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PMSE PERFORMANCE OF THE
BIASED ESTIMATORS IN A LINEAR
REGRESSION MODEL WHEN
RELEVANT REGRESSORS
ARE OMITTED

AKI0 NAMBA
Kobe University

In this paperwe consider a linear regression model when relevant regressors are
omitted We derive the explicit formulae for the predictive mean squared errors
(PMSES of the Stein-rule(SR) estimatoy the positive-part Stein-rulePSR es-
timator, the minimum mean squared err@vIMSE) estimatoy and the adjusted
minimum mean squared errGAMMSE) estimator It is shown analytically that

the PSR estimator dominates the SR estimator in terms of PMSE even when there
are omitted relevant regressofdso, our numerical results show that the PSR
estimator and the AMMSE estimator have much smaller PMSEs than the ordi-
nary least squares estimator even when the relevant regressors are .omitted

1. INTRODUCTION

In the context of linear regressipthe Stein-rule(SR) estimator proposed by
Stein (1956)and James and Ste{t961)dominates the ordinary least squares
(OLS) estimator in terms of predictive mean squared efRMSE) if the model

is specified correctlyFurther as is shown in Baranchikl970),the SR estima-
tor is further dominated by the positive-part Stein-r(RSR estimator when
the specified model is correct.

As an improved estimatprheil (1971 proposes the minimum mean squared
error(MMSE) estimatorBecause Theil’$1971)MMSE estimator includes un-
known parametersFarebrother1975) suggests an operational variant of the
MMSE estimator that is obtained by replacing the unknown parameters of the
MMSE estimator by the OLS estimatorslereaftey we use the ternMMSE
estimatorto denote the operational variant of the MMSE estimaBecause
the MMSE estimator satisfies BaranchiK970) condition it dominates the
OLS estimator if the number of regressors is larger than or equal to three and if
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the model is specified correctls an extension of the MMSE estimat@htani
(1996)considers the adjusted minimum mean squared ¢ABIMMSE) estima-

tor that is obtained by adjusting the degrees of the freedom of the component
of the MMSE estimator

These estimators are called biased estimators because they are not unbiased
even if the model is specified correctlowever in most of the practical sit-
uationsit is hard to determine which regressors should be included in the model
Thus, a researcher may exclude relevant regressors mistakénglevant re-
gressors are omitteeéven the OLS estimator is not unbiaséd such situa-
tions there may be a strong incentive to use the biased estimators if we consider
that they are superior to the OLS estimator in some critettowever there is
little research on the properties of biased estimators when relevant regressors
are omitted in the specified mod&8ome exceptions are Mittelhamm@984)
and Ohtani(1993,1998).Mittelhammer(1984)shows that the SR estimator no
longer dominates the OLS estimator when relevant regressors are oittedi
(1993) derives the formulae for the PMSEs of the SR estimator and the PSR
estimator in the misspecified model and derives a sufficient condition for the
PSR estimator to dominate the SR estimafdso, Ohtani (1998) derives the
formulae for the PMSEs of the MMSE estimator and the AMMSE estimator
His numerical results show that the PMSE performance of the AMMSE esti-
mator is better than that of the PSR estimator when the number of regressors
included in the specified model is less than or equal to five and the model mis-
specification is severdHowever in Ohtani(1993,1998),the formulae for the
PMSEs of the SRPSR,MMSE, and AMMSE estimators are not correct.

Thus,in this paperwe limit our attention to PMSE and compare the sam-
pling performances of the OLSSR PSR MMSE, and AMMSE estimators
though there are several other criteri@s to other criteriasee,e.g., Gourier-
oux and Monfort 1995.) The plan of this paper is as followk Section 2 the
model and the estimators are presented in Section 3 we derive the explicit
formulae for the PMSESs of the SRSR,MMSE, and AMMSE estimatordt is
shown analytically that the PSR estimator dominates the SR estimator in terms
of PMSE even when relevant regressors are omittedSection 4 using the
formulae derived in Section,3ve compare the PMSEs of the estimators by
numerical evaluations

2. THE MODEL AND THE ESTIMATORS
Consider a linear regression mogdel
y: X131+X232+6’ €~ N(O’O-Zln)’ (1)

wherey is ann X 1 vector of observations on a dependent variakleand X,
aren X k; andn X k, matrices of observations on nonstochastic independent
variables B, and 8, arek; X 1 andk, X 1 vectors of regression coefficients
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ande is ann X 1 vector of normal error term§Ve assume that; and[ Xy, X, ]
are of full column rank.

Suppose that the matrix of regress&esis omitted mistakenly and the model
is specified as

y=XB1+m, n=XB; e (2
Then,based on the misspecified mogd#ie ordinary least squaré®LS) esti-
mator of 3, is

b, = Si' X1y, 3)

whereS;; = X1 X;.
Also, the SR,PSR,MMSE, and AMMSE estimators based on the misspeci-
fied model areyespectively

bsr = (1 —~ bia:iue:)l) by, 4)
bpg = max{o,l - %] by, (5)
Bus = ( by suzﬁl:;l e /u1> b, ©
bamz = ( ™ Sljail ?Lllbi/:fel /m) by, @)

wheree;, =y — X;b;, v, = n — ki, anda is a constant such that8 a =
2(ky — 2)/(v1 + 2). If the model is specified correctlyhe PMSE of the SR
estimator is minimized whea = (k; — 2)/(v, + 2). Thus,we use this value of
a hereafter

3. PMSE OF THE ESTIMATORS

To derive the explicit formulae for the PMSEs of the ,<9R5R, MMSE, and
AMMSE estimatorswe consider the general pretest estimator defined as

b1 S, by

wherel (A) is an indicator function such thatA) = 1 if an eventA occurs and

I (A) = 0 otherwiseF = (b1 S;; b, /k;)/(€] €, /v,) is the test statistic for the null
hypothesisH,: 81 = 0 against the alternativid, : 8, # 0 based on the misspec-
ified model, c is the critical value of the pretesandr is an arbitrary integer
The term,él reduces to the SR estimator whers 0, « = —a, andr =1, and it
reduces to the PSR estimator wher ar,/k;, « = —a, andr = 1. Further-
more, 3, reduces to the MMSE estimator when= 0, a = 1/v,, andr = —1,

[§1=I(cm)<1+a eie >rb1, ®)
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and it reduces to the AMMSE estimator whers 0, o = k; /v, andr = —1,
respectively A
The PMSE of3; is defined as

PMSE[Bl] = E[(Xllél - Xﬁ),(x1ﬁ1 - XB)]
= E[B1S118:] — 2E[B'X'X, 1]+ B'SB. 9)

whereX = [ Xy, X5], B’ = [B1,B4], andS= X’'X. The meaning and some dis-
cussions of the PMSE are given in Mittelhamn(&®84)and Ohtani(1993).
Denotingu, = b; S;;b, /02 andu, = e]e, /o2, (9) reduces to

R u Up + au, \2"
PMSE[B]_]:O'ZEP(E_:LZC)(]-—&Z) ul:|
Ky Uy Uy

- ZE{I <'I:—1 Yo c><w>rﬁ'x'xlb1] +B'SB. (10)

1 U U;

We define the function#l(p,q;«a,c) andJ(p,q;a,c) as

) _ V1 Uy Uy talp\P g
H(|c>,q,a,c)—E{l<k1 u220>< m >u1], , (11)
u u, + au P
Jm@@®=%(ﬂizﬂ<l‘”)@wwmmmﬂ, (12)
ki U, Uy

wherep andq are arbitrary integersThen,we obtain
PMSEB,1/02 = H(2r,1;a,¢) — 2J(1,0;a,C) + A1 + Ay, (13)

where, = B'X'X; St X; XB/a? Ay = B'X'M XB/o2 My = 1, — X, S;X],
and; + A, = B’'SB/d>

As is shown in the Appendixthe explicit formulae ofH(p,q;a,c) and
J(p,q;a,cC) are

H(p,q;a,c) = W, (A1)W; (A,)G; (p,0;a, ), (14)
i=0j=0
J(p,G3a,C) = Ay > W (AW (15)Gi g (P, G, C), (15)
i=0j=0
where

29T ((ky + v)/2+q+i+])
T(ky/2+0)T(vy/2+])

G;(p,g;a,¢) =

1
X J tha/27pratizl(] — t)n/24 g 4+ (1 — @)t]Pdt,  (16)
o

Wi (A) = exp(—A/2)(A/2)/il, andc* = kyc/(vy + KqC).
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The formula forJ(p,q;«,c) is substantially different from the formula de-
rived in Theorem 1 of Ohtan(1993).In Ohtani(1993),there are several un-
necessary terms in the formula for the PMSEs of the SR estimator and the PSR

estimator
Whenc* € (0,1), the integral in(16) can be written as

1
f tk1/2—p+q+i—l(1_ t)V1/2+J—1[a + (1— a)t]Pdt
o
© [ki/2—p+q+i—1
=E<l P )(—1)‘
=0

1
X f (1—t)/2"H g + (1— a)t]Pdt
o

o (k. /2—D+0g+i1—-1 _ ~E\v/2++]
:.E<l/ pta+i >(_1)|(1 c)
=0

I vi/2+j+1
X oFi(=pvi/2+j+ v /2+]+1+1(1-a)(d—cY)), (17)
where,Fy(-,-;-;-) is the hypergeometric functiofFor the definition and prop-

erties of the hypergeometric functiosee,e.g., Luke, 1969 Abramowitz
and Stegunl1972;Abadir, 1999.) In the case of the MMSE and AMMSE es-
timators the hypergeometric function ifil7) converges becaugél — «) X
(1 — ¢*)| < 1. In the case of the SR and PSR estimatdtrss a finite series
with p + 1 terms becausp is a positive integerThus, (17) converges for all
the estimators considered in this pap&iso, when |(1 — «)(1 — c*)| > 1,
analytic continuation formulae of the hypergeometric function mdke con-
vergent.(The author is deeply grateful to one of the referees for suggesting
that (17) be derived and instructing the properties of the hypergeometric
function)

Letw = —aandr = 1. We have

PMSHEB,)/c2 = H(2,1; — a,c) — 2J(1,0; — a,c) + A; + A,

TF((ky +vy)/2+i+j+1)
I'(ky/2+)T(vy/2+]))

=2

M8

%Wi(Al)M(Az)
j=

i=0

1
« f thka/2+i-2(1 — t)n/24i-1[—a + (1 + a)t]2 dt
o

w o T((ky+vy)/2+i+]+1)
- 2/\1i:20jgowi(/\1)v"i(’\2) I(ky/2+i+DT(py+])

1
X f th/2H7 (1 — ) /2 [ —a + (1 +a)t]dt+ Ay + Ay
o

(18)
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Differentiating (18) with respect tac and performing some manipulationsg
obtain

IPMSH B,)/c?2 & & 2T ((ky +vy)/2+i+]+1)
= I I wWwW() o :
ic 54 T(ky/2+1)(v,/2+])
ktl/zﬂ—lvfl/zﬂ cka/2+i-2
(Vl + klc)(vl+k1)/2+i+j—1
k,c
X|—a+(1l+a) ———
v, +kiC
X +(1+a) ke |, 2 ki
—|—a a)——— .
vi+kc| Trk/2+40 v+ keC
(19)
From (19), whena = —a andr = 1, a condition forPMSE[Bl] to be mono-
tonically decreasing is
k,c
-a+(1+a——=0. (20)

v, +kc

Thus, PMSE 3] is monotonically decreasing om € [0,ar,/k,] if « = —a
andr = 1. BecauseB; reduces to the SR estimator when= —a, r = 1, and
¢ = 0, and it reduces to the PSR estimator whes —a, r = 1, andc = avr,/
k;, we obtain the following theorem.

THEOREM 1 The PSRestimator dominates th8R estimator in terms of
PMSEeven when relevant regressors are omitted in the specified model.

Theorem 2 in Ohtani1993)requires the condition, = A, for the PMSE of
the PSR estimator to be smaller than that of the SR estiniEtg condition is
caused by the fact that his formula of PMSE is mistakenly derivmivever
our result shows that such a condition is not required when the formula is de-
rived correctly

Because further theoretical analysis of the PMSEs of theFSR,MMSE,
and AMMSE estimators is difficultwe compare them numerically in the next
section.

4. NUMERICAL ANALYSIS

In this sectionwe compare the PMSE performances of the BRR,MMSE,

and AMMSE estimators by numerical evaluatioAs is shown in Ohtani1993,

the noncentrality parameters are expressethas Fq RfandA, = Fs(1 - R?),
whereF; = B'SB/0? andRZ = B'X'X, S;1* X{ XB/B'SB.HereF; is the noncen-
trality parameter that appeared in the test for the null hypothesis that all the
regression coefficients are zeros in the correctly specified maédgb, R? is
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TABLE 1. Relative PMSEs of the SRPSR,MMSE, and AMMSE estimators
for k; = 5 andn = 20

R
Fs 0.1 03 0.5 0.7 0.9 10
SR
.0 4706 4706 4706 4706 4706 4706
1.0 .5616 .5632 .5640 5641 .5635 .5629
2.0 .6306 .6349 .6372 .6374 .6352 .6332
4.0 7299 7381 7421 7415 .7355 .7300
6.0 7995 .8080 .8116 .8093 7997 .7909
8.0 .8519 .8579 .8594 .8552 .8427 .8314
10.0 .8935 .8948 .8935 .8873 8727 .8596
15.0 .9692 .9538 .9447 .9347 9176 .9018
20.0 10216 .9873 9715 .9592 9416 .9248
25.0 10605 10079 .9872 9734 .9562 9391
30.0 10908 10215 9971 .9825 .9659 .9489
40.0 11344 10377 10086 .9930 9777 .9613
50.0 11640 10467 10147 .9987 .9844 .9689
1000 12274 10621 10249 10081 .9965 .9843
1500 12471 10662 10275 10104 .9997 .9895
PSR
.0 .3533 .3533 .3533 .3533 .3533 .3533
1.0 4457 4522 4579 4628 4666 .4682
2.0 .5148 5294 5414 .5506 .5566 .5584
4.0 6121 .6419 .6643 6792 .6858 .6856
6.0 .6783 7197 .7486 .7653 7693 .7658
8.0 7267 7764 .8084 .8244 .8245 .8175
10.0 .7640 .8196 .8522 .8659 .8621 .8521
15.0 .8292 .8920 .9204 9262 .9149 .9003
20.0 .8720 .9363 9571 .9558 .9410 .9245
25.0 .9028 .9658 .9785 9721 .9561 19391
30.0 .9262 .9866 .9919 .9820 .9659 .9489
40.0 .9598 10133 10066 .9929 9777 .9613
50.0 .9829 10294 10139 .9987 .9844 .9689
1000 10390 10582 10249 10081 .9965 .9843
1500 10618 10651 10275 10104 .9997 .9895
MMSE
.0 7254 7254 7254 7254 7254 7254
1.0 7614 7631 7644 7654 .7660 7661
2.0 .7883 7925 7957 7977 .7985 7984
4.0 .8260 .8354 .8421 .8460 .8466 .8456
6.0 .8514 .8651 .8743 .8792 .8794 8772
8.0 .8699 .8868 .8976 .9029 .9025 .8993
10.0 .8842 .9033 .9149 .9203 9192 .9152
15.0 .9089 .9310 .9427 .9475 .9454 .9400
20.0 9251 .9479 .9586 9625 .9599 .9539
25.0 .9367 .9591 .9685 9716 .9690 .9626
30.0 .9455 9671 9752 9777 .9750 .9686
40.0 .9582 9774 .9834 .9849 .9825 9762
50.0 .9669 .9838 .9882 .9891 .9869 .9809
1000 .9880 .9963 .9969 .9964 .9949 .9904
1500 .9963 10003 .9995 .9985 .9972 .9935

continued
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TABLE 1. continued

R?
Fs 0.1 03 0.5 0.7 0.9 10
AMMSE

.0 .3357 .3357 .3357 .3357 .3357 .3357
1.0 4328 4316 4295 4267 4229 4207
2.0 .5050 .5064 .5056 .5023 4963 4921
4.0 .6057 .6154 .6202 .6193 .6110 .6033
6.0 6731 .6910 .7016 .7037 .6946 .6841
8.0 7216 7463 7615 7661 .7566 7439
10.0 .7585 .7885 .8070 .8133 .8036 .7891
15.0 .8215 .8600 .8824 .8902 .8797 .8620
20.0 .8616 .9044 .9272 .9342 .9228 .9032
25.0 .8897 .9346 .9562 9614 .9490 .9284
30.0 .9107 .9563 9761 9793 .9659 .9448
40.0 .9399 .9853 1.0011 1.0003 .9855 .9641
50.0 .9595 1.0037 1.0157 1.0117 .9957 .9745
1000 10049 1.0424 1.0426 1.0295 1.0103 9913
1500 10224 1.0556 1.0503 1.0333 1.0127 .9953

interpreted as the coefficient of determination in regressio§®bn X;. Thus,
if R? is close to unitythe magnitude of model misspecification is regarded as
small and vice versa.

The parameter values used in the numerical evaluations kyere3, 4, 5, 8,

n = 20, 30, 40, R? = 0.1,0.3,0.5,0.7, 0.9, 1.0, and Fz = various valuesTo
compare the PMSEs of the estimatoxg evaluated the values of relative PMSE
defined asPMSHE[ 3,]/PMSHE b, ], where3, is any estimator of8,. Thus,the
estimatorB, has smaller PMSE than the OLS estimator when the value of rel-
ative PMSE is smaller than unitfhe numerical evaluations were executed on
a personal computer using the FORTRAN colieevaluating the integral in
G;(p,q;a,c) given in (16), we used Simpson’s rule with 200 equal subdivi-
sions.The double infinite series ik (p,q;«, c) andJ(p,q;a, c) were judged to
converge when the increment of series became smaller thaii. Because the
results for the cases ¢f, = 5, 8, andn = 20 are qualitatively typicalwe do
not show the results for the other cases.

Table 1 shows the relative PMSEs of the , S8R, MMSE, and AMMSE
estimators foik; = 5 andn = 20. From Table 1 we can make sure of Theo-
rem 1;that is,the PMSE of the PSR estimator is uniformly smaller than or
equal to that of the SR estimator even if relevant regressors are omitierg.
we can see that the AMMSE estimator has the smallest PMSE over a wide
region of the parameter spa@&g., F; = 25.0).In particular the PMSE of the
AMMSE estimator is smaller than the other estimators when the model mis-
specification is severge.g.,Rf = 0.1 andF; = 50.0). Though the maximum of
the relative PMSE of the AMMSE estimator is slightly larger than yrtite
minimum is much smaller than unityhis indicates that the gain in PMSE
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TABLE 2. Relative PMSEs of the SRPSR,MMSE, and AMMSE estimators
for k; = 8 andn = 20

R
Fs 0.1 03 0.5 0.7 0.9 10
SR
.0 .3571 3571 .3571 .3571 .3571 .3571
1.0 4321 4320 4318 4313 4306 4301
2.0 4980 4975 4964 4946 4920 4904
4.0 .6105 .6067 .6020 .5960 .5880 .5831
6.0 .7053 .6944 .6839 6724 .6584 .6500
8.0 7877 .7663 .7485 7312 7116 .6998
10.0 .8611 .8265 .8005 7774 7526 7379
15.0 10170 .9408 .8931 .8571 .8225 .8023
20.0 11456 1.0212 .9529 .9066 .8657 .8419
25.0 12553 1.0804 .9938 .9396 .8946 .8684
30.0 13506 1.1255 1.0233 .9630 .9152 .8874
40.0 15089 1.1891 1.0624 .9932 9422 9127
50.0 16355 1.2314 1.0868 1.0116 .9589 .9288
1000 20101 1.3252 1.1364 1.0477 .9926 9629
1500 21888 1.3589 1.1527 1.0590 1.0033 .9750
PSR
.0 .2606 .2606 .2606 .2606 .2606 .2606
1.0 .3218 .3279 .3336 .3389 .3437 .3460
2.0 .3739 .3864 .3976 4072 4153 4188
4.0 4585 4834 .5040 5198 .5304 .5335
6.0 5251 .5609 .5888 .6076 .6165 6171
8.0 5792 .6245 .6576 .6769 .6818 .6786
10.0 .6244 .6778 7144 7322 7318 7247
15.0 7106 7801 .8198 .8293 .8144 7984
20.0 7722 .8539 .8917 .8898 .8626 .8408
25.0 .8184 .9099 9432 9295 .8935 .8682
30.0 .8542 .9542 .9815 .9568 9147 .8874
40.0 .9057 1.0200 1.0337 .9909 9421 9127
50.0 .9407 1.0670 1.0669 1.0108 .9589 .9288
1000 10200 1.1872 1.1326 1.0477 .9926 .9629
1500 10489 1.2400 1.1518 1.0590 1.0033 .9750
MMSE
.0 .8030 .8030 .8030 .8030 .8030 .8030
1.0 .8145 .8165 .8184 .8203 .8220 .8228
2.0 .8242 .8283 .8320 .8353 .8382 .8395
4.0 .8400 .8479 .8546 .8600 .8643 .8660
6.0 .8525 .8636 .8725 .8793 .8841 .8857
8.0 .8627 .8766 .8870 .8945 .8994 .9008
10.0 8714 .8875 .8990 .9069 9116 9126
15.0 .8885 .9083 9211 .9290 .9329 9331
20.0 .9014 9232 .9361 .9435 .9465 .9460
25.0 9117 .9345 .9468 .9535 .9559 .9549
30.0 .9202 .9432 .9549 .9608 .9626 9612
40.0 .9334 .9559 .9659 .9706 9716 .9698
50.0 .9435 .9647 9731 9768 9774 9753
1000 9713 .9855 .9889 .9898 .9893 .9871
1500 .9844 .9935 .9944 .9942 .9934 9912

continued
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TABLE 2. continued

R?
Fs 0.1 03 0.5 0.7 0.9 10
AMMSE

.0 .3201 .3201 .3201 .3201 .3201 .3201
1.0 .3783 .3783 3779 3772 .3762 .3755
2.0 4271 4284 4287 4279 4260 4245
4.0 .5047 .5107 5139 5139 .5103 .5068
6.0 .5642 .5756 .5822 .5835 5782 5727
8.0 .6116 .6282 .6382 .6406 .6338 .6259
10.0 .6504 .6718 .6847 .6882 6797 .6696
15.0 7229 7542 7725 7772 .7648 7493
20.0 7737 .8123 .8339 .8384 .8222 .8021
25.0 .8115 .8556 .8789 .8825 .8628 .8388
30.0 .8409 .8892 9133 .9154 .8926 .8653
40.0 .8837 .9380 .9622 .9609 .9327 .9005
50.0 9135 9717 19951 .9904 .9578 .9223
1000 .9855 1.0526 1.0705 1.0534 1.0077 .9650
1500 10143 1.0847 1.0988 1.0747 1.0226 .9781

from using the AMMSE estimator instead of the OLS estimator is much larger
than the loss even when there are omitted regresaéss, the loss from using
the MMSE estimator instead of the OLS estimator is very sntafiugh the
gain is not so large

The relative PMSEs of the SFBPSR,MMSE, and AMMSE estimators for
k, = 8 andn = 20 are shown in Table. Bimilar to the case of; = 5, we can
make sure of Theorem. Whenk,; = 8, the PSR estimator has the smallest
PMSE over a wide region of the parameter spa&dso, the AMMSE estimator
has much smaller PMSE than the OLS estimator over a wide region of the
parameter spac&hough the maximums of the relative PMSEs of the PSR and
the AMMSE estimators are slightly larger than unityeir minimums are much
smaller than unityAlso, the MMSE estimator has smaller PMSE than the OLS
estimator for all the values d¥; andRZ considered herehough the minimum
of its PMSE is not so small

The results stated previously are almost similar to the numerical results in
Ohtani(1998).In other wordsthe effect of his calculative error on the numer-
ical results is not so large.
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APPENDIX

In this Appendix we derive the formulae foH(p,q;«,c) and J(p,q;a,c). First,
we derive the formula forH(p,q;a,c). The OLS estimatorb, is distributed as
N(B1 + Si'Si2B2,0°S1iY) = N(SI'XiXB,0%St"), where X = [Xy,Xz], B’ =
[B1,B5], and S, = X;X,. Thus u; = b;S;;b; /o2 is distributed as the noncentral
chi-square distribution wittk; degrees of freedom and noncentrality paramater=
B' X' XS X XB/a?. Also, the residual vectoe, is distributed asN(M;XB,0°M,),
whereM; = (I, — X;S;i*X;). Thus u, = €je,/o? is distributed as the noncentral
chi-square distribution withy; degrees of freedom and noncentrality paramater
B'X'M1XB/c?. Furthermorgu, andu, are mutually independent

Usingu; andu,, H(p,q;a,c) is expressed as

H(p,q;a,c) = Z Z Kij ff u§1/27p+q+i71u51/2+j*1(ul+ auz)p
i=0j=0 R
X expl—(u; + u,)/2]du, du, (A.1)

where

_ Wi (Ag)w;(A)
i = PR ETIR (ky /2+ DT (2/2 1)) (A2

w;(A) = exp(—A/2)(A/2)//i!, andR s the region such thguy, uy| Uy /U, = kyc/v,}.
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Making use of the change of variabjes = u;/u, andv, = u,, (A.1) reduces to

i i f fw pIa 2P Gt 2H L ()
=0j=0 kyc/vy
X expl—vo(1+ vq)/2] dv, do;. (A.3)

Again, making use of the change of variabie= (1 + v1)v2/2, (A.3) reduces to

K; 20katr)/2Ha 4 (k) + v,)/2 +q+i +)

]

M
M

0

[e) U:lL<1/27p+q+i—1(a + Ul)p A
X « (1+vl)(k1+ul)/2+q+i+j dvl' ( : )

i=0]j

1C/vy

Finally, making use of the change of variabte= v, /(1 + v;), and performing some
manipulationswe obtain(14) in the text

Next, we derive the formula fod(p,q;a,c). Noting thatoA,/dB1 = 2(S;181 +
S1282)/02 anddr,/dB1 = 0, and differentiatingH ( p,q;ea, ¢) given in (14) with respect
to B1, we obtain

H(p,q;a,C)
e

08, }W(/\ )G (p,G;,¢)

O

|: ow; (A1)

2 2 [ Sufat Slzﬂz][*wi (Ay) + Wi (A)]w (A2) G; (p, 0, €)

=0j=0

H(p,g;a,c)

i[ Sub + slzﬁz]
0_2

[M] 3 3w ()W (1) G (PG ) (A.5)

o

Becauseu; = b;X;,b; /02 andb; ~ N(S;itX;XB,02S:), H(p,q;a.c) can be ex-
pressed as

paine) = [[ (257 Vit o v ava, )

wheref,(u,) is the density function ofi, and

Xp[_(bl— X1 XB)' Sya(by — ‘fxixﬁ)], (A7)

1
fu(by) = (2m)k/2| g 25|12 € 202
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Differentiating (A.6) with respect tQ3;, we obtain

oH(p,q;a, 1+ auy\P 10 =SB —
T °)=HR<—“ ”2> uﬁfN<b1>f2<uz>{Sl Sup S”m]oluzolbl

Uy o

1 vy U U; + au, \P
= =SE[l|=—=c|| — | u{S;;b
(=) (M s

S e ) )

Equating(A.5) and (A.8), and multiplying8’'X'X; S;;* from the left we obtain(15)
in the text



