0382 1.0271 .9412 .8819
4.00 1.2202 1.2058 .9543 1.0022
5.00 1.4022 1.3846 .9674 1.1224
6.00 1.5842 1.5633 .9804 1.2427
7.00 1.7662 1.7421 .9935 1.3630
8.00 1.9482 1.9208 1.0066 1.4832
9.00 2.1302 2.0996 1.0197 1.6035

10.00 2.3122 2.2783 1.0328 1.7237
50.0 .00 .8156 .8156 .9683 .7876

5.00 .9022 .9022 .9752 .8903
10.00 .9888 .9888 .9822 .9930
15.00 1.0754 1.0754 .9891 1.0958
20.00 1.1620 1.1620 .9960 1.1985
25.00 1.2486 1.2486 1.0030 1.3012
30.00 1.3352 1.3352 1.0099 1.4039
35.00 1.4218 1.4218 1.0169 1.5067
40.00 1.5084 1.5084 1.0238 1.6094
45.00 1.5950 1.5950 1.0307 1.7121
50.00 1.6816 1.6816 1.0377 1.8148
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